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Abstract

A programming language for cryptographic protocols eases design and
implementation of application-specific protocols for tasks such as elec-
tronic commerce and distributed access control. The language provides a
minimal expressiveness useful for defining new protocols.

We give the language a semantics via strand spaces, so that the de-
signer can prove that a new protocol meets the security goals. This se-
mantics also motivates a compilation strategy, yielding protocol imple-
mentations faithful to their verified behavior.

We also aim to clarify the relation between the abstract models used in
protocol verification and the actual behavior of protocols as implemented.
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1 Introduction

Cryptographic protocol analysis offers a number of highly informative tech-
niques, e.g. [17, 8, 19]. In addition, work on protocol design [14, 18] holds out the
hope of hand-crafted protocols for electronic commerce and cross-organization
distributed applications. These protocols must be faithful to the trust relations
among the participants, meaning their requirements for authentication and ac-
cess control. If many protocols will be invented in the coming years, abstractly
justified for specific tasks, how can they be implemented in a uniform, reliable
way?

We describe here a cryptographic protocol programming language cppl al-
lowing a designer to express protocols at the Dolev-Yao level of abstraction.
cppl and its semantics are motivated by the strand space theory [19], so that
the designer can verify that a new protocol meets its confidentiality and au-
thentication goals. Alternative semantics could be given by translating the
domain-specific language into spi or the applied pi calculus [4, 3], allowing other
verification methods [17, 1].

cppl is intended to provide minimal expressiveness compatible with pro-
tocol design. First, a protocol run must respond to choices made by its peer,
as encoded in different forms of message that could be received from the peer.
Second, the principal on behalf of whom the protocol is executing must be able
to dictate choices reflecting its trust management policy [2, 9, 20]. Finally, cppl
provides a mechanism to call subprotocols, so that design may be modularized.
The interface to a subprotocol shows what data values must be supplied to it and
what values will be returned back on successful termination. The interface also
shows what properties the callee assumes about the input parameters, and what
properties it will guarantee to its caller about values resulting from successful
termination. These—branching on messages received, consulting a trust man-
agement theory, and subprotocols—are the three main forms of expressiveness
offered by cppl.

We also need some functionality from libraries. The libraries include a cryp-
tographic library—used to format messages, to encrypt and decrypt, to sign
and verify, and to hash—and a communications library. The latter connects to
other principals on the network and manages network level channels to them.
These channels need not achieve any authentication or confidentiality in them-
selves [15]. The third library is a trust management engine. The trust manage-
ment engine allows us to integrate the protocol behavior with access control in
a trust management logic [2, 6, 22], giving an open-ended way to control when
to abort a run, and to control the choice between one subprotocol and another.
Indeed, a primary goal of the paper is to present a way to define protocols mo-
tivated by the connection between trust management and protocols described
in [20].

The language is organized around a specific view of protocol behavior. In
this view, as a principal executes a single local run of a protocol, it builds up an
environment that binds variables to values encountered. Some of these values
are given by the caller as values of parameters when the protocol is initiated;
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some are chosen randomly; some are received as ingredients in incoming mes-
sages; and some are chosen to satisfy trust management requirements. These
bindings are commitments, never to be updated; once a value has been bound
to a variable, future occurrences of that variable (especially when expected in
an incoming message) must match the value or else execution of this run aborts.
The environment at the end of a run records everything learnt during execution.
A selection of this information is returned to the caller.

Our treatment of trust management is tightly connected. We associate a
formula with each message transmission or reception. The free variables of
the formula are variables in the environment. The formula associated with a
message transmission is a guarantee that the sender must assert in order to
transmit the message. The formula associated with a message reception is an
assumption that the recipient is allowed to rely on. It says that some other
principal has previously guaranteed something. A protocol is sound if in every
execution, whenever one principal P relies on P ′ having said a formula φ, then
there was previously an event at which P ′ transmitted a message, and the
guarantee formula on that transmission implies φ.

The same idea shapes our treatment of subprotocols. A local message, sent
by the calling protocol, starts a subprotocol run. Hence, the caller makes a
guarantee that the callee can rely on. When the subprotocol run terminates
normally, it sends a message back to its caller; the callee now makes a guarantee
that the caller can rely on in the remainder of its run.

Related Work Despite the large amount of work on protocol analysis, the
predominant method for designing and implementing a new protocol currently
consists of a prolonged period of discussion among experts, accompanied by
careful hand-crafted implementations of successive draft versions of the proto-
col. The recent reworking of the IP Security Protocols including the Internet
Key Exchange was an example, involving a complex and important cluster of
protocols.

Languages for cryptographic protocols, including spi calculus and its deriva-
tives [4, 3, 13, 10], have been primarily considered tools for analysis rather than
as programming languages for implementation.

There has been limited work on compilation for cryptographic protocols,
with [24, 23, 12] as relevant examples. We add a more rigorous model of protocol
behavior, centered around the environment mentioned above. We provide clear
interfaces to communications services and the cryptographic library. We stress
a model for the choices made by principals, depending on a trust management
interpretation of protocols and on an explicit pattern-matching treatment of
message reception. A semantics ties our input language to the strand space
model, and motivates the structure of our compiler.

Main Contributions This paper makes four main contributions. First, we
define a model of protocol behavior, encoded in a very small language cppl. It
embodies the three main forms of expressiveness mentioned above. Second, we

4



A B

m1
{|Na ˆ A ˆ D|}KB - {|Na ˆ A ˆ D|}KB - n1

m2

�w
�{|Na ˆ K ˆ B|}KA �{|Na ˆ K ˆ B|}KA n2

�w
m3

�w
{|K|}KB - {|K|}KB - n3

�w
m4

�w
� {|val ˆ Na ˆ V |}K � {|val ˆ Na ˆ V |}K

n4

�w

m′
4

�
�{|lo val ˆ Na ˆ V |}K �{|lo val ˆ Na ˆ V |}K

n′4

�

Figure 1: Access Control via Needham-Schroeder-Lowe

provide a strand space semantics for cppl programs (Section 4). The semantics
yields a finite set of strands for each program, and each strand is of finite length
(Proposition 4). However, an infinite set of executions are possible when these
strands (instantiated with different data values) interact with each other and
an active adversary.

Third, we view subprotocol call and return as local secure communications,
which we augment the strand spaces to model. New theorems allow proving
security goals about the new mechanism (Section 5, Propositions 5–7). Finally,
we describe a compilation strategy motivated by the semantics (Section 6).

2 Access Control via a Protocol

As a very small example, suppose that a server B wishes to offer a collection of
data, and intends to transmit a datum to a client A in encrypted form, assuming
that A is authorized to receive it. The authorization decision may depend on
different factors: In some cases there is a confidentiality policy intended to
prevent the wrong principals from learning a secret. In other cases, the goal
is to deliver commercially valuable information, e.g. information consisting of
stock quotations, only to subscribers who pay for it. Indeed, we may suppose
that there are two classes of service. Customers on the expensive contract get
the best quality of information, while a cheaper service may provide information
that is less accurate or less up-to-date. In the case of stock quotations, the lower
class of service may provide quotations rounded to the nearest eighth of a point,
rather than in exact thirty-seconds, or it may provide quotes delayed by fifteen
minutes. The protocol (Figure 1) is a variant of the Needham-Schroeder-Lowe
protocol.

Here, D is the name of the datum that A wishes to receive, and Na is a
nonce used to assure authentication and freshness for the value of D. B freshly
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generates the session key K to be used to protect the datum, and A proves
that it has received K (and wants genuinely to receive D) by means of message
3. Finally in the last message, B delivers the current value V of datum D
encrypted with K, associated with the tag val to indicate that high quality data
is contained. If cheaper data is delivered instead, the tag lo val informs the
client, which can report this to its caller. In either case, the server wants to
ensure that the client’s request is recent, rather than being a replay, as preparing
the data may cost time or money.

2.1 Growth of Environment during Execution

In a run of the client A, the environment must be initialized with values for
A,B, D provided by the caller, indicating respectively the principal’s identity,
the server to interact with, and the data value to be retrieved. In addition, the
environment must provide a value for KB , B’s public asymmetric encryption
key. The first action of the client is to select a fresh random value Na. With
this, the environment contains values for all the ingredients in the first message
to be sent. A call to a cryptographic library can cause a message of the correct
form to be formatted as a bitstring. A call to a communication library can cause
the bitstring to be sent, in the hope of the network delivering it to B.

When the communication library delivers a message, apparently from B, the
cryptographic library attempts to decrypt it with A’s private key K−1

A (assuming
the latter is available). If the first component of the resulting plaintext is not
Na, or if the last component is not B, then execution aborts. Otherwise, the
middle component is bound to the variable K; it will be used as a symmetric key.
The client can now format the third message with a call to the cryptographic
library, and send it with a call to the communication library.

Finally, when the client receives the last message, the cryptographic library
can decrypt it with the key bound to variable K. If the first component is the
tag val, then the second component is bound to the variable V ; another variable
can be let-bound to indicate that high precision data was received. If instead it
contains tag lo val, V should still be bound, and the auxiliary variable should
take a different value.

A symmetric sequence of actions occurs when the server executes a run.

2.2 Trust Management Interpretation

We annotate the protocol by attaching trust management formulas to the nodes [20].
The formulas for our example, using the predicates shown in Table 1, are shown
in Table 2. We regard node m1 as asserting A’s desire to receive the value of
D from B. B ascertains that this event has occurred only at node n3. In the
meantime, B asserts at node n2 that if A desires to receive D’s value from B,
then B will supply it. After n3, B can infer that A has asserted its desire to
receive D’s value, which B is now committed to transmitting, either in the high-
precision form or the low-precision form. To decide which, the server attempts
to prove that A is entitled to high precision data; if it succeeds, it takes the
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pubkey(A,KA) A’s public encryp. key is KA

requests(A,B,D, N) A requests D’s value
from B using N

supply(D,N) D’s value to be supplied via N
curr val(D,V,N) D’s value is V via nonce N

approx val(D,V,N) D is near V via nonce N

Table 1: Trust Management Predicates for Example

γm1 requests(A,B,D, Na)
γn2 pubkey(A,KA) and

requests(A,B,D, Na) ⊃ supply(D,Na)
ρn3 A says requests(A,B,D, Na)
γn4 curr val(D,V,Na)
γn′

4
approx val(D,V,Na)

ρm4 B says curr val(D,V,Na)
ρm′

4
B says approx val(D,V,Na)

Table 2: Trust Management Annotations

branch containing val and high precision data. Otherwise, it takes the alternate
branch with low precision data. The guarantees on n4 and n′4 assert that the
current value of D is V to the selected precision.

Each principal works within its own local theory to infer an instance of
a guarantee formula before transmitting the message the formula guards. The
local theory is augmented with the rely formulas associated with messages previ-
ously received. These assumptions make sense because the sender P previously
guaranteed some formula φ. Thus, the assumption takes the form P says φ.
The recipient P ′ can decide whether to trust P to speak truly about the matter
φ, depending on what P ′ knows about P (i.e. formulas included in P ′’s local
theory) and the contents of φ. P ′ trusts P on a subject φ if P ′ accepts the
implication (P says φ) ⊃ φ.

A protocol is sound if in every execution the formulas ρn on which principals
rely are always true, in the sense that an uncompromised principal made the
assertion that ρn says it made (Definition 9).

Different techniques could be used by principals wanting to determine how
to proceed in a run of this protocol via logical inference and an explicitly rep-
resented theory. Frequently Datalog, or some variant or extension, will be
used [22, 7]. Since γn2 contains an implication, an additional trick is needed
here, namely checking that the conclusion is deducible when the hypothesis is
added to the theory temporarily.
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statement := RETURN
| LET id = expression IN statement
| <-- send_branches
| --> id recv_branches

empty := /* nothing */

send_branches := empty
| (GUARANTEE formula; SEND id msg;

statement)
send_branches

recv_branches := empty
| (RECEIVE msg; RELY formula;

statement)
recv_branches

Table 3: Syntax of Statements

3 Protocol Syntax

We now describe cppl. Initially, we describe message transmission and recep-
tion, later adding mechanisms for declaring the interface to a protocol and for
expressing subprotocol call and return.

3.1 Transmission and Reception

The main syntactic category of cppl is the statement. A statement (Table 3)
may return immediately, it may let-bind a variable to the value of an expression
in a statement, or it may offer a choice of message transmissions (<--) or message
receptions (-->).

Each message transmission branch is guarded by a formula. The branch may
be selected only if the trust management engine succeeds in establishing (“guar-
anteeing”) an instance of this formula. The environment for the remainder of
the run is augmented with the instantiated variables. If the trust management
engine fails on every branch’s guarantee, then this run aborts.

Each message reception is guarded by a message pattern msg. That branch
may be selected only if the parser recognizes an instance of this pattern in the
message received from the communication layer, on the channel id. Variables
not previously bound are instantiated to the values found by the parser. The
trust management engine can rely on the formula associated with the selected
pattern. The formula is added to the local theory as a temporary premise, so it
can be used in proving guarantee formulas in the remainder of this run. If the
message received from the communication layer does not match the pattern in
any branch of a message reception statement, then this run aborts.
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expression := id | constant
| NEW kind
| CHANNEL(id) | ACCEPT()
| REMOTE(id)

msg := id | constant
| msg, msg
| {| msg |}_id | [| msg |]_id
| HASH(msg)

Table 4: Expressions and Message Patterns

Expressions are either identifiers, constants, new nonces or keys, or forms
interacting with the communications library (Table 4). New nonces and keys
are randomly generated by the cryptographic library. A channel expression
requests a channel from the communications layer intended for bidirectional
communication with the principal named by the argument; however, the chan-
nel provides neither authentication of origin nor confidentiality. The accept
expression is used to act as a server; it yields a channel when a remote principal
opens a connection. The remote expression queries the communication layer for
the unauthenticated remote endpoint of the channel.

Message patterns interact with the cryptographic library instead of the com-
munication layer. They allow identifiers and constants to be specified as atomic
message patterns; concatenation of message patterns is indicated by the comma;
and encryption and signature are indicated by {| msg |}_K and [| msg |]_K
respectively. Hashing is also represented.

The syntax of formulas is not described here; it varies depending on the
trust management engines that principals will use. The parser delegates these
formulas to a parser specific to the trust management engine.

The AC NSL Example We specify the server (B) behavior of our sample
protocol in Table 5. It starts by let-binding a channel and the principal at
the remote end of it. A message is received off the channel which must match
the pattern, with A appearing as the middle component. As a consequence
of the message reception, Na and D are bound to the values matched in the
message. No assumption is delivered in the rely statement, as a message of
this form could have been prepared by anyone, even an attacker knowing B’s
public key. B then binds a newly generated value to serve as the session key
K, and asks the trust management engine to guarantee pubkey(A,KA) as part
of γn2 . Although A was bound by a let-form, KA is as yet unbound. Thus, the
trust management engine operates in a logic programming style, delivering an
extension to the environment in which KA is bound to some key for which the
trust management engine proved pubkey(A,KA).

On the server side, the decision before the last transmission is a trust man-
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let Chan = accept() in
let A = remote(Chan) in
--> Chan
(receive {| N_a, A, D |}_KB;
rely true;
let K = new key in
<--
(guarantee gamma_n2;
send Chan {| N_a, K, B |}_KA;
--> Chan
(receive {| K |}_KB
rely rho_n3;
<--
(guarantee gamma_n4;
send Chan {| val, V |}_K;
let C = "hi_cost" in
return)

(guarantee gamma_n4’;
send Chan {| lo_val, V |}_K;
let C = "lo_cost" in
return))))

Table 5: Server Behavior in AC NSL
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--> Chan
(receive {| val, V |}_K;
rely B says curr_val(D,V,N_a);
let C = "hi_cost" in
return)

(receive {| lo_val, V |}_K;
rely B says approx_val(D,V,N_a);
let C = "lo_cost" in
return)

Table 6: Client Choice in AC NSL

procedure := id (params) RELY formula
: (params) GUARANTEE formula

= statement end

statement := . . . (see Table 3)
| <-> subprot_call

call_site := invocation ELSE invocation

invocation := (GUARANTEE formula;
id(params): params;
RELY formula;
statement)

Table 7: Syntax for Protocols and Call Sites

agement decision. The trust management engine is asked to guarantee that the
client A deserves high value information about datum D. If this fails, then the
server tries the next branch.

On the client side, the branch is on the form of message received, specifically
which tag is embedded (Table 6). On the two branches, the variable C is
bound to different constants, and the protocol can return this value to its caller,
together with the value V , so that the latter will be correctly interpreted.

3.2 Subprotocols

Since one wants to construct protocols by using others as subprotocols, each
protocol has an interface, and can use other protocols according to their stated
interfaces (as in Table 7). The interface allows values to be passed to the
subprotocol by its caller. The interface also specifies which parameters are to
be returned by the subprotocol if it completes successfully. The subprotocol
returns no values to its caller if it aborts.

The interface also includes two formulas. One is a formula serving as a
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ac_nsl_serv (B,KB,KBpriv)
rely pubkey(B,KB)

and key_pair(KB,KBpriv)
: (A,C,D,V)

guarantee supplied(A,C,D,V) = ...

ac_nsl_client (A,KA,KApriv,B,D)
rely pubkey(A,KA) and

key_pair(KA,KApriv)
: (N_a,C,V) guarantee

(C = "hi_cost" and
B says curr_val(D,V,N_a))

or (C = "lo_cost" and
B says approx_val(D,V,N_a))

= ...

Table 8: Procedure Headers for AC NSL

precondition. Its free variables should be only the input parameters to the sub-
protocol, and it expresses a relationship among their values that the subprotocol
designer assumes to hold. The caller must assure that this relationship holds
before calling the subprotocol. The other formula concerns the values returned
by the subprotocol. It expresses a relationship that the subprotocol will guar-
antee in all cases of successful termination. It must contain free only the input
and output parameters of the protocol. The procedure headers for AC NSL are
shown in Table 8.

The syntax for a subprotocol call site mirrors this structure. It contains
two branches, each guarded by a guarantee formula. The branch will not be
taken unless the trust management engine ensures an instance of the guaran-
tee. The call site names a subprotocol to which it passes actual parameters.
Values returned by the subprotocol may be required to match known values,
while others will be bound to variables for use in the remainder of the caller’s
execution. The call site specifies a rely formula the summarizing the effect of
the subprotocol, which the trust management engine can use in the remainder
of the caller’s execution.

Mismatch between values returned by the call and expected values, or an
abort by the subprotocol, means that this branch has failed, and that the next
branch will be tried. If both branches fail, the caller aborts.

A Certificate Retrieval Subprotocol In Table 5, we assumed that the
server’s trust management theory could supply a value KA such that pubkey(A,KA).
Although some clients’ public keys are known, others’ must be retrieved from a
directory of certificates. A subprotocol can be used to retrieve them, ensuring
that they are sufficiently fresh. Although there are many strategies for doing so,
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retrieve_pubkey
(B,A,C,Cver,D,KD)
rely certifying_authority(C,A) and

sign_verification_key_of(C,Cver) and
directory_service(D,C) and
pubkey(D,KD)

: (A,KA) guarantee pubkey(A,KA) =
let Chan = channel(D) in
let N_b = new nonce in
let K = new key in
<--
(guarantee true;
send Chan {| certify_key, A, K, N_b |}_KD;
--> Chan
(receive {| cert_delivery, N_b,

[[ cert, A, KA ]]_Cver |}_K;
rely D says C says pubkey(A,KA);
return)) end

Table 9: Certificate Retrieval Protocol

there is a single criterion for the task, namely that the local trust management
theory learns the conclusion pubkey(A,KA). The rely-guarantee framework uses
the subprotocol to ensure this follows from the local theory together with rely
statements that become available. The correctness of these rely statements
follows from protocol soundness as given in Definition 9.

We show in Table 9 a protocol to retrieve a public key from a directory D.
The directory serves principal-public key bindings signed by a certificate author-
ity C that may be verified using its (well-known) signature verification key Cver .
D ensures freshness using some certificate revocation mechanism, so D is trusted
not to serve any revoked certificate. The assumption directory service(D,C)
makes explicit this trust, which is reflected logically as an implication allowing
B to infer C says pubkey(A,KA) from D says C says pubkey(A,KA). When
certifying authority(C,A), C says pubkey(A,KA) implies pubkey(A,KA).

B may try first to retrieve KA locally if it is known to the local trust man-
agement theory, and only if this fails invoke the certificate retrieval protocol
(Table 10).

The directory server runs a procedure matching retrieve pubkey, in which
D guarantees C says pubkey(A,KA) before sending the certificate.

3.3 Complete Programs

A complete program is a set of procedures, each named by a different identi-
fier. Each subprotocol call appearing in these procedures must be the name of
a procedure also in the set. There is no constraint on the order in which the
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null_protocol () rely true
: () guarantee true =

return end

retrieve_pubkey_if_needed
(B,A) rely true

: (A,KA) guarantee pubkey(A,KA) =
<->
(guarantee pubkey(A,KA);
null_protocol():();
rely true;
return)
else
(guarantee certifying_authority(C,A)

and sign_verification_key_of(C,Cver)
and directory_service(D,C)
and pubkey(D,KD);

retrieve_pubkey(B,A,C,Cver,D,KD):(A,KA);
rely D says C says pubkey(A,KA);
return) end

Table 10: Certificate Retrieval when Needed

procedures are defined, nor on whether they call each other recursively. Any
individual execution of a protocol will involve only a finite number of principals,
executing the procedures a finite number of times (not necessarily to comple-
tion), and engaging in a finite number of transmissions and receptions.

4 Strands as a Semantics

In this section we first (Sections 4.1–4.2) resume the strand space theory. Sec-
tion 4.3 provides a semantics for our protocol language by associating a protocol
in the sense of Definition 3 to each program in the language.

The semantics requires a new ingredient in the strand space framework, to
model the assumption of security for local message delivery such as subprotocol
call and return. The same addition also allows reasoning about transport mech-
anisms that ensure confidential message delivery or authentication of message
origin [11]. In Section 5 we explain how to prove security properties in this
augmented framework.

4.1 Terms and Messages

Terms form a free algebra, built from atomic terms via constructors. The atomic
terms are partitioned into the types principals, texts, tags, keys, and nonces,
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which are used for normal messages, together with activation identifiers which
are used to represent subprotocol call and return messages, but never appear in
real messages handled by the communication layer. In the present formulation,
channels never occur within messages, although useful extensions could include
that.

Some atoms are regarded as indeterminates (variables), while others are
regarded as constants, representing particular data values used in a concrete
run of a protocol. However, no tags are used as variables; instead, they are
always protocol-specific constants found literally in messages, such as val and
lo val in the AC NSL protocol example. We will continue to write tags in
sans serif font, while writing atoms a in general in italics.

The terms in the algebra A are freely built up from atoms using the oper-
ations of concatenation, encryption, signature, and hashing. These are written
t0 ˆ t1, {|t|}K , [[ t ]]K , and hash(t) respectively. In the present formulation the
second argument to an encryption or signature is always an atomic key. Our
convention for public key encryption and digital signature is that the key K
is always the public key. In a public key encryption {|t|}K , K is the public
encryption key, and in a digital signature [[ t ]]K , K is the public verification key.

A substitution is a finite function α mapping atoms to atoms, such that (1)
α respects types in the sense that α(a) is an atom of the same type as a, and
(2) the domain of α consists only of variable atoms. We insist that the range
of a substitution is included in the atoms, because the theory is less attractive
when substitutions may map variables to compound terms.

The application of a substitution α to a term t, written t · α, is defined as
expected: application of α to terms is the homomorphism extending α’s action
on atoms.

4.2 Strands, Protocols, and Bundles

Definition 1 A direction is one of the four symbols +,−,+c,−a. A directed
term is a pair 〈d, t〉 with t ∈ A and d a direction. We write directed terms +t,
+c t, etc. (±A)∗ is the set of finite sequences of directed terms. 〈d, t〉 · α =
〈d, t · α〉.

A strand space over A is a set Σ with a trace mapping tr : Σ → (±A)∗ and
a substitution application operator s · α such that

tr(s · α)(i) = (tr(s)(i)) · α

for all s ∈ Σ, α, and i such that 1 ≤ i ≤ length(s).

Here we regard (±A)∗ as the set of functions from initial sequences of positive
integers to directed terms.

Message transmission has positive direction +,+c, and reception has a neg-
ative direction −,−a. The strands we construct in Section 4.3 to give semantics
to a cppl program are sequences of pairs, each consisting of a directed term and
a formula; in this case the function tr is the function map first that returns the
sequence of first elements. Some additional definitions, including the subterm
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relation @ and the penetrator strands, are in Appendix A. Strands that are not
penetrator behaviors are called regular strands.

Transmission that preserves confidentiality is a special kind of message trans-
mission; a node of this kind we annotate with a subscript c on the positive sign.
For instance, +c t means transmission of t via some method assumed to preserve
confidentiality. Dually, reception that provides authenticity is a special kind of
message reception indicated by a subscript a as in −a t. If a communication
arrow n → n′ ensures both confidentiality and authentication, then n has an-
notation +c t and n′ has annotation −a t. Purely local communication such as
subprotocol call or return is of this kind.

The set N of all nodes forms a directed graph 〈N , (→ ∪ ⇒)〉 together with
both sets of edges n1 → n2 for communication and n1 ⇒ n2 for succession on
the same strand (Definition 10). A bundle is a subgraph of 〈N , (→ ∪ ⇒)〉 for
which the edges are causally well-founded, expressing a possible execution. The
content of the annotations +c,−a comes from a modified notion of bundle, in
which the transmission +c t is delivered only to a regular node, not a penetrator
node, and in which a reception −a t arrived from a regular node.

Definition 2 Let B = 〈NB, (→B ∪ ⇒B)〉 be a finite acyclic subgraph of 〈N , (→
∪ ⇒)〉. B is a bundle if:

1. If n2 ∈ NB and term(n2) is negative, then there is a unique n1 such that
n1 →B n2.

2. If n2 ∈ NB and n1 ⇒ n2 then n1 ⇒B n2.

B is a bundle with secure communication, or sc-bundle, if in addition:

3 If +c t →B n or n →B −a t, then n is regular.

A notion of assured delivery could also be added to this framework; this would
be a property +d t such that if n0 = +d t ∈ NB, then there exists an n1 ∈ NB
such that n0 →B n1.

In Section 5 we describe how to prove security-relevant conclusions about
sc-bundles.

We assume given some logic L, by which we mean a set of formulas FORMULAL

with a notion of substitution and a consequence relation ∆ −→ φ [16]. The for-
mulas of L express trust management assertions.

Since we regard some atoms (other than tags) as variables, we consider a
strand to be parameterized by the variable atoms in it. We sometimes write
a strand s in the form s[~x] to indicate that the variables appearing in it make
up the list ~x. Its instances are the strands obtained from it by applying a
substitution α that may replace the atoms in ~x with others of the same types.
As in [20], we define:

Definition 3 (Protocol) An annotated protocol Π consists of a set of regular
strands {sj}j∈J together with a pair of functions γ and ρ from nodes of these
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strands to formulas of L, such that γ is defined on positive nodes and ρ is defined
on negative nodes. The strands sj are the roles of the protocol.

The strand space ΣΠ over Π consists of all instances of the parametric
strands sj [~x] together with all penetrator strands from Definition 11.

Substituting constants ~c for the variables ~x provides the same value for all
occurrences of a variable in sj , matching our operational view, that a variable
once bound retains the same value throughout an execution.

Idea for a Semantics of Subprotocol Call Confidential transmission and
authenticated reception suggest a semantics for subprotocol call and return.
The call and return will be successive nodes (+c and −a respectively) on the
strand s representing the behavior of the caller. The activity of the callee is
represented on a separate regular strand s′.

The first node of s′ is a negative −a node that accepts the actual parameters
with which s′ starts; the last node is a +c node that returns values to the caller.
Further subprotocol calls from s′ are executed on other strands s′′. This is
akin to a remote procedure call semantics, if one views the parts of the activity
executing within different procedure invocations as making up separate strands.

We also include a uniquely originating value a1 in the invocation and return
messages. This activation identifier a abstracts the stack frame of the call. The
call is a transmission node n0 = +c t on s where a @ t, and the return is a
reception node n1 = −a t′ where likewise a @ t′. Proposition 6 is the reason
for including activation identifiers in the semantics; it tells us how to show the
existence of a subprotocol strand in the same sc-bundle, that is, a regular strand
s′ which receives t and eventually transmits t′. To ensure that s′ is the expected
subprotocol, we stipulate that t has the form

call ˆ prot name ˆ p ˆ a ˆ~b.

Here call is a special tag indicating that this is a subprotocol call message,
prot name is a tag, which names the procedure defining the callee, p is the
identity of the principal on behalf of which both caller and callee are executing,
a is the activation identifier, and the ~b are the arguments passed as actual values
to be bound to the formal parameters of the callee. We stipulate that the return
term t′ has the form

return ˆ prot name ˆ p ˆ a ˆ~c.

Here return is a special tag indicating that this is a subprotocol return message,
and ~c are the actual values being returned to the caller.

Because subprotocol call uses a message transmitted from caller to callee,
there should be a guarantee formula guarding the call site, and a rely formula
at the beginning of the subprotocol. Because subprotocol return uses a message
transmitted from callee to caller, the end of the subprotocol should assert a
guarantee, and a rely formula should follow the call site. Hence the syntax
given in Table 7.

1See Definition 10; a uniquely originating value in a particular bundle is one that was
created only at one node.
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4.3 The Protocol associated with a Program

To give a strand space semantics to a program in cppl, we would like to assign
to every program a protocol in the sense of Definition 3, i.e. a set of parametric
strands {sj [~x]}j∈J , together with rely and guarantee formulas for all of the
negative and positive nodes (respectively) on these strands. The strand space
ΣΠ describing all local runs of protocol procedures is thus the set of instances
of the roles sj , obtained by applying all substitutions to them, together with
the penetrator strands of Definition 11.

The program consists of a number of procedure definitions of the form shown
in Table 7, all having different names. We in fact define the semantics indepen-
dently for each procedure. For each procedure we define a set of parametric
strands, and the semantics of the whole program is simply the union of these
sets. The heart of the semantics is a process that defines a set of strands recur-
sively on the definition of statements.

In the strand space Σ we will construct, the strands s are sequences of pairs
we call “events”; each event consists of a directed term and a formula. Thus, a
strand s is in (±A× FORMULAL)∗; i.e. it is a partial function from an initial
sequence of positive integers to events in ±A× FORMULAL.

We write x :: s to mean the partial function f on positive integers such that
f(1) = x and f(i + 1) = s(i); this is defined on an initial sequence if f is. We
use nil for the trace without events, i.e. the everywhere undefined function. We
write s _ s′ for the result of appending s′ after s, i.e. the function f such that
f(i) = s(i) if i ≤ k = length(s), and f(i) = s′(i− k) otherwise. When S, T are
sets of sequences, S _ T = {s _ t : s ∈ S and t ∈ T}.

Suppose that we are giving the semantics for a procedure with name name,
which will be used by principal p, will be activated with an activation identifier
ai , and we let the return parameters for the procedure be the vector of atoms
~b. We write ~q = name ˆ p ˆ ai for the concatenation of this call information.
For brevity, we write ~v for ~q,~b, γret , so that tret(~v) = return ˆ ~q ˆ ~b is the
expected return message. If the guarantee formula associated with this normal
termination of this procedure is γret , we let

ret(~v) = (+c tret(ai), γret)

be the return event expected from this procedure, consisting of message and
guarantee.

We also define the abort event from the procedure to be the event

abort(ai) = (+c abort ˆ ~q, true)

since no non-trivial formula results from failure.
If s ∈ (±A× FORMULAL)∗ is a strand, then AIS (s) is the set of activation

identifiers that occur in the events of s. Since activation identifiers do not occur
in formulas, this is the same as the activation identifiers occurring in messages
sent or received in s.

We give the semantics of statements, within a given procedure, by a semantic
function S~q,~b,γret

, where the three parameters make available the call information
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S~v(<-- β1 . . . βk) =
⋃

1≤i≤k

S~v(βi)

S~v(βi) = {〈+ti, γi〉 :: s : s ∈ S~v(σi)}

S~v(--> c β′1 . . . β′k) =
⋃

1≤i≤k

S~v(β′i)

S~v(β′i) = {〈−ti, ρi〉 :: s : s ∈ S~v(σi)}

Table 11: Semantics of Send and Receive Statements

~q, the return parameters ~b, and the return guarantee γret of the procedure. The
statement semantics S~v(σ), where σ is a statement, returns a set of strands.
Every behavior σ can engage in is an instance of some strand in the set S~v(σ).

Semantics of Return The behavior of a return call has one form, in which
only the return message for the parameters ~v = ~q,~b, γret is transmitted:

S~v(return) = {ret(~v) :: nil}

Semantics of Sending and Receiving A send branch conses an event—
consisting of the sent message paired with the guarantee guarding the send—to
the front of any behavior of the following statement. If a send statement has
a number of branches, the semantics is non-deterministic, taking the union
of the behaviors possible for the send branches, together with an abort if all
branches are refused. The semantics of a receive statement is similar, but with
the opposite sign.

This is summarized in Table 11, where we assume the statement consists
of k branches, of which the ith send branch βi takes the form (guarantee γi;
send ci ti; σi). The ith receive branch β′i takes the form (receive ti; rely ρi;
σi). Channels are discarded in the semantics, since the Dolev-Yao adversary
controls the network and misroutes messages as desired.

Semantics of Subprotocol Call The semantics of procedure call involves
the events that may occur when a subprotocol is tried, even though it does not
successfully commit. A branch commits if the invoking transmission is followed
by a successful return message.

If a branch’s guarantee fails and there is no invocation, it has not committed.
If an invocation receives no reply, either because the caller times out or because
the callee tries to return values that do not match those already bound in the
caller, then there is no commit. Finally, if the guarantee succeeds but the
invocation causes an abort, then it has not committed.

Thus, the uncommitted behavior of a subprotocol call branch is a strand of
length 0, 1, or 2. When a subprotocol call site executes its else branch, some
uncommitted behavior for the main branch will be prepended to the behavior
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Us(bi) = {nil}
∪ {(+c call ˆ name ˆ p ˆ ai ′ ˆ ~bi, γi) :: nil}
∪ {(+c call ˆ name ˆ p ˆ ai ′ ˆ ~bi, γi) ::

(−a abort ˆ name ˆ p ˆ ai ′, true) :: nil}
Cs(b1) = {(+c call ˆ name ˆ p ˆ ai ′ ˆ ~bi, γi) ::

(−a return ˆ name ˆ p ˆ ai ′ ˆ ~bi, ρi) :: nil}

S~v(b1 else b2) =
⋃

s2∈S~v(b2)

Us2(b1)
_ {s2}

∪
⋃

s1∈S~v(b1)

Cs1(b1)
_ {s1}

∪ Unil(b1)
_ Unil(b2)

_ {abort(ai0) :: nil}

Table 12: Uncommitted and Committed Behaviors, choosing variable ai ′ 6∈
(AIS (s) ∪ {ai0}), and Subprotocol Call

of the else branch. If the else branch also fails to commit, then the caller
must abort. The committed behavior of a successful subprotocol is a strand of
length 2, namely a call and a successful return, prepended to the behavior of
the statement it contains.

Subprotocol invocation semantics is in Table 12, where the call site is β1

else β2, and each βi is:

guarantee γi; name ~bi : ~ci rely ρi; σi.

Here ~b,~c are the call and return parameters; and γi and ρi are the formulas to
guarantee and to rely on. Let p be the current principal, and ai0 the activation
identifier of the strand executing this call. Us(b) is the set of uncommitted
behaviors b may contribute preceding the behavior of the strand s, while Cs is
the set of committed behaviors b may contribute preceding the behavior of the
strand s.

The activation identifier used on a subprotocol invocation and return is
chosen to be distinct from the activation identifiers AIS (s) used later on the
same strand s, and distinct from the activation identifier ai0 received by that
strand when it was called. This is the only role of the parameter s. The choice
of ai ′ is made in some canonical way from all other activation identifiers.

Semantics of let Statements We divide let statements let i = e in σ into
two kinds (Table 13). Either the expression e is an identifier i, or else it is a
new, remote, or channel expression. When the expression e is an identifier i′, we
interpret the let statement by substituting i′ in place of the target i throughout
S~v(σ).
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S~v(let i = i′ in σ) = S~q,~b[i′/i],γret [i′/i](σ[i′/i])

S~v(let i = e in σ) = S~v(σ)
(e not of form i′)

Table 13: Semantics of let Statements

In the second case, when e is not an identifier, we simply ignore the let : the
semantics of the whole statement is identical with the semantics of σ. When e
is a channel expression, this is natural, as channels are invisible at the level of
the Dolev-Yao semantics, and in fact i will not appear in the semantics of σ.
When e is a remote expression, it evaluates (at run time) to some principal that
the communication layer believes to be at the far end of the channel. However,
the resulting strands are viewed as parametric roles. Thus, the role will have
instances in which any principal is substituted for i. This is just the desired
interpretation, as any principal could be at the far end of a new channel.

4.4 Properties of this Semantics

This semantics is in one sense a finite representation of the behavior of cppl
programs. Suppose that proc_name is a procedure where the nesting depth
of parentheses introduced by <--, -->, and <-> statements is d. Suppose the
branching factor at each such statement is at most k. That is, each <-- or -->
statement has no more than k branches, and if there are any <-> statements
in the procedure, then k ≥ 2. Suppose that the statement forming the body of
proc_name is σ.

Proposition 4 The cardinality |S~v(σ)| ≤ kd. If s ∈ S~v(σ), then length(s) ≤
(4 · d) + 1.

The maximum value (4 ·d)+1 is attained when s has a sequence of subprotocol
calls, and each involves a call and an abort on its main branch followed by a call
and a return to commit to its alternative branch; at the very end is one return.

If a cppl program contains j procedures each satisfying these bounds, then
the resulting protocol Π contains at most j · kd roles. Typically, k will be quite
small, d will be relatively small, and in fact |S~v(σ)| will be much less than kd

because many statements embedded within σ will have fewer than k branches.
For instance, the server procedure in the version of AC NSL (Table 5) satisfies
k = 2 and d = 4. However, the semantics generates only two roles, one for each
choice in the innermost transmission statement.

In a different sense, the behaviors generated by a protocol may be infinite,
because there are infinitely many sc-bundles B such where the regular strands
are instances of the roles of this protocol. To reason about this infinite collection
of bundles, we need some general theorems, which we present next.
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5 Reasoning about Secure Communication

To reason about authenticated or confidential communication, we use analogues
to the unsolicited and outgoing test principles (Propositions 15, 14). The prin-
ciple for authenticated communication is simple:

Proposition 5 If B is an sc-bundle and n is a regular node n ∈ B with sign
−a, then there exists a regular node m ∈ B such that m → n, hence term(m) =
term(n).

For confidential communication, we use a simpler analogue to the outgoing test:

Proposition 6 Suppose that a originates uniquely within B (an sc-bundle) at
node n0 with direction +c, and a @ term(n1). Suppose there is no positive node
n′ such that a @ term(n′) and n0 ⇒∗ n′ ≺ n1. Then in B there exists a regular
edge m0 ⇒+ m1 such that n0 → m0 ⇒+ m1 �B n1.

When n0 and n1 lie on the same strand, then the ordering relation n0 ≺ m0 ≺
m1 � n1 establishes the recency of m0,m1. Time may be measured in a purely
local way along n0 ⇒+ n1, allowing the communication layer of the implemen-
tation to abort execution by raising a timeout before the n1 could occur. Thus,
m0 cannot have occurred longer ago than the locally chosen timeout value.

When Proposition 6 is used for reasoning about subprotocol call, n0 ⇒ n1,
and a node n′ cannot exist.

5.1 Tail Recursive Subprotocol Call

The tail call optimization can be validly performed with a small change to this
semantics. When making an optimized tail call, the subprotocol passes the same
activation identifier ai that it was given. This expresses the idea that the new
call overwrites and reuses the top stack frame. The only alteration to Table 12
is that in this case ai ′ = ai0, and the original caller should not insist that the
return or abort contains the same procedure name name; instead, a different
value name′ is accepted.

The principle needed to reason about subprotocol calls with the tail call
optimization is designed to be usable several times in succession. It is therefore
somewhat more complex than Proposition 6.

To state the principle, we need an auxiliary definition. Given an sc-bundle
B with ordering �B, we say that a set N of nodes is a, n1-full if (1) a originates
uniquely in B on some node n0 ∈ N ; (2) whenever a @ term(n) and there exists
an n′ ∈ N such that either (2a) n �B n′ or else (2b) n′ ⇒+ n ≺B n1, then it
follows that also n ∈ N .

Proposition 7 Let B be a bundle with n1 ∈ B and a @ term(n1). Let N be
a, n1-full and suppose that every positive node in N is +c, and term(n1) 6=
term(n) for every n ∈ N .

There exist regular nodes m0,m1 ∈ B such that m0,m1 6∈ N and n →
m0 ⇒+ m1 � n1 for some n ∈ N .
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Proof. Let a originate uniquely at n0 by (1), and S =

{m ∈ B : m 6∈ N and a @ term(m) and m �B n1}.

S is non-empty as n1 ∈ S, so S has minimal elements (Proposition 13). Let m0

be a minimal element of S. By (2b), m0 does not follow any member of N on
the same strand. By (2a), m0 does not precede any member of N on the same
strand. Since by [25, Lemma 2.9] there is a sequence of arrows leading from n0

to m0, and as we have just seen, the last arrow is not ⇒, it must end with an
arrow n → m0. Since n ∈ N is positive, n is +c and m0 is regular. Moreover,
m0 is negative and term(n) = term(m0). Thus, term(m0) 6= term(n1) and
m0 6= n1, hence there is a non-empty chain of arrows leading from m0 to n1.
As m0 is negative, the first arrow of this chain must be m0 ⇒ m1.

In using Proposition 7 to reason about tail call, n0 represents the original
call site where the activation identifier a originates, and n1 represents the ul-
timate return, so that n0 ⇒ n1. The set N represents a set of calls to new
strands; condition (2a) says that N is connected in the sense that it contains
all intermediate strands lying between n0 and later calls in N with activation
identifier a. In the case of tail call, condition (2b) tells us that when N contains
any node of a strand s′, then we should add to N all the nodes up to the final
tail call (which re-uses the activation identifier a). The assumption that n ∈ N
implies term(n) 6= term(n1) says that no regular strand already in N executes
a return that could match n1. Then the proposition tells us to infer that there
is another regular strand containing m0 ⇒+ m1 which is another tail call using
a.

We developed the theory of sc-bundles in this paper to provide a seman-
tics for subprotocol call. However, it has independent interest, allowing us to
replicate within strand spaces the theory of “security transactions using secure
transport protocols” of Broadfoot and Lowe [11]. In establishing that protocols
are correct, assuming that certain messages pass over a medium ensuring con-
fidentiality or authenticity, one would use Propositions 5 and 15, as well as an
additional result combining the content of Propositions 7 and 14.

5.2 Protocol Soundness

Two definitions from [20] help clarify the relationship between the notion of
bundle and the trust management annotations that allow a principal to control
its protocol executions. Permissibility formalizes the idea that a guarantee
formula must be proved by a principal, using its local theory and earlier rely
formulas as premises.

Definition 8 A regular strand s of ΣΠ is permissible for Π and Th up to
k if, for each i ≤ k such that s ↓ i = n is positive, γn is derivable from
{ρm : m = s ↓ j is negative and j < i} in Th.

Suppose each principal P holds theory ThP . An sc-bundle B is permissible
if every regular strand s is permissible for ThP up to its B-height k.
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Permissible bundles are the only ones that can really happen, assuming that
all of the regular principals play by the rules and do not execute n without
proving γn from earlier ρms. The adversary does not have to prove anything,
and adversary nodes have no annotations.

Central to our approach is the notion of protocol soundness. A protocol is
sound if, in every execution, when one principal engages in a negative node n,
then ρn is a consequence of the assertions other principals made on earlier nodes
m. Naturally, soundness can assume that the execution respects some unique
origination and non-origination assumptions, satisfied in a set B. The principal
executing node m is called prin(m).

Definition 9 Soundness. Bundle B supports a negative node n ∈ B rela-
tive to theory Th iff ρn is a consequence of the set of formulas {prin(m) says
γm : m ≺B n} in Th. If Π is an annotated protocol, and B is a set of sc-bundles,
then Π is sound for B in Th if, whenever B ∈ B, for every negative n ∈ B, B
supports n.

Soundness results are essentially a form of authentication theorem. They say
that every bundle containing a node n contains certain earlier, “supporting”
nodes. For instance, the proof that a bundle of AC NSL supports the server’s
third node n3 is very similar to standard proofs of the responder’s guarantee
in NSL (see for instance [19]). It uses the same unique origination and non-
origination assumptions. It would be false were this protocol based on the
original Needham-Schroeder protocol, which is an unsound basis for the trust
management goals of AC NSL.

A sound protocol is a coordination mechanism. Principals reason purely
locally, using their own theories. The rely formulas they use as premises are
however coordinated with guarantees derived by other principals, when the pro-
tocol is sound.

6 Compilation

The compiler for cppl2 is organized around a runtime environment, which
records the values bound to atoms. These values are bitstrings and other
implementation-level objects such as communications channels. Each execution
step modifies this runtime environment. For instance, a let statement augments
the environment with a new binding. A receive statement causes the received
message to be parsed; the right bitstrings must be recognized for atoms that
are already bound, and other values that were encountered will be installed,
bound to atoms that were not previously bound. A send statement can also
cause atoms to be bound, because the trust management system, operating in a
logic-programming style, delivers new bindings that make the guarantee formula
true.

2As of this writing (September 23, 2004), the compiler is under development but not yet
complete.
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let rec iter_send rte = function
[] -> abort ()

| (gamma, chan, fmt, resume) :: rest ->
match TME.infer rte rhos gamma with
None -> iter_send rte rest

| Some rte’ ->
Comms.send (rte chan) (fmt rte);
(resume rte’)

let rec iter_recv msg rte = function
[] -> abort ()

| (parser, resume) :: rest ->
match (parser msg) with
None -> iter_recv msg rte rest

| Some rte’ -> resume rte’

Table 14: Send and Receive Dispatching

Each statement is compiled to a procedure of one argument, namely the
runtime environment. Each such procedure may do communication or trust
management reasoning before selecting which statement to continue with. It
executes a tail call to the procedure compiled from that statement, with a
possibly extended runtime environment.

Compiler state The compiler maintains two main data structures as it makes
a recursive descent through the abstract syntax tree of a statement. One is
a compile-time environment, which maps atoms to indices into the runtime
environment. The runtime environment is implemented simply as a vector.

The other data structure is a list of the rely formulas that have been tra-
versed on the descent, starting with the rely formula given in the procedure
interface. On traversing each receive statement branch, the compiler augments
this list with the newly encountered rely formula. On traversing each branch of
a transmit statement, the compiler generates a call to the trust management en-
gine that packages these rely formulas as extra premises, available in proving an
instance of the current guarantee formula. In this call, the runtime environment
will also be passed as a parameter, so that the trust management engine—if
successful—can return the extended runtime environment.

Control The main runtime control is shown in Table 14 expressed in OCaml.
The compiler considers the branches of send and receive statements in sequence,
so its code is more deterministic than the semantics of Table 11. This refine-
ment is unproblematic, as the security properties we wish to establish (e.g.
authentication and protocol soundness) are safety properties.

A send branch consists of: a formula gamma; an index into the runtime

25



environment pointing to the channel to send the message on; a procedure fmt to
format the message using values from the runtime environment; and resume, the
procedure representing the statement embedded within this branch. TME.infer
invokes the trust management engine to prove an instance of gamma from the
available rely formulas in the current run-time environment. To fail, it returns
None. To succeed it returns a Some rte’, where rte’ extends rte.

When a message msg is received from the communications layer, it is provided
to the successive receive branches, each of which contains a parsing procedure
and a resumption to apply to the extended environment if the parser succeeds.
The parsing procedure, like the format procedure used in send branches, must
be generated by the compiler.

Format Functions The compiler constructs the format function fmt for each
transmission branch by a recursive descent through its message pattern, deter-
mining a sequence of calls to the cryptographic library.

Message Parsers Constructing the message parser for a receive branch is
more challenging. Some keys may be delivered in the message, and then used
to decrypt other parts of it, which may in turn furnish other keys. The order in
which to process the parts may not be obvious. The pattern of a message, in the
sense of Abadi-Rogaway [5], records what portions of the message are accessible.
If the pattern of a message (starting with the current compile-time environment)
is identical with the message, then the message can be fully decoded. Otherwise,
we raise a compile-time error. Calculating the pattern of a message also indicates
the order dependencies for destructuring parts of the message. The optimal
parser respects these dependencies, so as to decode submessages containing
keys, before encrypted submessages that use those keys.

7 Conclusion

We have described cppl, a programming language with just the expressiveness
needed to express cryptographic protocols at the Dolev-Yao level. cppl’s seman-
tics supplies a finite set of parametric strands defining the possible behaviors of
any program. The strand space theory can be used to prove security properties
of programs, using existing techniques and theorems newly introduced here for
reasoning about subprotocol call. A compilation strategy is suggested by the
semantics, organized around a runtime environment. The compiler issues calls
on a cryptographic library to parse messages at run time. It issues calls on a
trust management engine to choose future behavior.

In future work we will incorporate primitives such as Diffie-Hellman; this
should be possible in a cryptographically sound way [21]. Mechanized analysis of
the strands generated from cppl programs is under development. Also desirable
would be to incorporate existing certificate parsers into the run-time message
parsers, so certificates in standard formats, contained in the messages, can be
recognized and their content made available to the trust management engine.
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A Additional Strand Notions

Definition 10 Fix a strand space Σ:

1. The subterm relation @ is the smallest reflexive, transitive relation such
that t @ {|g|}K if t @ g, and t @ g ˆ h if either a @ g or a @ h.

(Hence, for K ∈ K, we have K @ {|g|}K only if K @ g already.)

2. A node is a pair 〈s, i〉, with s ∈ Σ and i an integer satisfying 1 ≤ i ≤
length(tr(s)). We often write s ↓ i for 〈s, i〉. The set of nodes is N . The
directed term of s ↓ i is tr(s)(i).

3. There is an edge n1 → n2 iff term(n1) = +t or +c t and term(n2) = −t
or −a t for t ∈ A. n1 ⇒ n2 means n1 = s ↓ i and n2 = s ↓ i + 1 ∈ N .

n1 ⇒∗ n2 (respectively, n1 ⇒+ n2) means that n1 = s ↓ i and n2 = s ↓
j ∈ N for some s and j ≥ i (respectively, j > i).

28



4. Suppose I is a set of terms. The node n ∈ N is an entry point for I iff
term(n) = +t for some t ∈ I, and whenever n′ ⇒+ n, term(n′) 6∈ I. t
originates on n ∈ N iff n is an entry point for I = {t′ : t @ t′}.

5. An term t is uniquely originating in S ⊂ N iff there is a unique n ∈ S
such that t originates on n, and non-originating if there is no such n ∈ S.

If a term t originates uniquely in a suitable set of nodes, then it plays the role
of a nonce or session key. If it is non-originating, it can serve as a long-term
shared symmetric key or a private asymmetric key.

Definition 11 A penetrator strand is a strand s such that tr(s) is one of the
following:

Mt: 〈+t〉 where t ∈text
KK : 〈+K〉 where K ∈ KP
Cg,h: 〈−g, −h, +g ˆ h〉
Sg,h: 〈−g ˆ h, +g, +h〉
Eh,K : 〈−K, −h, +{|h|}K〉
Dh,K : 〈−K−1, −{|h|}K , +h〉
Vh,K : 〈−[[ h ]]K , +h〉
Ah,K : 〈−K−1, −h, +[[h ]]K〉
Hh: 〈−h, +hash(h)〉

A node is a penetrator node if it lies on a penetrator strand, and otherwise it
is a regular node.

Definition 12 A node n ∈ B = 〈NB,→B ∪ ⇒B〉 if n ∈ NB. The B-height of
a strand s is the largest i such that 〈s, i〉 ∈ B or 0 if there is none. ≺B is the
transitive closure of →B ∪ ⇒B, and �B is its reflexive, transitive closure.

Proposition 13 If B is a bundle, �B is a partial order. Every non-empty
subset of the nodes in B has �B-minimal members.

We reason about secrecy using the notion of safety [19]. We write safe for safe
keys, i.e. keys that the penetrator can never learn or use [19]. Since long term
shared keys and private asymmetric keys are never transmitted in reasonable
protocols, these keys are safe unless compromised before execution of the pro-
tocol. Session keys are safe if transmitted only on +c nodes or nodes protected
by keys K with K−1 ∈ safe.

If we consider the abstract syntax tree of a term t, and t0 @ t, then there is
a branch leading from the root (labeled t) to some subtree labeled t0. Moreover,
by Definition 10 Clause 1, this branch does not traverse any key edge leading
from a term {|h|}K to its key K.

When S is a set of terms, t0 occurs only within S in t if, regarding t as an
abstract syntax tree, every branch from the root to an occurrence of t0 that
avoids key edges traverses some occurrence of a t1 ∈ S before reaching t0. It
occurs outside S in t if t0 @ t but t0 does not occur only within S in t. A term
t0 occurs safely in t if it occurs only within S = {{|h|}K : K−1 ∈ safe} in t.
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The Authentication Tests given here are in a simpler and stronger form than
in [19].

Proposition 14 (Outgoing Authentication Test) Suppose B is a bundle
in which a originates uniquely at n0; a occurs only within S in term(n0) and a
occurs safely in S; and n1 ∈ B is negative and a occurs outside S in term(n1).

There are regular m0,m1 ∈ B such that m0 ⇒+ m1, where m1 is posi-
tive, a occurs only within S in term(m0), and a occurs outside S in term(m1).
Moreover, n0 � m0 ≺ m1 ≺ n1.

Proposition 15 (Unsolicited, Incoming Tests) Suppose n1 ∈ B is nega-
tive, {|h|}K @ term(n1), and K ∈ safe. (Unsolicited test:) There exists a regu-
lar m1 ≺ n1 such that {|h|}K originates at m1. (Incoming test:) If in addition
a @ h originates uniquely on n0 6= m1, then n0 ≺ m0 ⇒+ m1 ≺ n1.

B Full Syntax of Protocol Language

procedure := id (params) RELY formula :

(params) GUARANTEE formula

= statement end

statement := RETURN

| LET id = expression IN statement

| <-- send_branches

| --> id recv_branches

| <-> call_site

send_branches := empty

| (GUARANTEE formula; SEND id msg;

statement) send_branches

recv_branches := empty

| (RECEIVE msg; RELY formula;

statement) recv_branches

call_site := invocation ELSE invocation

invocation := (GUARANTEE formula;

id(params): params;

RELY formula;

statement)

msg := id | msg, msg

| {| msg |}_id | [[ msg ]]_id

| HASH(msg)

expression := id

| new_expr

30



| REMOTE(id) | channel_expr

new_expr := NEW KEY | NEW NONCE

channel_expr := CHANNEL(id) | ACCEPT()

params := empty | id more_ps

more_ps := empty | , id more_ps

id := token | token : type

type := PRINCIPAL | TEXT

| KEY | NONCE

| TAG

empty := /* empty */
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