Rigorous Automated Network Security
Management*

Joshua D. Guttman Amy L. Herzog

The MITRE Corporation
{guttman, aherzog}@mitre.org

August 15, 2003

Abstract

Achieving a security goal in a networked system requires the cooper-
ation of a variety of devices, each device potentially requiring a different
configuration. Many information security problems may be solved with
appropriate models of these devices and their interactions, and giving a
systematic way to handle the complexity of real situations.

We present an approach, rigorous automated network security man-
agement, which front-loads formal modeling and analysis before problem-
solving, thereby providing easy-to-run tools with rigorously justified re-
sults. With this approach, we model the network and a class of practically
important security goals. The models derived suggest algorithms which,
given system configuration information, determine the security goals sat-
isfied by the system. The modeling provides rigorous justification for the
algorithms, which may then be implemented as ordinary computer pro-
grams requiring no formal methods training to operate.

We have applied this approach to several problems. In this paper
we describe two: distributed packet filtering and the use of IP security
(IPsEc) gateways. We also describe how to piece together the two separate
solutions to these problems, jointly enforcing packet filtering as well as
IPSEC authentication and confidentiality on a single network.

*Supported by the National Security Agency under contract DAABO07-99-C-C201, and
the United States Air Force under contract F19628-99-C-0001. Preliminary versions of parts
of this material appeared in Proceedings, 1997 IEEE Symposium on Security and Privacy;
Proceedings, ESORICS 2000; and Proceedings, VERIFY 2002.

Contents

1 Introduction 3
2 Packet-Filtering Devices 4
2.1 Modeling 5
2.1.1 Modeling Networks)
2.1.2 Modeling Packetso 6
2.1.3 Devices and Filtering Postures 7
2.1.4 Paths and Trajectories 7
2.2 Expressing Security Goals oL 8
2.2.1 Policy Statements and Policies 9
2.3 Deriving Algorithms L o 10
2.3.1 Checking a Posture 10
2.3.2 Generating a Posture 0L 11
2.4 TImplementing: Network Policy Enforcement 12
2.4.1 NPT and the Atomizer 12
2.4.2 Interpreting Access Lists 13
243 TheNPE Tools 14
3 The IP Security Protocols (IPsec) 15
3.1 IP Security 17
3.2 Modeling 19
3.3 Expressing Security Goals 0oL 23
3.3.1 Authentication Goals 23
3.3.2 Confidentiality Goals 23
3.3.3 Example Goals 24
3.34 Trust Sets 24
3.4 Deriving Algorithms oL oL 25
3.4.1 Authentication 27
342 Unwinding oo 28
3.4.3 Confidentiality 30
3.4.4 Manageability L oo 32

3.5 Implementation: The Confidentiality and Authentication IPSEC
Checker (CAIC) 32
351 CAICInput 33
3.5.2 Goal Enforcement Checking and Output 34
4 Combined Packet Filtering and IPsec 35
4.1 Expressing Security Goals 35
4.2 Deriving Algorithms oL 37
5 Conclusion 38

1 Introduction

Controlling complexity is a core problem in information security. In a net-
worked system many devices, such as routers, firewalls, virtual private network
gateways, and individual host operating systems must cooperate to achieve se-
curity goals. These devices may require different configurations, depending on
their purposes and network locations. To solve many information security prob-
lems, one needs models of these devices and their interactions. We have focused
for several years on these problems, using rigorous automated network security
management as our approach.

Rigorous automated security management front-loads the mathematical work
needed for problem-solving. Rigorous analysis is needed to solve many informa-
tion security problems, but unfortunately specialists in modeling are in short
supply. We focus the modeling work on representing behavior as a function
of configurations, and predicting the consequences of interactions among differ-
ently configured devices. A useful model must also allow one to express a class
of practically important security goals.

The models suggest algorithms that take as input information about system
configuration, and tell us the security goals satisfied in that system. Sometimes
we can also derive algorithms to generate configurations to satisfy given security
goals. The soundness of the algorithms follows from the models. However, the
algorithms are implemented as computer programs requiring no logical expertise
to use. Resolving individual practical problems then requires little time and no
formal methods specialists, while offering a good level of the higher assurance
of security.

Our purpose in this paper is to illustrate the rigorous security management
approach. We describe a group of problems and the modeling frameworks that
lead to their solutions. One problem concerns distributed packet filtering, in
which packet-filtering routers are located at various points in a network. The
problem is to constrain the flow of different types of packets through the net-
work. Another problem concerns gateways running the IP security protocols
(IPSEC); the problem is to ensure that authentication and confidentiality goals
are achieved for specific types of packets traversing the network. We have im-
plemented solutions to these problems [7, 8, 10]. The goal of the present paper
is to provide an integrated description of our methods, and also to unify the two
solutions, so that packet filtering goals and IPSEC goals are jointly enforced on
a network.

Steps in Rigorous Automated Security Management The method re-
quires four steps.

Modeling: Construct a simple formal model of the problem domain. For in-
stance, the packet filtering system model contains a bipartite graph, in
which nodes are either routers or network areas. Edges represent inter-
faces, and each interface may have packet filters representing the set of
packets permitted to traverse that edge in each direction.

Expressing Security Goals: Selecting a model constrains which security goals
are expressible, so that model simplicity must be balanced against the abil-
ity to represent core security problems. Within each model, identify one
or a few security goal forms that define security-critical aspects of the
system. In our treatment of IPSEC, one goal form characterizes asser-
tions about authenticity; confidentiality is expressed using a different goal
form. People managing a particular system will choose a number of goals
of these general forms as expressing the properties they need for their sys-
tem. Thus, it is crucial that these goal forms express at least some of the
most important security considerations that the system managers need to
achieve.

Deriving Algorithms: The system model and security goal forms must be
chosen so that algorithms can determine if goals are enforced in a partic-
ular system. Each specific system configuration (abstracting from charac-
teristics not reflected in the model) is a problem instance, for which the
analysis algorithms must determine whether given goals are achieved. In
some cases, another algorithm may, given some information about a sys-
tem and some desired goal statements, fill in the details to determine a
way for the system to satisfy the goals.

The rigor in our method lies in the mathematical character of the model
and the opportunity to give convincing proofs of correctness for these
algorithms.

Implementing: Having defined and verified one or several goal enforcement
algorithms in the previous step, one writes a program to check goal en-
forcement. The inputs to this program consist of goal statements that
should be enforced, and system configuration information. For instance,
in our packet filtering example, the system configuration information con-
sists of network topology information, and the router configuration files.
The program then enumerates which goals are met, and gives counterex-
amples for unmet goals. The program may also generate new and better
configuration files.

2 Packet-Filtering Devices

Packet filtering devices such as routers, firewall systems, and IPSEC gateways
are an important component of network layer access control. Since packets
passing from one area in a network to another often traverse many intermediate
points, and may travel via alternate routes, filtering devices in several locations
may need to cooperate. It is difficult to determine manually what division of
labor among devices at different points in a network ensures policy enforcement,
particularly given multiple routes. This is a problem of localization.

We will describe this problem from the rigorous automated security manage-
ment vantage point, stressing the four steps: modeling (Section 2.1), defining

Periphery

Figure 1: Corporate Protection Example

Engineering

security goals (Section 2.2), developing algorithms to enforce these goals (Sec-
tion 2.3), and implementing the algorithms (Section 2.4).

2.1 Modeling

Our model has two parts, namely a model of networks as undirected bipartite
graphs (Section 2.1.1), and a model of packets as having certain distinguishable
characteristics (Section 2.1.2).

2.1.1 Modeling Networks

We regard a network as a bipartite graph. The nodes of the graph are areas,
collections of hosts and networks which are similar in terms of security policy;
and devices, which are dual-homed hosts or packet filtering routers connecting
the areas and moving packets between them. There is an (undirected) edge
between a filtering device and an area if the device has at least one interface on
that area.

Thus, areas and devices are the two sorts of node in our network graph, and
we use variables such as a and d to range over them (respectively).

In Figure 1, Engineering, Fxternal, Allied, etc. are areas, and the black
squares indicate filtering devices. This diagram represents a corporation that
owns the three networks marked FEngineering, Finance, and Periphery. The
Internet, indicated as Ezternal, is connected to the corporation via a filtering
device at Periphery. However, the engineering staff have long term collaborative
relations with another organization called Allied, and must exchange different
network services with their collaborators than would be acceptable with other
organizations. Hence, there is also a dedicated network connection (and filtering
point) between them.

Such situations where different trust relations attach to different portions
of a network are common. Our problem is to reliably enforce a security policy
sensitive to these differences. Trust relations must be translated to filtering
decisions in a way sensitive to the topology of the network.

Formalizing a real-world network takes some care. We can express access
control policies on the network only if they involve the flow of packets from one

area to a different area. We cannot express requirements on packets traveling
within a single area, nor could we enforce them. Thus, security goals for a
particular network must determine the granularity of its model.

In addition, we must ensure that all of the real-world connectivity between
distinct areas in our networks is represented. We cannot enforce access controls
on the traffic between areas if we do not know what filtering devices (or dual-
homed hosts) may move packets from one area to another. On the other hand,
the areas may represent large collections of physical networks that have many
routers within them. Those internal devices are of no interest for our analysis.
This point is highly relevant to the usability of our method. Large networks,
administered by a single authority, typically use relatively few routers as filtering
devices. Thus, substantial practical problems arise with networks not much
more complicated than the one shown in Figure 1.

Indeed, often there are different layers of administrative control. For ex-
ample, enterprise-level network administration may be concerned with policy
among large corporate units, the Internet, and strategic business partners. By
contrast, a corporate laboratory may have more specific requirements concern-
ing communication among its distributed portions, located within different large
corporate units. Their point of view distinguishes smaller components within
them, and may lump the remainder together as a single area providing trans-
port among these smaller units. Enforcement for their policy may depend on
an entirely separate collection of filtering devices, typically also of modest size.

2.1.2 Modeling Packets

In our modeling, we need only consider an aspect of packets if a device that
filters and routes packets may be sensitive to it. Generally speaking, these are
the source and destination addresses, the protocol (such as TCP, ICMP, and so
forth), and certain protocol-specific fields. Protocol-specific fields include the
source and destination ports in the case of TCP or UDP; message type in the
case of ICMP and IGMP, and for ICMP additionally a message code; and an
additional bit in the case of TCP indicating whether the packet belongs to an
already established connection. We ignore many other characteristics such as
the payload, the source-routing history, time-to-live, and checksum.

These are the only packet properties that are available to configure a Cisco
router for packet filtering [5]. Other filtering methods such as 1P Chains and 1P
Filters give loosely similar expressiveness for properties of packets [21, 20].

We refer to a possible value of these fields as an abstract packet. We regard
an abstract packet as a single item in our model, even though it represents
many concrete IP packets. These IP packets are indiscernible, as far as we are
concerned, so our theory identifies them into a single abstract packet. The
boolean algebra of sets of abstract packets allows us to represent filter behavior
and to express what dangers a security policy seeks to prevent.

Our model consists of essentially only these two ingredients, namely a bipar-
tite graph representing the network and this notion of abstract packet (together
with the boolean algebra of sets of them). The remainder of the notions we

need are defined in terms of these ingredients, notably paths, trajectories, and
security postures, which we will explain in Sections 2.1.3 and 2.1.4.

2.1.3 Devices and Filtering Postures

A filtering device in our model is a node with interfaces on one or more network
areas. Thus, we regard an interface as an edge between that node and the
node representing the network area. Packets flow in both directions across this
edge. Most filtering devices can be configured to discard packets passing in
either direction across any interface, and they typically pass different packets
depending on the direction of flow. Thus, from our point of view, an edge
between an area a and a device d is characterized by two sets of abstract packets:
inb(a,d) defines the packets permitted to traverse the edge inbound into the
device from the area, while outb(a, d) defines the packets permitted to traverse
the edge outbound from the device to the area.

A filtering posture for a particular network (i.e. a bipartite graph) consists
of an assignment of sets inb(a,d) and outb(a,d) to each pair a,d such that d is
a device having an interface onto the area a.

We have no interest in distinguishing different interfaces that the filtering
device may have on the same area. They cannot control the flow of packets in
any additional useful ways.

2.1.4 Paths and Trajectories

A path through the network is a sequence of immediately connected nodes on
the associated bipartite graph. We ignore issues of routing in our current pre-
sentation, so that our conclusions will hold even on the conservative assumption
that routing tables may change unpredictably. Thus, a packet may potentially
traverse any path through the network. Routing information may be easily in-
corporated into the model if desired, and the tool we describe in Section 2.4 has
an option to determine whether to consider routing.

A trajectory is a path 7 taken by a packet p, which we regard as simply the
pair (,p) consisting of the path and the packet (i.e. an abstract packet).

The trajectory is a crucial notion. The purpose of filtering devices is to
ensure that some trajectories cannot occur. These are trajectories in which
packets exercising vulnerable services are transmitted from untrusted hosts, and
allowed to reach endpoints we would like to protect. Thus, security goals will be
certain sets of trajectories, interpreted as the trajectories acceptable according
to that policy. A configuration enforces a goal if it filters and discards a packet
before it traverses a trajectory not in the set, interpreted as a trajectory contrary
to the policy.

Our definition of trajectory, as just given, effectively assumes that the state
of the packet does not change as the packet traverses the network. A trajectory
as defined here does not associate different packets (or distinguishable states of
the traveling packet) with successive locations. (In Section 3 we consider an

elaborated notion of trajectory that does, as is necessary because the protocols
we consider there depend on transforming the packet as it travels.)

2.2 Expressing Security Goals

Security goals rely upon two sorts of ingredient:

1. Which areas has the packet traversed? For instance, was it once in the
External area, and has it now reached the Engineering area?

2. What does the packet say? The contents of the packet are simply its
properties as an abstract packet. For instance, if the destination port of
the packet is port 53, then given the vulnerabilities in many DNS imple-
mentations, we may wish to discard it unless the destination address is a
carefully administered host we make available for external DNS queries.

Ingredient 1 concerns the actual path of the packet as it traverses the network,
regardless of what it claims. Ingredient 2 concerns only what the packet claims,
not where it has really passed. These two kinds of information diverge when
filtering devices send packets through unexpected paths, or packets are spoofed,
or packets are intercepted before reaching their nominal destinations. A useful
notion of security policy must consider both kinds of information.

As an example, suppose that in the network shown in Figure 1 we wish to
have a DNS server located in the Engineering area accessible only by company
hosts. Then we may have a policy that no packet with destination port 53 that
was ever in the Erternal area should be delivered to the Engineering area. Here,
the source field address of the packet is irrelevant. Even if the source address
claims to be in the Periphery network, the packet should not be delivered. The
attack may be contained in incoming packets without any reply packets actually
needing to be returned to the original source host. In this case, the attacker
may even prefer to adorn his attack packets with a source address within the
organization.

If the DNS server is required to be accessible from the Periphery area, it is
a derived security requirement that DNs-directed packets with spoofed source
addresses not be permitted to enter the Periphery from Faxternal. Once they
have done so, it will no longer be possible to distinguish these suspicious ones
from packets originating locally there, so that the bad packets can be filtered
between Periphery and Engineering. We have thus illustrated that certain goals
can be met only if filtering occurs at specific locations, where the decisions
depend on the topology of the network and the goals to be achieved. Moreover,
the goal that concerns us in this example concerns properties not only of the
packet itself (its destination address and port being the DNS server and port 53),
but also of the path itself, since the packet is more apt to exercise a vulnerability
if it has come into the organization from outside.

A security policy should be a property of trajectories—a set of permissible
packet-path pairs—so we can express goals like the one we have just described.

2.2.1 Policy Statements and Policies

We adopt a simple notion of network access control policy for the remainder
of Section 2 that balances actual trajectory and header contents. A policy
statement concerns two distinct areas occurring in the actual path of the packet,
one earlier network area and one later network area. If ¢ is some predicate of
packets, and p ranges over packets, then

If p was previously in a; and later reaches aq, then ¢(p)

is a policy statement when a; # as. It requires that as be protected against
non-¢ packets if they have ever been in a;. For instance,

If p was ever in the External area and later reaches the Engineer-
ing area, then p should be an SMTP packet with its destination an
approved mail host

would be a policy statement relevant to the corporate example pictured in Fig-
ure 1. In this policy statement, we aim to protect hosts in the Engineering
area from attacks that might be transmitted from the Faxternal area; the only
exception being that specific mail hosts are not protected against packets par-
ticipating in the SMTP protocol, i.e. TCP packets with destination port 25.

It is also possible to interpret this form of statement as offering some confi-
dentiality protection. In this interpretation, it states that a; is protected against
loss of data to ag, if that data is carried only in packets p such that ¢(p). For
instance, a corporation may use outbound filtering to ensure that traffic with a
database server cannot be misrouted outside its networks, since much sensitive
business information is carried in these packets.

It would also be possible to consider more complicated policy statements,
involving e.g. three areas. As an example, we might require a packet that
came from the External area via the Allied area and eventually reached the
Engineering area to have:

e an external address as its 1P source field;
e an internal address as its IP destination field;
e a source or destination port of 25, indicating that it is an SMTP packet.

Other packets could not pass through the Allied area.

However, realistic security goals appear to be expressible using two-area
policy statements. In the case of our example, we could replace this three-area
policy statement with a (slightly stronger) pair of two-area policy statements.
The first would require that if a packet p that was in the External area reaches
the Allied area, and if p has a destination address in the internal areas, then p’s
source address should be in the External area and p’s service should be sMTP.
The second would require that if a packet p that was in the Allied area reaches
the Engineering area, then p’s destination address should be in one of the inter-
nal areas. If this pair of two-area statements are satisfied, then the three-area

requirement will also be satisfied. The extra strength of these two-area state-
ments was probably desired anyway: namely, that the corporation’s internal
networks should not be used as a pass-through from the Allied organization.

Therefore, for the remainder of Section 2, a policy statement will be a two-
area statement, asserting that any packet p that was in one area and later arrives
in a different area meets some constraint ¢(p). A policy will mean a set of policy
statements, one for each pair of distinct areas a;, as. The constraint may be
vacuously true, allowing everything to pass between them; or else at the other
extreme, unsatisfiable, requiring that nothing pass.

2.3 Deriving Algorithms

The ideas introduced in previous sections suggest two algorithms that exploit the
boolean operations on constraints ¢(p) in combination with the graph structure
of the underlying network specification. These algorithms may be used to check
a putative filtering posture, or to generate a filtering posture that will enforce
a given policy.

Both of these algorithms depend on the notion of the feasibility set of a path.
Given a filtering posture (inb, outb), the feasibility set of a path 7 is the set of
all abstract packets that survive all of the filters traversed along the path. That
is, if 7 traverses device d, entering it from area ai, then an abstract packet p is
in the feasibility set of 7 only if p € inb(a;,d). If 7 enters area as from d, then
p is in the feasibility set of 7 only if p € outb(as, d).

We can compute the feasibility set of a path iteratively by starting with the
set of all packets; as we traverse the inbound step from a; to d, we take an
intersection with inb(aq,d); as we traverse the outbound step from d to as, we
take an intersection with outb(az,d). Binary Decision Diagrams allow us to
carry out such computations reasonably efficiently.

We use this idea in both of the following sections.

2.3.1 Checking a Posture

To check that a posture enforces a policy P, we examine each path between
areas to ensure that the feasibility set for that path is included in the policy
statement for the areas it connects. If m is a path starting at area ay and
terminating at area a;, we must check that the feasibility set for 7 is included
in P(ag,a;), i.e., the set of abstract packets that can actually traverse the path
is a subset of the set of abstract packets permitted to travel from ag to a;.

Algorithmically, it is enough to check this property for noncyclic paths, as
the feasibility set for a cyclic path m; must be a subset of the feasibility set
for any noncyclic sub-path my. The set of noncyclic paths is fairly small for
reasonable examples; in the case of the corporate example, 40 noncyclic paths
begin and end at areas (rather than at filtering devices).

10

2.3.2 Generating a Posture

Creating a posture is a more open-ended problem. There are essentially different
solutions, different ways to assign filtering behavior, possibly to different devices
or to different interfaces of a device, such that the net result enforces the global
security policy.

Outbound Filtering. Various posture generation algorithms can be based
on the idea of “correcting” a preexisting filtering posture F' = (inb, outb). We
say that F” tightens F if inb/(a,d) C inb(a,d) and outb’(a,d) C outb(a, d), for
all a and d.

Suppose that 7 is a path from area ay to a; that enters a; from device
d, and suppose that the feasibility set for 7 is ¢. If ¢ is not a subset of the
policy constraint P(ag,a;), then we can update F' to a new filtering posture
F' = (inb’, outb’) where F’ differs from F only in that

outb’(a;,d) = outb(a;, d) \ (¢ \ P(ag,a;))

where ¢\ ¢ is the set difference of ¢ and 1. F’ tightens F' to prevent any policy
violations that would otherwise occur on the last step of 7. This change cannot
cause any new policy violations, because it cannot increase any feasibility set.
It can only reduce the feasibility sets of other paths that also traverse this edge.

Hence, if we start from an arbitrary filtering posture Fj and iterate this
correction process for every cycle free path 7, we will obtain a filtering posture
that satisfies the policy P. We organize this process as a depth-first traversal of
the graph starting from each area in turn. It performs the tightening by side-
effecting data structures that hold the filters for the individual filtering device
interfaces. However, this recipe for generating a posture does not say how to
use the inbound filters effectively.

Inbound Filtering. We use the inbound filters for protection against spoof-
ing, because they know which interface the packet has arrived through, which
the outbound filter does not. Many human-constructed firewalls use inbound
filters for this purpose.

As a heuristic, we assume that packets from one area should not take a
detour through another area to reach a directly connected filtering device. Our
expectation is that there will normally be good connectivity within any one area,
and that a packet originating anywhere in an area will easily be able to reach
a device if the device has an interface anywhere in that area. Although this
expectation may not always be met—for instance when an area, like External
in Figure 1, consists of most of the Internet—a security policy may choose to
require that packets arrive as expected, and act defensively otherwise.

We may easily formalize this heuristic. Suppose a packet p reaches a device d
through its interface to area a, but the source field of p asserts that it originates
in area @’ where a’ # a. If d also has an interface on a’, then we want to discard
p. For, if p had really originated where it claims to have originated, then p

11

should have reached d through its interface on a’. We will refer to the inbound
filters that implement this idea as inby. We apply our correction technique
starting with inbg as inbound filters.

In constructing inby we have used only the structure of the network speci-
fication, not the policy or any pre-existing filtering posture. These ingredients
may be consulted to produce somewhat more finely tuned filtering postures.

2.4 Implementing: Network Policy Enforcement

In this section, we first describe earlier implementation efforts, and then sum-
marize the functionality of a tool kit currently undergoing technical transition
to operational use.

2.4.1 NPT and the Atomizer

This method for checking a filtering posture against a policy was implemented
in 1996 in the Network Policy Tool (NPT) [7]. The following year it was reim-
plemented in Objective Caml [15]. NPT also implemented posture generation,
recommending filtering behavior for each of the routers on which a network’s
security depends. NPT did a symbolic analysis, working not with sets of con-
crete IP address for instance, but rather with symbolic names representing non-
overlapping sets of hosts. Similarly, a service was a symbolic name representing
a set of ports within a particular protocol. An abstract packet was then es-
sentially a triple, consisting of a symbolic name representing the source field, a
symbolic name representing the destination field, and an oriented service. An
oriented service consisted of a service together with a flag saying whether the
well-known port was the destination port or the source port. Thus, it indicated
whether the packet was traveling from client to server or vice-versa. Special
data structures offered representations for sets of abstract packets.

NPT was highly efficient, and executed the algorithms we described in Sec-
tions 2.3.1-2.3.2 in seconds, when run on examples of quite realistic size. These
included a dozen and a half areas and a dozen filtering devices. Unfortunately,
the abstract representation made it hard for a system administrator to construct
input to NPT that would accurately represent the real world network and its
policy. Likewise, output from NPT was hard to translate back into filtering
router access lists for devices such as Cisco routers. Firmato and Fang [1, 19]
were developed soon after NPT, and provide similar functionality with more em-
phasis on reading and reconstructing actual configurations, and more emphasis
on management convenience, but with less attention to modeling and rigor.

The first of our problems—constructing NPT models of real systems—was
solved in the Atomizer, a tool that would read Cisco access lists and gener-
ate NPT specifications, by discovering which sets of hosts and ports were al-
ways treated the same way, and could therefore be fused into a single sym-
bolic name [8]. Sets were represented via Binary Decision Diagrams, and the
algorithm to fuse them (“atomize” them) exploited the BDD representation es-
sentially. However, the automatically generated names were hard to interpret

12

! (comments start with !)
1

! keyword num action prot source destination

access-list 101 permit ip host 129.83.10.1 129.83.114.0 0.0.0.255
access-list 101 permit ip host 129.83.11.1 129.83.114.0 0.0.0.255
access—list 101 deny ip host 129.83.10.1 any
access-list 101 deny ip host 129.83.11.1 any

access-list 101 permit ip 129.83.10.0 0.0.0.255 129.83.115.

0.0.0.255
access-list 101 permit ip 129.83.11.0 0.0.0.255 129.83.115.0 0.0.0.2

55
Figure 2: A Cisco-style Access List

in the real networks, thus exacerbating the second problem, of translating rec-
ommendations back into concrete filtering rules. Nevertheless, the BDD-based
methods of the Atomizer were found to be very appropriate for representing sets
of packets. The sets relevant to filtering have just the characteristics that make
BDDs relatively compact and operations on them reasonably efficient [4, 3].

2.4.2 Interpreting Access Lists

From our point of view, a configuration file such as for a Cisco router, contains
interface declarations and access lists. An interface declaration may specify a
particular access list to apply to packets arriving inbound over the interface or
being transmitted outbound over the interface.

An access list is a list of lines. Each line specifies that certain matching
packets should be accepted (“permitted”) or discarded (“denied”). When a
packet traverses the interface in the appropriate direction, the router examines
each line in turn. If the first line that matches is a “deny” line, then the packet
is discarded. If the first line that matches is a “permit” line, then the packet
is permitted to pass. If no line matches, then the default action (with Cisco
routers) is to discard the packet.

For instance, the lines in Figure 2 permit two hosts (at 1P addresses 129.83.10.1
and 11.1) to talk to the network 129.83.114.%. They also permit the other hosts
on the networks 129.83.10.x and 129.83.11.x to talk to the network 129.83.115.x.
The asterisks are expressed using a netmask 0.0.0.255, meaning that the last
octet is a wildcard. For simplicity, in this particular example there is no filtering
on TCP or UDP ports, which can also be mentioned in access list lines.

Each line of an access list defines a set of sources @5, destinations ¢4, and
service characteristics (,, and stipulates whether matching packets should be
discarded or passed. A datagram J matches a line if d.src € s A §.dst €
g N 0.80C € .

At any stage in processing, a packet that has not yet been accepted or
rejected is tested against the first remaining line of the list. If the line is a
“permit” line, the packet has two chances to be permitted: it may match the
specification for the first line, or it may be permitted somehow later in the list.
If the line is a “deny” line, the packet has to meet two tests to be permitted:

13

it must not match the specification for the first line, and it must be permitted
somehow later in the list. Since the default is to deny packets, the empty list
corresponds to the null set of permissible packets. Thus, we have a recursive
function n of the access list:

n([]) = 0
n((permit, ps, pa, ou) 7)) = (psNpa Npy) U n(r)
n((den}779035§0d5901)) o 7’) = 77(7") \ (509 mspdﬂﬁpv)

The function n allows us to transform a parser for the individual configuration
file lines (emitting sets describing the matching conditions) into a parser that
emits a set describing the meaning of the whole access list.

Filtering devices other than Cisco routers use different languages to express
which packets are permitted to traverse each interface, but their semantic con-
tent is similar.

2.4.3 The NPE Tools

Recently, NPT has been updated and packaged with a suite of complementary
tools to form the Network Policy Enforcement (NPE) software. NPE supports
a cycle of policy discovery, analysis, and enforcement.

Its primary input is a file listing the routers to be queried, with some anno-
tations. The annotations include an IP address and a password for the router,
which is required to connect to it and retrieve the full configuration. The router
probing component uses telnet or ssh to connect with each of the routers,
retrieving its currently effective configuration. The probe tool records:

1. the IP address and network mask for each interface,
2. the access list for filtering across each interface in each direction, and
3. the routing table.

The information in item (1) determines a network map. Items (2) and option-
ally (3) determine what packets can traverse each interface in each direction.
When routing information from item (3) is used, we take account of the fact
that a packet cannot traverse an interface outbound unless the routing table
routes it that way. Since this information is, however, dynamic, and changes
as a consequence of routing protocols, some sites do not want to rely on it to
ensure their security, which is the reason why our tools may be configured not
to consider it.

A second input to NPE is an optional file describing an desired policy for the
network under analysis. This file defines sets of addresses, and states policies.
A policy concerns two sets of addresses, s; and sp and a set ¢ of packets. The
semantics is that if any two areas a; and ag are such that any address in sy
resides in a; and any address in s, resides in ag, and any packet p can pass from
a1 to ag, then p € ¢.

NPE constructs BDDs representing the sets of packets that may traverse
each interface in each direction. It calculates from these BDDs an “effective

14

policy” containing the most permissive policy enforced by the given collection
of configuration files. This is done using a relatively straightforward depth-first
search through the network graph derived from item (1).

It also identifies violations of the desired policy. For each violation, the
system administrator is given a path through the network and a set of packets
that are capable of traversing this path, all of which are incompatible with the
desired policy. Given a set of violations, NPE can also recommend a number
of routers, which if reconfigured suffice to eliminate all of these violations. It
determines the set of packets that should be permitted to cross each interface of
these routers. The choice of routers can be made according to several different
strategies. For instance, packets that cannot be delivered may be stopped as
late as possible, or alternatively as early as possible. The latter strategy avoids
wasting network bandwidth, but may also prohibit packets unnecessarily, on the
grounds that they may later be misrouted. Another strategy is to choose a cut
set of routers that lie on the paths of all of the violations reported, selecting
the set to have minimal cardinality. This strategy is based on the idea that
frequently the cost of reconfiguring and retesting a router dwarfs the cost of some
lost bandwidth, or the fine points of whether a few services are deliverable. As
of the current writing, the description of what packets to allow over an interface
are given in a vendor-independent language, rather than in the configuration
language for specific routers. An alternative, vendor-specific back-end is under
development.

NPE has been tested with large router files containing a total of 1,300 access
list lines in a single run. The resulting process requires 175 MB and runs for
two minutes on a 550 MHz Pentium IIT Linux machine, hardly an unreasonable
burden. However, it has not been tested with large numbers of routers or
highly interconnected networks. It is relatively difficult to find installations
that depend on more than a few routers for filtering. Moreover, most networks
are interconnected in a very sparse, highly structured way, as is required in
order to manage them in a reasonable way. Thus, despite the fact that our
algorithms would become unfeasible in highly interconnected networks relying
on large numbers of filtering routers, they are quite usable in practice.

3 The IP Security Protocols (IPsec)

The IP security protocols (see [14, 12, 13], and also [18, 11]), collectively termed
IPSEC, are an important set of security protocols that include ensuring confi-
dentiality, integrity, and authentication of data communications in an IP net-
work. A major advantage of IPSEC is that the security protection occurs at the
IP layer. This renders application modifications unnecessary, and one security
infrastructure is capable of protecting all traffic. In addition, because of the
way IPSEC is usually deployed, it requires no changes to individual comput-
ers; IPSEC enabled routers are generally put in place at strategic points in the
network. This flexibility has led to great interest from the commercial market;
many IPSEC products are now available.

15

COMPANY A COMPANY B

Figure 3: Example Network using IPSEC

However, to provide such flexibility, the IPSEC protocol set is fairly complex,
and the chances that a product will be misconfigured—or that several devices
will be configured in inconsistent ways—are high. Even with good products,
the way they are used can compromise the security it is capable of providing.
Many organizations will set up their IPSEC infrastructure too quickly, getting
it wrong, an anxiety also expressed by Ferguson and Schneier [6], who detail
several ways in which misconfigurations could compromise security.

The IPSEC protocols specify headers and processing that can be used to
ensure that packet payloads are encrypted during some portion of their trajec-
tories. They also allow packets to be accompanied by a message authentication
code (MAC) for part of the trajectory, enabling a recipient to determine the point
in the network at which this MAC was applied, and making any subsequent al-
terations detectable. We abstract from the actual state of the packet payload or
MAC, and simply regard associated IPSEC headers as representing the security-
relevant state of the packet. IPSEC operations may be applied repeatedly at
different points on the network. All decisions are made locally about when to
add encryption or MACs. Likewise, payload decryption and verifying MACs when
removing them are local operations.

This presents us with another problem of localization: to determine what
meaningful global security properties are achieved by some set of local IPSEC
operations.

An example of the difficulty of localization can be seen in Figure 3. Assume
that companies A and B each have their own connection to the Internet, with
IPSEC gateways at the perimeters. Further assume that the two engineering
divisions, EngA and EngB have a direct connection to a collaborative testing
network, PrivNet. There are likely several different granularities of security
policy being implemented: a company-wide policy dictating what traffic should
leave the company in an IPSEC tunnel; a financial policy about what traffic
should leave SG1 unencrypted; an engineering policy about what sorts of traffic
should be allowed in the PrivNet area and with what protection; and so on. It
is clear that these localized policies can affect one another, and we desire a way

16

to determine in what ways they actually do.

In [10], we formalized the types of security goal that IPSEC is capable of
achieving. We then provided criteria that entail that a particular network
achieves its IPSEC security goals. We present this work here as an example of
rigorous automated security management. Before presenting our network model
(Section 3.2) and defining the security properties of interest to us here (Sec-
tion 3.3), we present a brief introduction to the IPSEC protocols (Section 3.1). In
Section 3.4, we develop algorithms for checking whether security goals are met,
and we prove that the algorithms are correct. The problem is more demand-
ing than the algorithms of Section 2.3, so we have given the correctness proofs
in much more detail. In Section 3.5, we describe the configuration-checking
software we developed to automate this procedure.

3.1 1IP Security

IPsEC is a set of Internet standards-track protocols designed to provide high
quality, TP layer security services for IPV4 and IPV6. These services include
connectionless integrity and data origin authentication (hereafter referred to
jointly as authentication), rejection of replayed packets, confidentiality, and
limited traffic flow confidentiality, and can be used by any higher level pro-
tocol [14, 12, 13].

IPSEC processing can be done either within a host or else at a security gate-
way. In an entirely host-based environment, each individual machine would
handle its own IPSEC processing, applying cryptographic transforms (and the
IPsEC headers describing them) before emitting packets onto the network. For
incoming packets, IPSEC processing requires undoing cryptographic operations,
checking the results, and deleting the corresponding IPSEC headers on packets
received off the network. IPSEC processing can also dictate that certain packets
without cryptographic processing be passed or dropped. In a host-based im-
plementation, this typically requires changes to the IP stack executing in each
host’s kernel.

Alternately, one can deploy a smaller number of IPSEC enabled gateways,
each of which performs IPSEC processing on behalf of the machines “behind”
it. This end-to-end, network level protection makes IPSEC a good protocol
for Virtual Private Networks (VPNs), and many current VPNs conform to the
IPsEc standards. Keys may be manually placed, or alternatively key exchange
may be handled by the Internet Key Exchange, a protocol designed for use with
IPsEC [11]. In this case, there are supplementary needs, including a certain
amount of public key infrastructure. In our discussion in this paper, we will
not discuss key management further, but will assume that it is handled by some
secure means.

IPSEC processing for outbound packets consists of the following elements.
First, a Security Association (SA) is selected based on properties of the existing
IP and transport layer headers of the packet. The SA specifies the type of pro-
tection, including what cryptographic operations are to be performed, together
with parameters including the key. Encryption and cryptographic hashes are

17

used to produce a new payload or a test for integrity (respectively) to achieve
confidentiality or authenticated integrity. SAs can be combined into bundles for
composite protection. Second, the processsing specified in the SA (or sequence
of SAs making up the bundle) is applied. Third, IPSEC header information is
added to the resulting ciphertext or the hash.

The IPSEC standard defines two security protocols for traffic protection: Au-
thenticated Header, or AH, and the Encapsulating Security Payload, or ESP.
AH provides, as one would expect, authentication services, and some protection
against replay attacks. ESP provides confidentiality and limited traffic flow con-
fidentiality; it may be configured to provide authentication with data integrity
as well. There are some fine points: AH ensures the integrity of certain header
fields that ESP does not cover, even when ESP is used with authentication.
Also ESP may be used to provide authentication without encryption. We will
assume that when encryption is used, authentication services are also used, be-
cause this is advisable [2], and because it is hard to see the real meaning of
providing confidentiality for data that may change without notice. What’s the
secret then?

The security protocols can be used in one of two modes: tunnel and trans-
port. In transport mode, the IPSEC header fields are combined with the original
IP headers of the packet. This mode can therefore be used only if the entities
performing IPSEC processing at both endpoints of the communication are the
same as the entities communicating. If either end is a security gateway, tunnel
mode must be used instead. In tunnel mode, the entire IP packet is protected;
a new IP header is created with a new source field and a new destination field.
These fields give the addresses of the entry point and the exit point of the tunnel.

We focus on IPSEC in networks where at least some of the IPSEC processing
occurs at security gateways. The reasons for this are as follows:

e Most networks relying on IPSEC do involve security gateways.

e Firewalls typically already exist at strategic locations for IP security gate-
ways, and in fact many products provide both firewall functionality and
IPSEC processing.

e Gateways have the advantage that an organization can define an organization-
wide security policy; the lion’s share of the enforcement of this policy may
be carried out using a limited amount of equipment directly under the
management of the organization. Sub-organizations (or individual users
on particular hosts) may be completely unaware of this policy, assuming
that they do not use IPSEC on their own. If they desire to use IPSEC,
then there are constraints that they must follow to ensure that their pro-
cessing is compatible with the organization-wide policy; these constraints
are described in Section 3.4.

Thus, while our model allows for indvidual hosts to be IPSEC-enabled, our
primary interest lies in the case where this is not the exclusive form of IPSEC.

In this situation, there are things that can certainly go wrong. For instance,
suppose that we want packets from a particular peer s to be authenticated

18

when they arrive at a destination d, and in fact there is a pair of gateways
offering IPSEC processing between them. There are still ways that packets not
originating at s can reach d. For instance, suppose that a spoofer can route
packets to d without traversing the gateways. Or suppose the spoofer can route
a packet to s’s gateway that arrives on the same interface that traffic from s
traverses. To achieve this, the spoofer may even be able to send IPSEC-protected
traffic to a security gateway near s, where the protected packets claim to be from
s but are not.

When s wants to ensure confidentiality for packets to d, there are dual
concerns. Possibly the packet may be misrouted onto a public network without
traversing a gateway. Or possibly a gateway will provide ESP protection, but
transmit it to a gateway distant from d, so its contents will be disclosed before
it reaches d. We seek a systematic way to express these sorts of problems, and
to ensure that they do not occur.

3.2 Modeling

We view systems as composed of areas and devices capable of IPSEC operations
or packet filtering. A device has interfaces on one or more areas. Any machine
(such as a switch or host) that performs no IPSEC operations or filtering we
may simply ignore.

In the example shown in Figure 3, areas appear as ovals and devices appear
as black squares. An edge represents the interfaces between a device and the
area to which it is connected. We will never connect two areas directly via an
edge; this would not give a security enforcement point to control the flow of
packets between them. Instead, we coagulate any areas that are connected by
a device that provides no security enforcement, representing them by the same
oval.

While this simple, bipartite graph representation is useful heuristically, it
is inconvenient for rigorous modeling of IPSEC processing. Several steps of
processing may need to occur while the packet is associated with a particular
interface, and they may depend as well on the direction in which the packet is
traversing that interface. Therefore we prefer a system model in which there
are two nodes corresponding to each interface. They represent the conceptual
location of a packet when IPSEC processing is occurring, either as it traverses
the interface inbound into the device or as it traverses the interface outbound
from the device. We call these conceptual locations directed interfaces.

To incorporate this notion, we will now introduce an enriched system model
consisting of a directed graph containing three kinds of nodes. These represent
areas, devices, and directed interfaces. To construct a model from a system
representation in the style of Figure 3, for each edge between a device d and
an area a we insert two directed interface nodes, which we will call i4a] and
oqla]. These represent inbound processing for a packet traveling from a to d
and outbound processing for a packet traveling from d to a respectively. We
add four directed arcs:

19

(1)
N

Figure 4: Unenriched System Representation

o2
&

Figure 5: Enriched System Representation

1. a — i4[a] and i4[a] — d, the inbound arcs, and
2. d — o4[a] and o4[a] — a, the outbound arcs.

For instance, the result of applying this process to the system representation
shown in Figure 4 produces the enriched model shown in Figure 5.

We will assume an enriched system representation G = (V| F) throughout
the remainder of this section. A location ¢ is a member of V; that is, an area,
a device, or an interface.

Let P be a set of values we call protocol data. We may think of its values as
the elements of IP headers other than source and destination. For instance, an
IP header may specify that the protocol is TCP, and the embedded TCP header
may specify a particular source port and destination port; this combination of
protocol and port information may be taken as a typical member of P.

Let A C P be a set we call authenticated protocol data; it represents those
headers that provide IPSEC authentication services. Let C' C A be a set we call
confidentiality protocol data; it represents those headers that provide IPSEC
confidentiality services. The assumption C' C A codifies our decision not to
consider ESP headers that provide only confidentiality (cf. Sections 3.1; we

20

amplify the point in 3.3.2).

A header is a member of the set H = V x V x P, consisting of a source
location, a destination location, and a protocol data value. Packet states are
members of H*, that is, possibly empty sequences (hi,...,h,). We use - as
prefixing operator: h- (hy,...,hy) = (h,h1,..., hy).

Let K be a set of “processing states,” with a distinguished element ready €
K. Intuitively, when an interface has taken all of the processing steps in the
Security Association (SA, see 3.1) for a packet p, then it enters the processing
state ready, indicating that the packet is now ready to move across the arc from
that interface. If this is an outbound interface, it means that the packet may
now go out onto the attached area; if it is an inbound interface it means that
the packet may now enter the device, whether to be routed to some outbound
interface or for local delivery. Other members of K are used to keep track
of multistep IPSEC processing, when several header layers must be added or
removed before processing is complete at a particular interface. These clusters
of behavior represent IPSEC Security Association bundles.

We regard the travels of a packet through a system as the evolution of a
state machine. The packet may not yet have started to travel; this is the start
state. The packet may no longer be traveling; this is the finished state. Every
other state is a triple of a node ¢ € V, indicating where the packet currently is
situated; a processing state x € K, indicating whether the packet is ready to
move, or how much additional processing remains; and a packet state 0§ € H*,
indicating the sequence of headers nested around the payload of the packet.

Definition 1 Q(G, K, P, A, C) is the set of network states over the graph G =
(V,E), the processing states K, and the protocol data P with C C A C P. Let
H=VxVxP. QG K,P,A,C) is the disjoint union of

1. start,
2. stop, and
3. the triples (¢, k,0), fort €V, k€ K, and § € H*.

The transition relation of a network state machine is a union of the following
parameterized partial functions. We define what the resulting state is, assuming
that the function is defined for the state given. We also constrain when some
of these functions may be defined. Different IPSEC security postures are deter-
mined by different choices of domain for each of these partial functions (subject
to the constraints given).

The sets of authenticated headers A and confidentiality headers C play no
role in determining the evolution of network states, but they play a central
role in expressing and verifying the security goals for IPSEC, as formulated in
Section 3.3.

Definition 2 A network operation is any partial function of one of the following
forms:

21

1. Packet creation operators createy p(start) = (¢, ready, (h)), when defined,
for (€,h) € V x H. createy, is not defined unless its argument is the state
start.

2. The packet discard operator discard({, k,0) = stop, when defined. discard
is undefined for start.

3. Packet movement operators move, (¢, ready,f) = (¢',k,0), when e € E,
050 and k # ready. move. .. is undefined for all other network states.

4. Header prefiving operators prefix,, . (¢,x',0) = (£,k,h - 0) when defined.
The function prefix, .. is nowhere defined when h ¢ A.

5. Header pop operators pop,.(£,k',h-0) = (£, k,0) when defined.
6. Null operators null,(¢,x',0) = (£, k,0) when defined.

A transition relation — C (QG, K, P, A,C) x Q(G,K, P, A,C)) is a union of
operators create, discard, move, prefix, pop, and null.

When — is a transition relation for Q(G, K, P, A, C), we regard each history of
the associated state machine as representing a possible trajectory for a packet
through the network.

The assumption that prefix,, ,, is nowhere defined when h ¢ A means that the
only nested headers we consider are IPSEC headers. The discard operator allows
us to subsume packet filtering, as in Section 2, as part of IPSEC functionality,
which matches the intent of the IPSEc RFC [14].

We call the assumption that move, .+ (¢, k,0) = (¢, £’,6) is not defined when
k # ready the motion restriction. We call the assumption that it is not defined
when x’ = ready the inbound motion restriction. The motion restriction
codifies the assumption that a device will not move a packet until it is ready.
The inbound motion restriction codifies the assumption that there will always
be a chance to process a packet when it arrives at a location, if needed, before
it is declared ready to move to the next location.

Given a packet p, we call the address in the source header field of its topmost
header src(p). We call the address in the destination header field of the topmost
header dst(p). We also call a packet p an IPSEC packet if its outermost header
h is in A. We say that a header h provides confidentiality if A € C, and that it
provides only authentication if h € A\ C. Our treatment need not distinguish
between ESP used only for authentication and AH; however, these headers may
be different members of A, and individual systems may have security goals
requiring one rather than the other.

Cryptographic Assumptions We will make two assumptions about the
IPsEC cryptographic headers. First, we assume that cryptographic headers
cannot be spoofed; in other words, that if we receive a message with an authen-
ticating header from a source “known to us,”! then the entity named in the

1Presumably as certified by some public key infrastructure, and certainly assumed to in-
clude those devices which are shown as nodes in the system model.

22

source field of the header is the entity that applied the header, and the payload
cannot have been changed without detection.

Second, confidentiality headers have the property that packets protected
with them can be decrypted only by the intended recipient, i.e. the device named
in the ESP header destination field. More formally, using a dash for fields that
may take any value, we stipulate that for any transition:

(63 K, <[5/7 dlv 7]7 . >) - (Za ‘L{/a <[57 da O‘L [5/7 d/7 7}7 . >)
«a € A and s € S implies £ = s. Moreover, for any transition:
0, k' ([s,d,], [, d', =], ..)) — (U, K, ([s',d',—],...))

v € C and s € S implies ¢ = d.

These properties axiomatize what is relevant to our analysis in the assump-
tion that key material is secret. If keys are compromised then security goals
dependent on them are unenforceable.

3.3 Expressing Security Goals

We focus on authentication and confidentiality as security goals in our analysis.
Concrete security goals select certain packets that should receive protection [14];
selection criteria may use source or destination addresses, protocol, and other
header components such as the ports, in case the protocol is TCP or UDP.

3.3.1 Authentication Goals

The essence of authentication is that it allows the recipient to—so to speak—
take a packet at face value. Thus, for a packet p selected for protection by an
authentication goal,

If A is the value in the source header field of p as received by B,
then p actually originated at A in the past, and the payload has not
been altered since.

We do not regard a packet as being (properly) received unless the cryptographic
hash it contains matches the value computed from a secret shared between the
two IPSEC processing devices and the packet contents. It will not be delivered
up the stack otherwise, nor forwarded to another system after IPSEC processing.

3.3.2 Confidentiality Goals

We assume that confidentiality headers (as in ESP 3.1) provide authentication,
and add encryption. We have two reasons for doing so. First, the IPSEC speci-
fication allows both authentication and confidentiality to be used with the ESP
header; it is inadvisable to request only confidentiality when authentication can
also be had at the same time, and at modest additional processing cost. Second,
it seems hard to state precisely what data is kept confidential, if that data might

23

change as the packet traverses the network [2, 6]. When using confidentiality
headers, we are therefore attempting to achieve an authentication goal as well
as a confidentiality goal.

A confidentiality goal for a packet with source field A, requiring protection
from disclosure in some network location C, stipulates:

If a packet originates at A, and later reaches the location C, then
while it is at C' it has a header providing confidentiality.

The cryptographic protection may refer to the ESP header more specifically,
stipulating certain parameters (key length, algorithm, etc). The proviso that
the packet was once at A is necessary, because in most cases we cannot prevent
someone at C' from creating a spoofed packet with given header fields. However,
a spoofed packet cannot compromise the confidentiality of A’s data if it has no
causal connection to A.

3.3.3 Example Goals

Consider the network in Figure 3. Given this example network, a potential
authentication goal could be that packets traveling from EngA to EngB should
be authenticated, meaning that any packet with source field claiming to be
from FEngA that reaches EngB should in fact have originated in EngA. An
example confidentiality goal is that packets traveling from FinA to FinB should
be encrypted whenever outside those areas. This means that if a packet has
source field in FinA, and actually originated there, then if it reaches any other
area R, it has an ESP header providing encryption while at R.

One advantage to this form of expression is that it is semantically precise.
Another is that policies expressed in this form appear to be intrinsically compos-
able, in the sense that separate goals can always be satisfied together. Moreover,
this form of expression often suggests placement of trust sets, in a sense we will
now introduce.

3.3.4 Trust Sets

Once a packet enters an appropriate cryptographic tunnel, achieving a security
goal does not depend on what happens until it exits. Thus, the set of locations
in the network topology that are accessible to the packet from the source (before
entering the tunnel) or accessible from the exit of the tunnel (before reaching the
destination) are the only ones of real importance. We will call these locations a
trust set for a particular security goal. A trust set is goal-specific; different goals
may have different trust sets. For instance, an engineering group working on a
sensitive project could easily have much more restrictive security goals than its
parent corporation (in terms of trust).

Typically, a trust set is not a connected portion of the network, but often
instead consists of two large portions (each a connected subgraph), with a large,
less trusted network between them, such as the public Internet. In some cases
the trust set may consist of several islands, and the tunnels may not connect

24

all of them directly. In this case, a packet may need to traverse several tunnels
successively in order to get from one island of the trust set to a distant one. The
choice of trust set for a particular security goal is a matter of balance. Clearly,
the source must belong to the same island of the trust set as the tunnel entrance,
and the tunnel exit must belong to the same island as the destination (or the
entrance to the next tunnel). This encourages creating trust sets as large as
possible, since then a few tunnels may serve for many endpoints. However, the
scope of a trust set must generally be limited to a set of areas on which it is
possible to monitor traffic and check configurations. This encourages making
the trust sets as small as possible. The art of using IPSEC effectively consists
partly in balancing these two contrasting tendencies.

Boundaries Of special importance are those systems inside a trust set with
a direct connection to systems outside the trust set. We term these systems
the boundary of the trust set. We assume that every device on the boundary of
a trust set is capable of filtering packets. This may be a portion of its IPSEC
functionality [14]. Alternatively, the device may not be IPSEC-enabled, but
instead be a filtering router or packet-filtering firewall. We regard such devices
as a degenerate case of an IPSEC-enabled device, one which happens never to
be configured to apply any cryptographic operations.

Definition 3 A trust set S for G = (V, E) consists of a set R C V of areas,
together with all devices d adjacent to areas in R and all interfaces ig*] and
od4l*].

The inbound boundary of S, written ™S is the set of all interfaces iqla] or
iq[d'] where d € S and a,d" € S.

The outbound boundary of S, written 9°“tS is the set of all interfaces oga)
or o4[d'] where d € S and a,d’ € S.

Suppose that, in Figure 5, a security goal states that packets traveling be-
tween A; and Bj (4,7 € {1,2}) must be protected with a confidentiality header
whenever in the Internet area. A reasonable trust set S for this goal would
include all areas except for the Internet, as well as their attached devices and
interfaces. The trust set S is not a connected set. The outbound boundary of
S is labeled in Figure 6, and the inbound boundary in Figure 7.

3.4 Deriving Algorithms

Given an environment in which one can rigorously reason about packet states,
and precise specifications of security goals, how does one ensure the goals are
enforced? This section focuses on answering that question, by detailing formal
behavior requirements for systems and then proving they guarantee enforceabil-
ity.

In our reasoning, we will assume that security goals are stated in the form
given in Sections 3.3.1 and 3.3.2.

25

Figure 6: Outbound boundary marked with hollow circles o

Figure 7: Inbound boundary marked with hollow circles o

26

3.4.1 Authentication

Our authentication problem can be stated in the following way. Suppose a
and b are area nodes. What processing conditions can we impose such that an
authentication goal holds?

To make this precise, let us say an authenticated state is one having the form
(a, K, ([a,—, —])) and an acceptor state is one of the form (b, ready, ([a, —, —])).
The symbol authentic denotes the set of authenticated states, accept denotes the
set of acceptor states. We want to ensure that every acceptor state, in which
a packet purportedly from a is delivered at b, is preceded by an authenticated
state, in which it was sent from a. Our question can be stated thus: exhibit a
set of processing restrictions which ensure the following:

For any path start —* w where w € accept there is an intermediate
state w’ such that

start —* W' —* w
where w’ € authentic.

Thus, whenever an acceptor state is reached, an authenticated state must have
occurred earlier in the state history. In this sense, the prior occurrence of an
authenticated state is guaranteed when an acceptor state is observed. This use
of “authenticated” for the states w’ € authentic follows Schneider [22].

Achieving authentication requires two types of behavior restrictions on trust
set nodes, depending on whether or not the system in question is in a boundary.
We list behavior restrictions for each.

First we list a constraint that is required for the proofs, but is vacuous
(trivially satisfied) in IPSEC [14], where inbound processing can only remove
packet headers, but never add them. Fix a trust set S.

Prefix Ready Rule.
(0, k,0) — (6K h - 0)
If £ € O™ S then k = ready.

Authentication Tunnel Constraints In order to achieve authentication,
there are two rules that must be observed by every IPSEC-enabled device in
the trust set. The first of these is that nodes in S must not spoof packets with
sources in S.

Creation Rule. For any transition
start — (Za K, <[Sa) 7]>)

if £ € S then ¢ = s.

For the second rule, fix a trust set S. Whenever an IPSEC-enabled device in
S processes an IPSEC packet p with src(p) € S, and removing this header leads
to a packet p’ with src(p’) € S, p’ must be discarded. It codifies the idea that
only nodes in S should be trusted to certify a packet as coming from S.

27

Pop Rule. For any transition

(67 Ky <[57 da A]a [CL, Rl *]>) - (E, Hla <[a7] 7]>)
If £ € S then s € S.

Authentication Boundary Constraints Given the authentication goal above,
boundary systems must only abide by one extra processing constraint: they
must not pass an inbound packet that did not present any authentication head-
ers.

Inbound Ready Rule.
(4, k,0) — (L, ready, ([a,—,—]))
If k # ready and ¢ € ™S, then 0 = ([s,d, A], [a, —, —]).

3.4.2 Unwinding

We prove that the processing restrictions formulated above are sufficient to
ensure the authentication goal. To do so, we exhibit an unwinding set G.

Definition 4 An unwinding set G is a set such that
1. start € G,
2. accept C G,
8. authentic C G,
4. For any transition x — y with x ¢ G and y € G then y € authentic.

Proposition 1 A sufficient condition for the authentication condition to hold
18 the existence of an unwinding set.

PROOF. Any path start —™* w with w € accept, must have the form
start —* r -y —"w

with z € G,y € G. By the unwinding condition 4, y € authentic. B

A transition z — y is header non-augmenting iff it is of the form (¢, x,076") —
(¢,k',0"), where €’ is a final segment of the concatenation 676".
We now exhibit an unwinding set G.

GG = accept U authentic U continue
where continue is defined:

Definition 5 (Continuing States) A state is a continuing state if it belongs
to one of the three disjoint classes below:

28

C1 (¢, ready, ([a,—,—])) for £ € O™ S;

C2 (4, k,([a,—,—])) for L € S\ 9™"S,
i.e. for locations in the portion of S other than the inbound boundary;

C3 (,k,(---[s,d,Al,[a,—,—])) for s € S and any L.
Proposition 2 G is an unwinding set.

PROOF. Suppose z — y with € G,y € G. The proof is a completely mechan-
ical enumeration of cases. In each case, we show either that either it cannot
really occur or that y € authentic.

Case I: y € accept. By definition of accept, y is of the form (b, ready, ([a, —, —])).
1. bedns.
(a) z — y is a motion. The inbound motion restriction excludes this

case.

(b) — y is non-augmenting. By the inbound ready rule, z is of the
form

(b’ K, <) [S, d, A]7 [a7 - _]>)
with s € S. This implies x € C3 C continue C G.
(¢c) = = start. In this case, by the creation rule b = a. Thus y €
authentic.

2. be S\ anS.

(a) If z — y is a motion, then 2 must be of the form (¢, ready, ([a, —, —]))
By definition of network boundary of S, ¢ € S. This implies = €
C1 U C2 C @. This case is thus excluded.

(b) Otherwise z must be of one the forms

i. (b,k,([s,d,A],[a,—,—])) with s € S, so x € C2 C G, which
excludes this case also.

ii. start. In this case, by the creation rule y is of the form (b, &, ([s, —, —]))
with b = s = a. Thus y € authentic.

Case II: y € C1. Thus y = (¢, ready, ([a, —, —])) for £ € 9™ S.
1. 2 = (¢, k,6). The inbound motion rule excludes this case.

2. x = ({,k,0). By the inbound ready rule, the transition — y must be a
pop. In this case, by the pop rule z must be of the form (¢, &', ([s, d, A], [a, —, —]))
for s € S, so x € C3 C G, which excludes this case also.

3. x = start. In this case, the creation rule implies ¢ = a, so y € authentic.

29

Case III: y € C2. In this case y is of the form (¢, &, {[a, —, —])) for £ € S\ S.

1. z = (¢',K/,0) with ¢/ # £. In this case, the transition x — y must be a
location change. By definition of border, ¢ € S and by the motion ready
restriction, k' = ready. In this case 2 € C1 or z € C2 depending on
whether ¢ € 9""S or ¢/ € S\ 9"S. Thus this case is excluded.

2. ¢ = (¢,r',0). In this case, the transition z — y must be a pop. By the
pop rule z must be of the form (¢,x’,([s,d, A],[a,—,—])) for s € S, so
r € C3 C (7, which excludes this case also.

3. x = start. In this case, the creation rule implies ¢ = a, so y € authentic.

Case IV: y € C3. y is of the form (¢,k, (---[s,d, A], [a, —, —])) for s € S.
1. If x — y is a motion, then x € C3

2. If x — y is a non-augmenting header transition, then x must also be of
the form C3.

3. If £ — y is a push, then either x € C3 or x is of the form (¢, v, {[a, —, —])).
By cryptographic restriction, £ = s € S. In this case z € C1 or x € C2
depending on wehether £ € 9S or £ € S\ 0"S. Thus this case is
excluded. W

3.4.3 Confidentiality

We will consider the following confidentiality problem: Suppose a and b are
area nodes. What conditions can we impose on the enclave nodes’ processing to
ensure that packets traveling from a to b are encrypted whenever they are not
in the trust set S? More formally, given some set of processing restrictions,

If we start with a packet of the form (a, ready, ([a, b, p])), where a,b €
S, then it will never be the case that (¢, k, ([a,b,p])) if £ & S.

Achieving confidentiality is more simple than authentication. There are two
simple constraints, one on all devices in the trust set, and an additional con-
straint for boundary members.

Confidentiality Tunnel Constraints Fix a trust set S. The constraint on
all trust set members requires them not to “tunnel” packets requiring protection
out to a dangerous area. Our constraint will ensure that whenever a system
inside S adds a confidentiality header to a packet which would require protection,
the source and destination of the added header are also in S.

Push Rule. For any transition

(‘ga K, <[517d1»p1] T [avbvp]» - (67’%/7 <[827d2,p2][81,d1,p1} T [a,b,p]))

if¢es, s1,dy €S, and p; € C, then s3,do € S. We include the case where
<[317d1ap1} Tt [a7b7p]> = <[a7b7p]>

30

Confidentiality Boundary Constraints As with authentication, we impose
one constraint on boundary members. If a packet p is traversing an outbound
interface on the boundary of S, and p could contain a packet pg € P with no
confidentiality header, discard p.

One way to safely implement this is to pass a packet p only if its topmost
layer is a confidentiality header, or else it has no IPSEC headers and p ¢ P.

Outbound Ready Rule. For any transition
(¢, k,0) — (¢, ready,0")

if £ € 9°“'S, then either 0 = ([s,d,C],...[a,b,p]) for s,d € S, or else ' =
([¢',d',—],...) where either s’ or d’ not in S.

Invariant. We will prove that the processing restrictions formulated above
are sufficient to ensure the confidentiality goal using an invariant of our state
machine. We will first show that the invariant holds, then prove that given the
invariant, our confidentiality goal holds as well.

Proposition 3 Suppose that 3 is a state machine satisfying the outbound ready
rule and the Push rule, and suppose that (£,k,8) is the state resulting from a
sequence of actions beginning with create, [q.b), where a,b € S.

1. If £ € S, then either

(a) whenever [s1,dy1,p1] is any layer of 0, then s1,dy € S and p; & C, or

(b) there is a final segment of 0 of the form {[sg,dk,C] - [si,di,pi] - -)
where s, dr, € S and for each i < k, s;,d; € S and p; & C.

2. If & S, then there is a final segment of 0 of the form ([sk, dg, C] -~ [Si,di, pi] -+ -
where s, d, € S and for each i < k, s;,d; € S and p; & C.

PrOOF. We will examine each of the possible state transitions in turn, showing
for each that they cannot violate the invariant.

Case 1: create and discard In the case of the create operator, we know that
the first transition in our state machine is the following (which does not violate
the invariant):

start — (a, ready, {[a, b, p]))

The invariant imposes no constraints on the finish state, thus the discard tran-
sition is irrelevant.

Case 2: pop Assume that we are at location £. We are interested in the state
transition pop, (¢,x',h-0) = (£, «,0). Our cryptographic assumptions prevent
any location from removing an encryption layer not destined for them. Thus,
no location can remove the necessary confidentiality protection (provided it was
applied), and the invariant is not violated.

31

Case 3: prefix Assume once again we are at location ¢. The transition is
prefix;, . (¢,x',0) = (¢, %,h-0). The only case which has bearing on the invariant
is that where ¢ € S, and there is no encryption layer in . By the Push rule,
src(h),dst(h) € S as well. If h is a confidentiality header, the packet now satis-
fies the second invariant condition for locations in S. If h is not a confidentiality
header, the packet satisfies the first invariant condition for locations in S.

Case 4: null The invariant imposes no constraints on &.

Case 5: move Again, assume we are at location ¢. The transition is
move, (¢, ready,) = (¢, , 0)

Since this involves no change of state, the only case which could violate the
invariant is that where ¢ € 9°S and ¢/ ¢ S. The Outbound Ready rule ensures
that the top layer of 0 is either [s,d, C] with s,d € S or [¢',d’, —] with s',d’' & S.
The Push rule ensures that below the bottom-most confidentiality layer, all
layers have source and destination in S. So, regardless of which portion of the
Outbound Ready rule is appropriate, the invariant is not violated.

Thus, the given invariant holds for our state machine. We now must show
it implies enforcement of the confidentiality goal.

The confidentiality goal is ensured if it is never the case that (¢, x, {[a, b, p]})
if £ ¢ S. Condition 2 of the invariant provides this: suppose that we’re at
£ ¢ S. Then there is at least one layer [s, d, C] with s,d € S, and no layers with
external sources ‘beneath’ that layer. W

3.4.4 Manageability

On of the advantages of our treatment of IPSEC is that it is compatible with the
layered structure of organizations. In particular, the two corporations A and B
in Figure 3 may have security goals they want to achieve via IPSEC, while the
two engineering departments within them may have more tightly constrained
goals that they need to achieve. In this case, they may manage their own
IPSEC capable equipment and configure them as needed. Typically such sub-
organizations do not have access to the topological boundary of the parent
organizations. In this case, to be sure that their IPSEC configurations do not
interfere with the goals of their parents, they need only ensure that they obey
two conditions, namely the Pop Rule and the Push Rule for trust sets S in
which that the parent participates.

3.5 Implementation: The Confidentiality and Authenti-
cation IPsec Checker (CAIC)

Checks for these behavior restrictions were implemented in the “Confidential-
ity and Authentication IPSEC Checker” (or CAIC, pronounced “cake”). When
given Cisco IPSEC configuration files and a network / policy specification, CAIC

32

will check trust sets and boundaries for the behavior restrictions described
above. It returns to the user both a verdict (the goal is enforced or not) and
a description of goal failure (if appropriate). It describes which behavior re-
striction was not met, and the specific sorts of packets upon which the goal
fails.

3.5.1 CAIC Input

As mentioned above, CAIC checks security goal enforcement for a network topol-
ogy that uses Cisco routers for IPSEC processing. It requires information about
router configuration, network topology (including trust set and boundary infor-
mation), and security goal information as input. This information is expected in
a single file, though router configuration files can be referenced in the following
way (lines beginning with an exclamation point are comments):

! configurations of all IPSec-enabled devices in the trust set
begin routers

SG1 testconfigsl/CRCF.SG1.txt ios
5G2 testconfigs1/CRCF.SG2.txt ios
SG5 testconfigsl/CRCF.encr-SG5.txt ios

end routers

The first field in a router specification is a unique name given to the router
(for example, SG1 in Figure 3). The second field identifies the router’s config-
uration information (this information can be gotten by running the command
show running-config on a Cisco router). The third field indicates the type
of router configuration; currently, the tool only supports Cisco routers running
I0S. Expansion of the tool to support other types of router is ongoing, however.

CAIC can be used in an iterative manner, to see how changing configurations
affect goal achievement. This file format allows all router configuration files
could be located in some central location, and referenced by path.

After router specification, trust sets are defined. A particular trust set is
delimited with begin trustset end trustset and trust set members
are given via IP address ranges and masks. One can imagine that the areas
EngA and PerimA in Figure 3 might have the following ranges:

199.94.
199.94.

55 trust 'ENG A

88.
89. 55 trust 'PERIM A

0 0.0.0.2
0 0.0.0.2

Boundary information is also crucial; after trust sets are defined, certain
hosts are called out to be boundary elements. An example boundary member
specification is as follows:

D1 Serial 0 1 199.94.55.254 D1 & internet

33

This line states that on IPSEC device D1, the serial 0 interface is a boundary
interface. (The location of the device, and its IP address, are given in the
comment.)

After trust sets and boundaries are specified, the input file contains goal
statements. There are two kinds of goal statement, authentication and confi-
dentiality. CAIC supports Cisco-style definition of packet sets which can later
be referenced in goals. The following small access list defines packets between
areas FinA and PayrollB for some company:

'FIN A & Payroll B A <> B
access-list 191 permit ip 199.94.87.0 0.0.0.255 199.94.92.0 0.0.0.255
access-list 191 permit ip 199.94.92.0 0.0.0.255 199.94.87.0 0.0.0.255

The packet set 191 can later be referenced in any security goal statements in
the input file. A simple example desires confidentiality for the packets described
by the above access list:

! ACHIEVEMENT 191
achieve confidentiality for 191

3.5.2 Goal Enforcement Checking and Output

Given the network information, trust set/boundary information, and security
goals for a particular network, CAIC will perform each of the checks described in
Section 3.4 for each individual goal. CAIC shares much of its implementation
with NPE, and uses Binary Decision Diagrams to represent the packet sets
relevant to each network configuration.

When a particular security goal is achieved, a report such as the following
is printed out:

Achievement 2 for packets-of-interest ACL number 182

—-— an authentication achievement.

In the case that a particular goal is not enforced, additional information is
printed after the identification lines above. First, a notification of the specific
behavior check which failed is printed, as well as the offending location. An
example where a confidentiality Push rule was not obeyed follows:

Confidentiality Push Rule NONCOMPLIANCE involving crypto

map B1>>cm-cryptomap__1 in interface SerialO of device
testconfigs4/CRCF.B1.txt. The peer IPSec device is not in
the trust set or the tunnel has no confidentiality transform.

Following the specific rule infraction and its location, a description of the
packets of interest is given.

CAIC has been tested with reasonably sized network specifications generated
with Cisco’s “ConfigMaker” tool. This tool allows a user to graphically specify

34

their network topology, and then produces configuration files based on the input.
Using this tool, CAIC was run on networks involving tens of areas and devices,
and under ten security goals. On a Pentium II 450 desktop PC with 256MB
of RAM, CAIC takes less than 10seconds to return results. CAIC can easily
and quickly handle network topologies with hundreds of IPSEC-enabled routers,
each being analyzed in isolation, and many tens of security goals.

4 Combined Packet Filtering and IPsec

To protect its networks, organizations need to use a variety of different tech-
niques in tandem. Most companies use both packet-filtering firewalls and IPSEC,
typically as part of a Virtual Private Network. We have presented techniques
to use either of these mechanisms separately to ensure that meaningful secu-
rity goals are achieved, but their use in combination complicates matters. The
remaining question is how to ensure that dangerous packets that should have
been filtered were not protected by IPSEC headers (and possibly encrypted)
as they traverse the filtering point where they should be discarded. Later, a
security gateway may remove the IPSEC headers and cryptographic transfor-
mation, unleashing packets that will damage the recipient. Thus, our core idea
is that tunnel endpoints must impose all filtering constraints that might have
been missed while the packet was encapsulated with IPSEC.

Following our method for rigorous automated security management, we need
to take four steps to resolve this problem. The first, the modeling step, is
unnecessary in this case, since the model of Section 3 is already sufficiently
expressive. In particular, packet filtering is already expressed as an aspect of
IPSEC processing as codified in Definition 2. We can adopt the previous model
unchanged.

4.1 Expressing Security Goals

The security properties we would like to achieve are essentially the same as in
the preceding sections, namely filtering goals, authentication goals, and con-
fidentiality goals. Since authentication and confidentiality goals were already
formalized within the same modeling framework in Section 3.3, we leave them
unchanged here. The same methods still suffice to ensure that they are met in
a particular network configuration.

In defining filtering goals, we have additional degrees of freedom. In Sec-
tion 2.1.4, trajectories associate a single packet with all of the locations tra-
versed. By contrast, in the trajectories formalized as histories of the state
machines of Section 3.2, Definitions 1 and 2, the packet may have different se-
quences of headers while traversing different locations. If we retain the idea
from Section 2.2.1 that a filtering policy statement will concern two locations
and the packets that can travel from one to the other, then we have a choice
how to characterize those packets. Should we consider the state of the packet

35

as they leave the earlier location, as they arrive at the later location, or allow
both to vary independently?

We choose in fact to consider only trajectories in which the packet has the
same headers at the early and later position, which we can call “symmetric two-
location filtering statements.” This decision is motivated by two considerations:

e Known attacks do not involve IPSEC. That is, a packet with IPSEC head-
ers is not known to exercise serious vulnerabilities, for instance in the
TCP /1P stack and its processing of IPSEC messages. Such vulnerabilities,
if discovered, must be corrected very quickly, since it is intolerable to have
vulnerabilities within the infrastructure intended to provide security it-
self.2 Known attacks may be transmitted via packets that, for part of
their trajectory, are IPSEC-protected; however, they do their harm only
when restored to their original form.

Thus, we consider that symmetric two-location filtering statements express
the practically important security objectives.

e An adaptation of the algorithms of Section 2.3 provide good ways of rea-
soning about symmetric two-location filtering statements.

One other decision is also needed, whether to interpret the first location of a
two-area symmetric statement as concerning the location at which the packet
originates, or simply some location traversed before the other location. We
choose to interpret it as the point of origin of the message, a notion that makes
sense in a model in which data origin authentication is one of the security
services provided.

We capture the notion of two-location filtering statements in the following
definition.

Definition 6 Let Q(G, K, P, A, C) be a set of network states (Definition 1) and
— be a transition relation for it (Definition 2). Let G = (V,E) and H =
V x V x P. A symmetric two-location filtering statement is a triple (¢,¢,)
where £,/ €V and ¢ C H*.

Let t be a trajectory, i.e. a history of (Q,—), so

t= (start, (61, K1,91), R (gn, Kn,en), .. >

The trajectory t is a counterexample to a symmetric two-location filtering state-
ment (£, ',) if, for anym, £ =41, 0 =¥, and 01 = 6,, & ¢.
(Q, —) satisfies £, 0, ¢ if no trajectory is a counterexample to it.

By the form of the create in Definition 2, we know that 6; is a packet state of
length 1 in the sense that §; = (h) for some header h. So we may also assume
that ¢ concerns only packet states of length 1, i.e. § € ¢ implies § = (h) for
some header h.

2Potential denial-of-service attacks using (e.g.) fragmented IPSEC packets, requiring cryp-
tographic processing to discover that they should be discarded, are a somewhat different
matter, and indeed we have not considered denial-of-service attacks and availability goals in
this paper.

36

4.2 Deriving Algorithms

We want now to develop algorithms which given M = (Q, —) and a filtering
statement £, ¢, ¢, will definitely tell us in case M does not satisfy £, ¢, ¢, and
will rarely report failure unless there exists a counterexample to the filtering
statement. To do so, we reduce the problem from the enriched graph G of €2, to
an ordinary undirected, bipartite graph G’ to which the NPE algorithms apply.
In the process, we will also use the confidentiality and authentication properties
known to hold of M to give additional information reducing false positives. That
is, the additional information will help reduce the cases in which we report that
there may be violations, when in fact there is no counterexample ¢.

For the remainder of this section, fix a network configuration M = (2, —).

We “reabsorb” the interfaces of a router into the router, and replace each
pair of contrary directed edges by a single undirected edge, thus turning a graph
having the form shown in Figure 5 into one taking the form shown in Figure 4.
If an enriched graph G is reabsorbed in this way, we refer to the result as G,..

IPsec Tunnels More importantly, we create new fictional interfaces between
two potentially distant routers to model the IPSEC tunnels that may lie between
them. In this way, we recognize IPSEC as a service that transports packets via a
safe medium. We regard these fictional interfaces as filtering points for each of
the two routers. One permits outbound (from the router) all those packets that
the endpoint pushes IPSEC headers onto, and the other permits inbound (into
that router) all packets that the router accepts, having popped IPSEC headers
off them.

More precisely, let o4[a] be the outgoing interface from device d onto an area
a. We say that o4[a] is a tunnel entrypoint for d' if there are any packet states (h)
and protocol data p such that og[a] pushes [d, d’, p| onto (h), eventually readying
[d,d’,p] - {(h), or the result of further pushes, to move from the interface. We
say that an incoming interface iq4 [a] is a tunnel exitpoint from d if there are any
packets [d,d’,p] - (k) off which ig [a] pops [d,d’,p], eventually readying (h) or
the result of further pops to move from the interface. We say that there is a
tunnel between og4[a] and i4 [a] if the former is a tunnel entrypoint for the latter,
and the latter is a tunnel exitpoint for the former. We say that the contents
of a tunnel are the set of packet states (h) such that, if (h) reaches og[al, then
it readies some - - - [d,d’, p] - (h), and moreover there is some --- - [d,d’,p] - (h)
which, if it reaches ig[a], then (h) will be readied by ig[a].

Given a graph G,, constructed by reabsorbing an enriched network graph
G, we add an interface between d and d’ whenever there is a tunnel between
any pair of their interfaces. The device d is assumed to pass outbound over this
interface the union of the contents of all tunnels to interfaces of d’, and d’ is
assumed to pass inbound the same set of packet states. In order to make the
result formally a bipartite graph, we must also add a fictitious area to which only
these two new interfaces are connected. We will refer to the resulting bipartite
graph as Gy4.

37

Exploiting Authentication and Confidentiality Goals In our original
NPE work, we never had a guarantee that the source field of a packet could be
trusted. Since IPSEC gives us such guarantees, we propose to take advantage
of them. Likewise, IPSEC also gives us a confidentiality assertion that certain
packets, having originated in one location, will always be in encrypted form
when traversing another location.

We extract, therefore, two families of sets of packet states. For each pair of
locations £, ¢', we let ¢ be the set of ([s,d,p]) such that address s belongs to
the area or device ¢, and M provides authentication services for ([s,d, p]), as
determined for instance by CAIC (Section 3.5). Let ¢ be the set of packets
([s,d,p]) such that addresss belongs to the area or device £ and M provides
confidentiality services for ([s, d, p]), as determined likewise by CAIC.

We may now use the same algorithms provided by NPE, though when cal-
culating the packets that may flow from ¢y to ¢1, we may omit packets in g g,
for £ # ¢y. These packets cannot reach ¢; unless they originate in ¢, not fq.
Likewise, we may omit packets in g, ¢,, as these packets will never be in their
original state when they reach ¢1, but will necessarily have an IPSEC confiden-
tiality header.

In this way, we may use the same methods as in NPE, but sharpened to
reflect both the transport opportinities created by IPSEC and also the authenti-
cation and confidentiality assertions that it offers. We have not yet incorporated
these methods into a tool such as NPE or CAIC.

5 Conclusion

We have argued by example in favor of rigorous automated network security
management. This method emphasizes modeling, which allows a class of sys-
tems to be represented in a uniform mathematical style. Configuration files may
be parsed to generate a representation of those aspects of an actual system that
are required by the modeling. The modeling ensures that a class of practically
meaningful security goals may be expressed in terms that fit with the repre-
sentation. As a consequence, algorithms for checking whether a system meets
a security goal may be developed and verified. In some cases, an algorithm
can also construct a related system that achieves a goal when the actual sys-
tem does not. Finally, an implementation allows these algorithms to be applied
to a problem instance without the need for any formal modeling expertise at
runtime.

Several advantages follow from this approach. It is efficient, allowing for
the time-consuming task of formal verification to be done only once. Further,
this verification can be separate from any property-checking tools, allowing those
tools to be implemented quickly, and run efficiently. We illustrated this approach
by summarizing previous work on packet-filtering and IPSEC formal verification.
We also introduced a new instance of this verification approach which ensures
achievement of both packet-filtering goals and IPSEC desires.

Rigorous automated security management appears to be effective for a range

38

of information security problems. We have applied it to analyze policies [9] in an
operating system offering Mandatory Access Control, namely Security Enhanced
Linux [16, 17].

References

[1]

Yair Bartal, Alain Mayer, Kobbi Nissim, and Avishai Wool. Firmato: A
novel firewall management toolkit. In Proceedings, IEEE Symposium on
Security and Privacy. IEEE CS Press, May 1999.

Steven Bellovin. Problem areas for the IP security protocols. In Proceed-
ings of the Sixth USENIX UNIX Security Symposium, July 1996. Also at
ftp://ftp.research.att.com/dist /smb/badesp.ps.

Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient im-
plementation of a BDD package. In 27th ACM/IEEE Design Automation
Conference, pages 4045, 1990.

Randal E. Bryant. Graph-based algorithms for boolean function manipu-
lation. IEEE Transactions on Computers, C-35(8):677-691, August 1986.

Cisco Systems, San Jose, CA. Router Products Command Reference, 10th
edition, 1994. Chapters 10 to 17 (especially Chapter 16). For more recent
information, see http://www.cisco.com/univercd/.

Niels Ferguson and Bruce Schneier. A cryptographic evalua-
tion of ipsec. Counterpane Internet Security, Inc., available at
http://www.counterpane.com/ipsec.html, 1999.

Joshua D. Guttman. Filtering postures: Local enforcement for global poli-
cies. In Proceedings, 1997 IEEE Symposium on Security and Privacy, pages
120-29. IEEE Computer Society Press, May 1997.

Joshua D. Guttman. Security goals: Packet trajectories and strand spaces.
In Roberto Gorrieri and Riccardo Focardi, editors, Foundations of Security
Analysis and Design, volume 2171 of LNCS. Springer Verlag, 2001.

Joshua D. Guttman, Amy L. Herzog, and John D. Ramsdell. Information
flow in operating systems: Eager formal methods. Submitted for publica-
tion, January 2003.

Joshua D. Guttman, Amy L. Herzog, and F. Javier Thayer. Authentica-
tion and confidentiality via IPsec. In D. Gollman, editor, ESORICS 2000:
FEuropean Symposium on Research in Computer Security, number 1895 in

LNCS. Springer Verlag, 2000.

D. Harkins and D. Carrel. The Internet Key Exchange (IKE). IETF Net-
work Working Group RFC 2409, November 1998.

39

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

S. Kent and R. Atkinson. IP Authentication Header. IETF Network Work-
ing Group RFC 2402, November 1998.

S. Kent and R. Atkinson. IP Encapsulating Security Payload. TETF Net-
work Working Group RFC 2406, November 1998.

S. Kent and R. Atkinson. Security Architecture for the Internet Protocol.
IETF Network Working Group RFC 2401, November 1998.

Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérome
Vouillon. The Objective Caml System. INRIA, http://caml.inria.fr/,
2000. Version 3.00.

P. Loscocco and S. Smalley. Integrating flexible support for security policies
into the Linux operating system. In Proceedings of the FREENIX Track of
the 2001 USENIX Annual Technical Conference, 2001.

P. Loscocco and S. Smalley. Meeting critical security objectives with
security-enhanced Linux. In Proceedings of the 2001 Ottawa Linuz Sympo-
sium, 2001.

D. Maughan, M. Schertler, M. Schneider, and J. Turner. Internet Security
Association and Key Management Protocol (ISAKMP). IETF Network
Working Group RFC 2408, November 1998.

Alain Mayer, Avishai Wool, and Elisha Ziskind. Fang: A firewall analysis
engine. In Proceedings, IEEE Symposium on Security and Privacy, pages
177-187. IEEE CS Press, May 2000.

Darren Reed. Ip filter. Download Web Page, December 2002. URL http:
//coombs.anu.edu.au/"avalon/.

Rusty Russell. Linux ip firewalling chains. Linux Howto, October 2000.
URL http://www.netfilter.org/ipchains/.

Steve Schneider. Security properties and CSP. In Proceedings, 1996 IEEE
Symposium on Security and Privacy, pages 174-87. IEEE Computer Society
Press, May 1996.

40

