
IMPS: An Interactive Mathematical Proof
System∗

William M. Farmer, Joshua D. Guttman, F. Javier Thayer

The MITRE Corporation

9 February 1993

Abstract

imps is an Interactive Mathematical Proof System intended as a
general purpose tool for formulating and applying mathematics in a
familiar fashion. The logic of imps is based on a version of simple type
theory with partial functions and subtypes. Mathematical specifica-
tion and inference are performed relative to axiomatic theories, which
can be related to one another via inclusion and theory interpretation.
imps provides relatively large primitive inference steps to facilitate
human control of the deductive process and human comprehension
of the resulting proofs. An initial theory library containing almost a
thousand repeatable proofs covers significant portions of logic, algebra
and analysis, and provides some support for modeling applications in
computer science.

Key Words: interactive theorem proving, automated analysis, com-
puting with theorems, theory interpretation, higher-order logic, par-
tial functions

∗Supported by the MITRE-Sponsored Research program. Published in Journal of
Automated Reasoning, 11:213-248, 1993. c© 1993 Kluwer Academic Publishers.

1

1 Introduction

The primary goal of imps, an Interactive Mathematical Proof System, is to
provide mechanized support for the traditional techniques of mathematical
reasoning. The system consists of a data base of mathematics (represented as
a collection of interconnected axiomatic theories) and a collection of tools for
exploring, applying, and extending the mathematics in the data base. imps

is distinguished by its logic, its methodology for formalizing mathematics,
and its style of proof.

• Logic. The imps logic is intended to allow the user to formulate math-
ematical concepts and arguments in a natural and direct manner. It is
a simple type theory with strong support for specifying and reasoning
about functions. Unlike classical logic, functions may be partial and
terms may be nondenoting, but formulas always have a standard truth
value. Section 2 describes the imps logic.

• Methodology. Mathematics is formalized in imps as a network of ax-
iomatic theories. The theories in the network are linked together by
theory interpretations which serve as conduits to pass results from one
theory to another. This way of formalizing mathematics—the “little
theories” version of axiomatic method—has advantages for mechanized
mathematics [19]. In particular, it fosters the reuse of theories and their
constituents. Section 3 discusses the little theories approach in imps.

• Proofs. In contrast to the formal proofs described in logic textbooks,
imps proofs are a blend of computation and high-level inference. Conse-
quently, they resemble intelligible informal proofs, but unlike informal
proofs, all the details of an imps proof are machine checked. imps em-
phasizes interactive proof development. There is essentially no struc-
tural difference between completed proofs and partial proof attempts.
The development of proofs in imps is the subject of Section 4.

The remaining sections of the paper discuss the imps user interface (Sec-
tion 5), the use of imps for mathematical analysis (Section 6), and the imps

mathematics data base (Section 7). A brief conclusion is given in Section 8.

2

2 Logic

The logic1 of imps is called lutins
2, a Logic of Undefined Terms for Infer-

ence in a Natural Style. lutins is a conceptually simple implementation
of higher-order predicate logic that closely conforms to mathematical prac-
tice. Partial functions are dealt with directly, and consequently, terms may
be nondenoting. The logic, however, is bivalent; formulas are either true or
false.

lutins is derived from the formal system PF∗ [17], which in turn is de-
rived from the formal system PF [16]. PF is a version of Church’s simple
theory of types [7, 1] in which functions may be partial, and PF∗ is a many-
sorted, multivariate simple type theory with partial functions, subtypes, and
definite description operators. It is shown in [16] and [17] that PF and
PF∗, respectively, are complete with respect to a Henkin-style general mod-
els semantics [29]. lutins is essentially PF∗ plus a number of convenient
expression constructors, which are discussed below. The formal semantics of
lutins is straightforwardly derived from the (standard models) semantics of
PF∗ in [17]. (See [28] for a detailed description of the syntax and semantics
of lutins.)

2.1 Higher-Order Functions and Types

Higher-order logic (or type theory) was developed in the early part of this
century to serve as a foundation for mathematics, but lost its popularity as a
foundation for mathematics in the 1930’s with the rise of set theory and first-
order logic. Higher-order logic emphasizes the role of functions, in contrast
to set theory, which emphasizes the role of sets. In type theory, functions

1By a logic, we mean in effect a function. Given a particular vocabulary, or set of
(nonlogical) constants, the logic yields a triple consisting of a formal language L, a class
of models A for the language, and a satisfaction relation |= between models and formu-
las. The function is normally determined by the syntax and semantics of a set of logical
constants for the logic.

The satisfaction relation determines a consequence relation between sets of formulas and
individual formulas. A formula P is a consequence of a set of formulas S if A |= P holds
whenever A |= Q holds for every Q ∈ S.

When we speak of a theory , we mean in essence a language together with a set of axioms.
A formula is a theorem of the theory if it is a consequence of the axioms.

2Pronounced as the word in French.

3

may be quantified and may take other functions as arguments. In order to
avoid circularity, functions are organized according to a type hierarchy.

Type theory has a uniform syntax; it is based on familiar notions; and it
is highly expressive. The use of λ-notation allows functions to be specified
succinctly. Since type theory contains second-order logic, there are many
things that can be expressed in it which cannot be directly expressed in first-
order logic. For example, the induction principle for the natural numbers can
be expressed completely and naturally by a single second-order formula. (See
[4, 45] for discussion on the expressive power of second-order logic relative to
first-order logic.)

The type hierarchy of lutins consists of base types and function types.
Let L be a language in lutins. The base types of L are the type of propo-
sitions prop and m ≥ 1 types of individuals.3 The function types of L are
inductively defined from its base types: if α1, . . . , αn, αn+1 are (base or func-
tion) types where n ≥ 1, then α1, . . . , αn → αn+1 is a function type. Since
m and n may be strictly greater than 1, the type structure is “many-sorted”
and “multivariate,” respectively.

A higher-order logic with this sort of type hierarchy is called a simple
type theory . The automatic theorem proving system tps developed at cmu

[2], the proof development system hol developed at the University of Cam-
bridge [26], and the ehdm and pvs verification systems developed at SRI
International [42, 39] are also based on simple type theories. However, in
these systems function types contain only total functions, while in lutins,
some types may contain partial functions. These are the types of kind ind .
We say that a type α is of kind ind (or ι) if α is a base type of individuals
or α = α1, . . . , αn → αn+1 and αn+1 is of kind ind. Otherwise, we say that α
is of kind prop (or ∗).

When a function type α is known to be of kind ind, we prefer to write it in
the form α1, . . . , αn ⇀ αn+1 instead of α1, . . . , αn → αn+1. This emphasizes
that α contains partial functions as well as total functions.

Every formal expression in lutins has a unique type. The type of an
expression serves both a semantic and syntactic role: An expression denotes
an object in the denotation of its type (if the expression is defined), and the
syntactic well-formedness of an expression is determined on the basis of the

3We will refer to these types by the names ind, ind1, etc., although of course they may
be given any convenient names.

4

types of its components. An expression is said to be of kind ind [respectively,
prop] if its type is of kind ind [respectively, prop]. Expressions of kind ind are
used to refer to mathematical objects; they may be undefined. Expressions
of kind prop are primarily used in making assertions about mathematical
objects; they are always defined.

2.2 Partial Functions

One of the primary distinguishing characteristics of lutins is its direct ap-
proach to specifying and reasoning about partial functions (i.e., functions
which are not necessarily defined on all arguments). Partial functions are
ubiquitous in both mathematics and computer science. If a term is con-
structed from simpler expressions by the application of an expression de-
noting a partial function f to an expression denoting an argument a which
is outside the domain of f , then the term itself has no natural denotation.
Such a term would violate the existence assumption of classical logic, which
says that terms always have a denotation. Thus a direct handling of partial
functions can only lie outside of classical logic.4

The semantics of lutins is based on five principles:

(1) Variables, constants, and λ-expressions always have a denotation.

(2) Expressions of type prop always denote a standard truth value.

(3) Expressions of kind ind may denote partial functions.

(4) An application of kind ind is undefined if its function or any of its
arguments is undefined.

(5) An application of type prop is false if any of its arguments is undefined.

As a consequence of these principles, expressions of kind prop must be
denoting. We have chosen this approach for dealing with partial functions
because it causes minimal disruption to the patterns in reasoning familiar

4However, since the graph of a function (partial or total) can always be represented
as a relation, the problem of nondenoting terms can in theory be easily avoided—at the
cost of using unwieldy, verbose expressions packed with existential quantifiers. Hence, if
pragmatic concerns are not important , classical logic is perfectly adequate for dealing with
partial functions.

5

from classical logic and standard mathematical practice. (For a detailed
discussion of various ways of handling partial functions in predicate logic,
see [16].)

2.3 Constructors

The expressions of a language of lutins are constructed from variables and
constants by applying constructors . Constructors serve as “logical constants”
that are available in every language. lutins has approximately 20 con-
structors. (PF and PF∗ have only two constructors, application and λ-
abstraction.) Logically, the most basic constructors are apply-operator,
lambda, iota, and equals; in principle every expression of lutins could be
built from these four.5 The other constructors serve to provide economy of
expression.

There is a full set of constructors for predicate logic: constants for true
and false, propositional connectives, equality6, and universal and existential
quantifiers. lutins also has an definite description operator ι, an if-then-
else operator if, and definedness constructors is-defined (denoted by the
postfix symbol ↓) and defined-in (↓ in between an expression and a sort).
Although a few constructors (such as implies (infix ⊃) and not (¬)) cor-
respond to genuine functions, most constructors do not. For example, the
constructor if is nonstrict in its second and third arguments (e.g., the ex-
pression if(0 = 0, 0, 1/0) is defined in a theory of arithmetic even though 1/0
is undefined). Four constructors bind variables: forall (∀), forsome (∃), ι,
and λ, the basic variable-binding constructor.

The ι constructor, the definite description operator of lutins, is a con-
structor that cannot be easily imitated in other logics. Using this constructor,
one can create a term of the form ιx.P (x), where P is a predicate, which de-
notes the unique element described by P . More precisely, ιx.P (x) denotes
the unique x that satisfies P if there is such an x and is undefined otherwise.
In addition to being quite natural, this kind of definite description operator is

5Throughout this paper, constructors will be denoted using traditional symbology. For
example, lambda and iota are denoted, respectively, by the variable-binding symbols λ
and ι; equals is denoted by the usual infix symbol =; and apply-operator is denoted
implicitly by the standard notation of function application.

6The meaning of the formula s = t is that s and t denote the same value, and so
0/0 = 0/0 is a false assertion.

6

very useful for specifying (partial) functions. For example, ordinary division
(which is undefined whenever its second argument is 0) can be defined from
the times function ∗ by a λ-expression of the form

λx, y . ιz . x = y ∗ z.

In logics in which terms always have a denotation, there is no completely
satisfactory way to formalize a definite description operator (see B. Russell’s
attempt [43]). This is because a definite description term ιx.P (x) must
always have a denotation, even when there is no unique element satisfying
P .

The imps implementation allows one to create macro/abbreviations called
quasi-constructors which are defined in terms of the ordinary constructors.
For example, the quasi-constructor quasi-equals (infix ') is defined by the
following biconditional:

e1 ' e2 ≡ (e1↓ ∨e2↓) ⊃ e1 = e2.

A quasi-constructor is used in two different modes: as a device for con-
structing expressions with a common form and as if it were an ordinary
constructor. The first mode is needed for proving basic theorems about
quasi-constructors, while the second mode effectively gives the user a logic
with a richer set of constructors. Quasi-constructors can be especially use-
ful for formulating generic theories (e.g., a theory of finite sequences) and
special-purpose logics within imps.

Constructors and quasi-constructors are polymorphic in the sense that
they can be applied to expressions of several different types. For instance,
the constructor if can take any three expressions as arguments as long as
the type of the first expression is prop and the second and third expressions
are of the same type.

2.4 Sorts

Superimposed on the type hierarchy of lutins is a system of subtypes. We
call types and subtypes jointly sorts . The sort hierarchy consists of atomic
sorts and compound sorts. Let L be a language in lutins. L contains a set
of atomic sorts which includes the base types of L. The compound sorts of
L are inductively defined from the atomic sorts of L in the same way that

7

function types of L are defined from the base types of L. Every atomic sort
α is assigned an enclosing sort ξ(α). � is the least reflexive, transitive binary
relation on the sorts of L such that:

• If α is an atomic sort, then α � ξ(α).

• If α1 � β1, . . . , αn+1 � βn+1, then α1, . . . , αn → αn+1 � β1, . . . , βn →
βn+1.

It follows from the definition of a lutins language that the enclosing sort
function ξ satisfies three properties:

• The enclosing sort of a base type is itself.

• The enclosing sort of an atomic sort is of kind prop iff the atomic sort
is itself prop.

• � is noetherian, i.e., every ascending sequence of sorts,

α1 � α2 � α3 � · · · ,

is eventually stationary.

These properties imply that:

• � is a partial order.

• For all sorts α, there is a unique type β, called the type of α, such that
α � β.

• If two sorts have the same type, there is a least upper bound for them
in �.

A sort denotes a nonempty subset of the denotation of its type. Hence
sorts may overlap, which is very convenient for formalizing mathematics.
(The overlapping of sorts has been dubbed inclusion polymorphism [6].)

Since a partial function from a set A to a set B is also a partial function
from any superset of A to any superset of B, compound sorts of kind ind
have a very elegant semantics: The denotation of α = α1, . . . , αn ⇀ αn+1 of
type β of kind ind is the set of partial (and total) functions f of type β such

8

that f(a1, . . . , an) is undefined whenever at least one of its arguments ai lies
outside the denotation of αi.

Sorts serve two main purposes. First, they help to specify the value of
an expression. Every expression is assigned a sort (called the syntactic sort
of the expression) on the basis of its syntax. If an expression is defined , it
denotes an object in the denotation of its syntactic sort. Second, sorts are
used to restrict the application of binding constructors. For example, if α is
a sort of type β, then a formula of the form

∀x : α . P (x)

(which says, for all x of sort α, P (x) holds) is equivalent to the formula

∀y : β . (y ↓ α) ⊃ P (y).

Sorts are not directly used for determining the well-formedness of expressions.
Thus, if f and a are expressions of sorts α→ β and α′, respectively, then the
application f(a) is well-formed provided only that α and α′ have the same
type.

As a simple illustration of the effectiveness of this subtyping mechanism,
consider the language of our basis theory of real numbers, Complete Ordered
Field, in which we stipulate N is enclosed by Z, which is enclosed by Q, which
is enclosed by R, which is enclosed by the base type ind. So N ⇀ R denotes
the set of all partial functions from the natural numbers to the real numbers.
This set of functions is a subset of the denotation of ind ⇀ ind. A function
constant specified to be of sort R ⇀ R would automatically be applicable to
expressions of sort N. Similarly, if f is a function constant declared to be of
sort N ⇀ N and a is an expression of sort R, then f(a) is automatically well-
formed , but f(a) is well-defined only when a denotes a natural number. A
subtyping mechanism of this kind would be quite awkward in a logic having
only total functions.

Since lutins has a partially ordered set of sorts, it is an “ordered-sorted”
logic. Ordered-sorted type theory [32] (and most weaker order-sorted logics)
can be directly embedded in lutins.

2.5 Summary

lutins is a many-sorted, multivariate higher-order predicate logic with par-
tial functions and subtypes. It has strong support for specifying and rea-

9

soning about functions: λ-notation, partial functions, a true definite descrip-
tion operator, and full quantification over functions. Its type hierarchy and
sort mechanism are convenient and natural for developing many different
kinds of mathematics. Although lutins contains no polymorphism in the
sense of variables over types, polymorphism is achieved through the use of
constructors and quasi-constructors, sorts, and theory interpretations (see
Section 3.3).

Perhaps most importantly, the intuition behind lutins closely corre-
sponds to the intuition used in everyday mathematics. The logical principles
employed by lutins are derived from classical predicate logic and standard
mathematical practice. This puts it in contrast to some other higher-order
logics, such as Martin-Löf’s constructive type theory [34], the Coquand-Huet
Calculus of Constructions [10], and the logic of the Nuprl proof development
system [9]. These logics—which are constructive as well as higher order—
employ rich type constructors and incorporate the “propositions as types”
isomorphism (see [31]). Motivated in part by a desire to model computational
reasoning, they are a significant departure from traditional, classical math-
ematical practice. Moreover, they allow dependent types or quantification
over type variables, which create more complicated type systems. However,
the Martin-Löf-style systems provide simpler, specifically predicative [21],
methods for defining mathematical objects, so that their domains are in this
respect less complicated than those for classical simple type theories. The
restriction to predicative definitions may or may not be an advantage; from
the point of view of developing classical analysis, for instance, it is certainly
an impediment [44, 50, 49, 21].

3 Little Theories Approach

imps supports the “little theories” version of the axiomatic method [19] as
well as the “big theory” version in which all reasoning is performed within
a single powerful and highly expressive axiomatic theory, such as Zermelo-
Fraenkel set theory. In the little theories version, a number of theories are
used in the course of developing a portion of mathematics. Different theorems
are proved in different theories, depending on the amount and kind of mathe-
matics that is required. Theories are logically linked together by translations
called theory interpretations which serve as conduits to pass results from one

10

theory to another. We argue in [19] that this way of organizing mathematics
across a network of linked theories is advantageous for managing complex
mathematics by means of abstraction and reuse.

3.1 Theories

Mathematically, a theory in imps consists of a language and a set of axioms.
At the implementation level, however, theories contain additional structure
which encodes this axiomatic information in procedural or tabular form. It
facilitates various kinds of low-level reasoning within theories that are encap-
sulated in the imps expression simplifier (see Section 4.4.1).

A theory is constructed from a (possibly empty) set of subtheories, a
language, and a set of axioms. Theories are related to each other in two
ways: one theory can be the subtheory of another, and one theory can be
interpreted in another by a theory interpretation. A theory may be enriched
via the definition of new atomic sorts and constants and via the installation
of theorems. Several examples of theories are discussed in Section 7.

3.2 Definitions

imps supports four kinds of definitions: atomic sort definitions, constant
definitions, recursive function definitions, and recursive predicate definitions.
In the following let T be an arbitrary theory.

Atomic sort definitions are used to define new atomic sorts from nonempty
unary predicates. An atomic sort definition for T is a pair δ = (n, U) where
n is a symbol intended to be the name of a new atomic sort of T and U is a
nonempty unary predicate in T intended to specify the extension of the new
sort. δ can be installed in T only if the formula ∃x.U(x) is known to be a
theorem of T . As an example, the pair

(N, λx : Z . 0 ≤ x)

defines N to be an atomic sort which denotes the natural numbers. Since
the sort of an expression gives immediate information about the value of the
expression, it is often very advantageous to define new atomic sorts rather
than work directly with unary predicates.

Constant definitions are used to define new constants from defined expres-
sions. A constant definition for T is a pair δ = (n, e) where n is a symbol

11

intended to be the name of a new constant of T and e is a expression in T
intended to specify the value of the new constant. δ can be installed in T
only if the formula e↓ is verified to be a theorem of T . As an example, the
pair

(floor, λx : R . ιz : Z . z ≤ x ∧ x < 1 + z)

defines the floor function on reals using the ι constructor.
Recursive function definitions are used to define one or more functions by

(mutual) recursion. They are essentially an implementation of the approach
to recursive definitions presented by Y. Moschovakis in [38]. A recursive defi-
nition for T is a pair δ = ([n1, . . . , nk], [F1, . . . , Fk]) where k ≥ 1, [n1, . . . , nk]
is a list of distinct symbols intended to be the names of k new constants,
and [F1, . . . , Fk] is a list of functionals (i.e., functions which map functions
to functions) of kind ind in T intended to specify, as a system, the values of
the new constants. δ can be installed in T only if the functionals F1, . . . , Fk
are verified to be monotone in T with respect to the subfunction order v.7

The names [n1, . . . , nk] then denote the simultaneous least fixed point of the
functionals F1, . . . , Fk. As an example, the pair

(factorial, λf : Z ⇀ Z . λn : Z . if(n = 0, 1, n ∗ f(n− 1)))

is a recursive definition of the factorial function in our standard theory of
the real numbers.

This approach to recursive definitions is very natural in imps because
expressions of kind ind are allowed to denote partial functions. Notice that
there is no requirement that the functions defined by a recursive definition be
total. In a logic in which functions must be total, a list of functionals can be
a legitimate recursive definition only if it has a solution composed entirely of
total functions. This is a difficult condition for a machine to check, especially
when k > 1. Of course, in imps there is no need for a recursive definition to
satisfy this condition since a recursive definition is legitimate as long as the
defining functionals are monotone. imps has an automatic syntactic check
sufficient for monotonicity that succeeds for many common recursive function
definitions.

Recursive predicate definitions are used to define one or more predicates
by (mutual) recursion. They are implemented in essentially the same way as

7f v g iff f(a1, . . . , am) = g(a1, . . . , am) for all m-tuples 〈a1, . . . , am〉 in the domain of
f .

12

recursive function definitions using the order⊆8 on predicates. This approach
is based on the classic theory of positive inductive definitions (see [37]). For
an example, consider the pair

([even, odd], [F1, F2]),

where:

• F1 = λe, o : N→ prop . λn : N . if(n = 0, truth, o(n− 1)).

• F2 = λe, o : N→ prop . λn : N . if(n = 0, falsehood, e(n− 1)).

It defines the predicates even and odd on the natural numbers by mutual
recursion. As with recursive function definitions, there is an automatic syn-
tactic check sufficient for monotonicity that succeeds for many recursive pred-
icate definitions.

3.3 Theory Interpretations

One of the chief virtues of the axiomatic method is that the theorems of a
theory can be “transported” to any specialization of the theory. A theory
interpretation is a syntactic device for translating the language of a source
theory to the language of a target theory. By definition, it has the property
that the image of a theorem of the source theory is always a theorem of
the target theory. It then follows that any formula proved in the source
theory translates to a theorem of the target theory. We use this method in
a variety of ways (which are described below) to reuse mathematical results
from abstract mathematical theories.

Theory interpretations are constructed in imps by giving an interpretation
of the sorts and constants of the language of the source theory; this is the
standard approach which is usually seen in logic textbooks (e.g., see [14, 35,
46]). We give below a summary of theory interpretations in imps; a detailed
description of theory interpretations for PF∗ is given in [17].

Let T and T ′ be theories over languages L and L′, respectively. A trans-
lation from T to T ′ is a pair Φ = (µ, ν), where µ is a mapping from the sorts
of L to the sorts of L′ and ν is a mapping from the constants of L to the
expressions of L′, such that:

8p ⊆ q iff p(a1, . . . , am) ⊃ q(a1, . . . , am) for all m-tuples 〈a1, . . . , am〉 in the common
domain of p and q.

13

(1) µ(prop) = prop.

(2) For each sort α of L, α and µ(α) are of the same kind.

(3) If α is a sort of L with type β, then µ(α) and µ(β) have the same type.

(4) If c is a constant of L of sort α, then the type of ν(c) is the type of
µ(α).

Given an expression e of L, Φ(e) denotes the expression of L′, defined in the
obvious way from µ and ν, that is the translation of e via Φ.9

Let Φ be a translation from T to T ′. An obligation of Φ is a formula
Φ(ϕ) where ϕ is either:

(1) an axiom of T ;

(2) a formula asserting that a particular constant of L is defined in its sort;
or

(3) a formula asserting that a particular atomic sort of L is a subset of its
enclosing sort.

By a theorem called the interpretation theorem (see [17]), Φ is a theory in-
terpretation from T to T ′ if each of its obligations is a theorem of T ′.

The imps system provides support for using theory interpretations in
many different ways. The following are brief descriptions of some of the
most important ways theory interpretations are used in imps. See [19] for
further discussion on applications of theory interpretations in mechanical
theorem proving.

Theorem reuse Mathematicians want to be able to formulate a result in
the most general axiomatic framework that good taste and ease of compre-
hension allow. One major advantage of this approach is that a result proved
in an abstract theory holds in all contexts that have the same structure as
the abstract theory. In imps, theory interpretations are used foremost as a

9The translations available in imps are actually more general than what we describe
here: µ is allowed to map sorts to unary predicates. When this occurs, expressions begin-
ning with variable binders such as ∀ or λ must be “relativized.” For example, if µ maps
α to a unary predicate U on sort β, then Φ(∀x : α . ψ) = ∀x : β . U(x) ⊃ Φ(ψ).

14

for every a, b : K, n : Z implication
• conjunction
◦ 1 ≤ n
◦ ¬(a = oK)
◦ ¬(b = oK)

• (a+ b)n =
∑n
j=0

(
n
j

)
· bj · an−j.

Figure 1: The Binomial Theorem in Fields

mechanism for realizing this advantage: theorems proved in abstract theo-
ries can be transported via a theory interpretation to all appropriate concrete
structures. For instance, the binomial theorem may be proved in a theory of
fields (see Figure 1).10 Because the real numbers form a field, we can define
a theory interpretation from the theory of fields to a theory of the reals. As
a consequence, we can then “install” the usual binomial theorem for the real
numbers.

Automatic application of theorems Theorems can be automatically
applied in imps in two ways: (1) as rewrite rules (see Section 4.4.3) and
(2) as macetes (see Section 4.4.4). Theorems can be applied both inside and
outside of their home theories. A theorem is applied within a theory T which
is outside of its home theoryH by, in effect, transporting the theorem fromH
to T and then applying the new theorem directly within T . The mechanism
is based on a kind of polymorphic matching called translation matching [19];
the theory interpretation used to transport the theorem is either selected or
constructed automatically by imps. See Sections 4.4.4 and 4.4.5 for more
details.

Polymorphic operators As we noted in Section 2.3, constructors and
quasi-constructors are polymorphic in the sense that they can be applied to
expressions of several different types. This sort of polymorphism is not very
useful unless we have results about constructors and quasi-constructors that

10In this formulation, K is the underlying sort of field elements. Figure 1 is printed
exactly as formatted by the the TEX presentation facility of imps. Various switches are
available, for instance to cause connectives to be printed in-line with the usual logical sym-
bols instead of being written as words with subexpressions presented in itemized format.

15

could be used in proofs regardless of the actual types that are involved. For
constructors, most of these “generic” results are coded in the form of rules,
as described in Section 4.2. Since quasi-constructors, unlike constructors,
can be introduced by imps users, it is imperative that there is some way to
prove generic results about quasi-constructors. This can be done by proving
theorems about quasi-constructors in a theory of generic types, and then
transporting these results as needed to theories where the quasi-constructor
is used. For example, consider the quasi-constructor composition (infix ◦)
defined as follows, for expressions f and g of type β → γ and α → β,
respectively:

f ◦ g ≡ λx : α . f(g(x)).

The basic properties about ◦, such as associativity, can be proved in a generic
theory having four base types but no constants, axioms, or other atomic
sorts. See Section 7.2 for further discussion on using quasi-constructors as
polymorphic operators.

Symmetry and duality proofs Theory interpretations can be used to
formalize certain kinds of arguments involving symmetry and duality. For
example, suppose we have proved a theorem in some theory and have noticed
that some other conjecture follows from this theorem “by symmetry.” This
notion of symmetry can frequently be made precise by creating a theory
interpretation from the theory to itself which translates the theorem to the
conjecture. As an illustration, let T be a theory of groups where ∗ is a
binary constant denoting group multiplication. Then the translation from
T to T which takes ∗ to λx, y . y ∗ x and holds everything else fixed maps
the left cancellation law x ∗ y = x ∗ z ⊃ y = z to the right cancellation law
y ∗x = z ∗x ⊃ y = z. Since this translation is in fact a theory interpretation,
we need only prove the left cancellation law to show that both cancellation
laws are theorems of T .

Parametric theories As argued by R. Burstall and J. Goguen (e.g., in
[23, 24]), a flexible notion of parametric theory can be obtained with the
use of ordinary theories and theory interpretations. The key idea is that the
primitives of a subtheory of a theory are a collection of parameters which can
be instantiated as a group via a theory interpretation. For example, consider
a generic theory T of graphs which contains a subtheory T ′ of abstract

16

nodes and edges, and another theory U containing graphs with a concrete
representation. The general results about graphs in T can be transported
to U by creating a theory interpretation Φ from T ′ to U and then lifting
Φ, in a completely mechanical way, to a theory interpretation of T to an
extension of U . This use of theory interpretations has been implemented in
obj3 as well as imps (but in obj3, which has no facility for theorem proving,
translation obligations must be checked by hand). For a detailed description
of this technique, see [15, 18].

Relative consistency If there is a theory interpretation from a theory
T to a theory T ′, then T is consistent if T ′ is consistent. Thus, theory
interpretations provide a mechanism for showing that one theory is consistent
relative to another. One consequence of this is that imps can be used as a
foundational system. In this approach, whenever one introduces a theory, one
shows it to be consistent relative to a chosen foundational theory (such as
perhaps our theory of real numbers Real Arithmetic, described in Section 7).

3.4 Theory Ensembles

Ordinarily, mathematicians use the term theory in a much broader sense
than we use in this paper, or than is used by logicians generally. In this
sense “metric space theory” refers not to the formal theory of a single metric
space (which is from a mathematical point of view not very interesting) but
at the very least a theory of metric spaces and mappings between them. For
example, the notion of continuity for mappings involves two separate metric
spaces, and is naturally defined in a theory which is the union of two copies
of a theory of an abstract metric space. A family of theories organized in this
way is implemented in imps as a theory ensemble which consists of a base
theory, copies of the base theory called theory replicas, and unions of copies
of the base theory called theory multiples. The various theories of a theory
ensemble are connected by theory interpretations which rename constants.
Theory interpretations are automatically created from the base theory to
each theory replica, and theory interpretations between the theory multiples
are created when needed by the user. The theory interpretations allow the
user to make a definition or prove a theorem in just one place, and then
transport the definition or theorem to other members of the theory ensemble
as needed.

17

for every f : P0 ⇀ P1, g : P1 ⇀ P2 implication
• conjunction
◦ continuous(f)
◦ continuous12(g)
• continuous02(g ◦ f).

for every f : P0 ⇀ P1, g : P1 ⇀ P2 implication
• conjunction
◦ continuous(f)
◦ continuous(g)
• continuous(g ◦ f).

Figure 2: Composition Preserves Continuity (Printed without and with over-
loading)

As an illustration, consider the theory ensemble for the imps theory M
of an abstract metric space. The points and the distance function of the
metric space are denoted inM by an atomic sort P and a constant dist (of
sort P,P ⇀ R). For n ≥ 0, let Mn be a copy of M in which the set of
points and distance function are denoted by Pn and distn, and let Un be the
union of M0, . . . ,Mn−1. (Usually, n ≤ 3.) The theorem in Figure 2, which
says that the composition of two continuous functions is itself a continuous
function, is proved in U3. The constant continuous is defined in U2 by
the user. imps introduces the constants continuous12 and continuous02

by transporting the definition of continuous to U3 via the obvious theory
interpretations. Normally, the user would use the mechanism in imps for
overloading constants so that each of the three continuous constants would
be written for the user as continuous and the theorem would be printed in
TEX in the second form given in Figure 2.

After this composition theorem is proved, it can be transported to other
theory replicas and multiples of the theory ensemble. For example, to obtain
the composition theorem for continuous functions on a single metric space,
the theorem would be transported from U3 to M via the theory interpre-
tation which maps each of P0,P1,P2 to P and each of dist0, dist1, dist2

to dist. The theory ensemble mechanism also supports the transportation
of definitions and theorems from a theory multiple to one of its “instances.”
For example, the user can transport the definition of continuous to Real

18

Arithmetic by doing little more than specifying that both P0,P1 map to R
and both dist0, dist1 map to λx, y : R . |x− y|.

4 Theorem Proving

In accordance with our emphasis on mathematically natural and intuitively
understandable proofs, we distinguish two levels of reasoning in proving the-
orems in imps. Reasoning at the (lower) formula level is largely done au-
tomatically via an expression simplification routine. Reasoning at the proof
structure level is done by user and the machine interactively. imps is de-
signed to provide some automated support, but without giving free reign to
the machine; the course of machine deduction is orchestrated and controlled
by the user.

imps produces formal proofs; they serve as the basis for conveying why
the theorem is true. Because they are intended for this purpose, they are
very different from the formal proofs that are described in logic text books.
Usually a text book formal proof is a sequence or tree constructed using a
small number of low-level rules of inference. Formal proofs of this kind tend
to be composed of a mass of small logical steps. Humans usually find these
proofs to be unintelligible. In contrast, the steps in an imps proof can be
large, and most low-level inference in the proof is performed by the expres-
sion simplification routine. Moreover, a number of these larger steps may
be grouped together as the result of a single human-level command. Since
inference is described at a high level, proofs constructed in imps resemble
informal proofs in understandability, but unlike an informal proof, all the
details of an imps proof have been checked by machine.

4.1 Deduction Graphs

Every proof is carried out within some formal theory. In the process of
constructing a proof, imps builds a data structure representing the deduction,
so that during the proof process the user has great freedom to decide the
order in which he wants to work on different subgoals, and to try alternative
strategies on a particular subgoal. At the end of a proof, this object, called
a deduction graph, can be surveyed by the user, typeset automatically, or
analyzed by software.

19

The items appearing in a deduction graph are not formulas, but sequents,
in a sense derived from Gentzen [22]; see [36] for a discussion of the advantage
of organizing deduction in this way. A sequent consists of a single formula
called the assertion together with a context. The context is logically a finite
set of assumptions, although the implementation caches various kinds of de-
rived information with a context. In addition, the implementation associates
each context with a particular theory. We will write a sequent in the form
Γ⇒ A, where Γ is a context and A is an assertion.

A deduction graph is a directed graph with nodes of two kinds, represent-
ing sequents and inferences respectively. If an arrow points from a sequent
node to an inference node, then the sequent node represents a hypothesis to
the inference. An inference node has exactly one arrow pointing at a sequent
node, and that sequent node represents the conclusion of the inference. A
sequent node is said to be grounded (i.e., known to be “valid” or “true”) if
at least one arrow comes into it from a grounded inference node; an infer-
ence node is grounded if, for every arrow coming into it, the source of the
arrow is a grounded sequent node. In particular, an inference node with no
arrows coming into it represents an inference with no hypotheses, and is thus
“immediately grounded.” A deduction graph has one distinguished sequent
node as its goal; it represents the theorem to be proved. A deduction graph
is a proof of each sequent represented by a grounded sequent node in the
graph.

This representation of deductions has several advantages. First, because
any number of inference nodes may share a common sequent node as their
conclusion, the user (or a program) may try any number of alternative strate-
gies for proving a given sequent. Second, loops in deduction graphs arise
naturally; they indicate that either of two sequents may be derived from
the other, possibly in combination with different sets of additional premises.
Finally, at the end of a proof, the resulting deduction graph serves as a
transcript for analyzing the reasoning used in the proof, and recollecting the
ideas. On the other hand, the cost to store the objects is not significant: in
the current imps data base of almost a thousand proofs, only 18 contain as
many as a hundred sequent nodes; the average number is 23.

20

4.2 Building Deduction Graphs

A deduction graph is begun by “posting” the goal node, a sequent node rep-
resenting a sequent to be proved. The deduction graph is then enlarged by
posting additional sequent nodes and creating inferences. The building of a
deduction graph usually stops when the goal node is marked as grounded.
Inference nodes are created by procedures called primitive inferences . Prim-
itive inferences provide the only means to add inference nodes to a deduction
graph; there is no way to modify or delete existing inference nodes. Each
primitive inference works in roughly the same way: Certain information is fed
to the primitive inference; zero or more new sequent nodes are posted; and
finally, an inference node is constructed that links the newly posted nodes
with one or more previously posted nodes.

There are about 30 primitive inferences. Two of the primitive inferences
are special: simplification makes an inference on the basis of simplifying
expressions (see Section 4.4.1); macete-application makes an inference by
applying a macete (see Section 4.4.4). Each of the remaining primitive infer-
ences embody one of the basic laws of lutins (or is a variant of simplification
or macete-application). For example, the primitive inference direct-inference
applies an analogue of an introduction rule of Gentzen’s sequent calculus (in
reverse). It is selected according to the leading constructor of the assertion
of the input sequent node, which will become the conclusion of the infer-
ence. The system also has primitive inferences for beta-reduction, universal
generalization, existential generalization, equality substitution, contraposi-
tion, cut, backchaining, eliminating iota expressions, extensionality, unfold-
ing defined constants, definedness assertions, raising if-then-else expressions,
assuming theorems, introducing choice functions, and for modifying the con-
text of a sequent in various ways. Although the primitive inferences are
available in every theory, some of them, such as simplification and defined-
constant-unfolding depend on the axioms and theorems in the theory.

Primitive inferences are not called directly by the user. Instead, the user
invokes interactive proof commands which are procedures that call primitive
inferences in useful patterns. They are akin to what are called tactics in
some other systems, such as hol [26], lcf [25], and Nuprl [9].

Commands are more useful than mere primitive inferences for three rea-
sons. First, unlike primitive inferences, commands have an interface pro-
cedure for collecting information from the user. The interface procedure

21

protects the user from the “primitive” nature of the arguments of a prim-
itive inference. For instance, the command unfold-single-defined-constant
collects a set of natural numbers, where the number n represents the nth
occurrence of the defined constant to be unfolded. By contrast, the primitive
inference defined-constant-unfolding requires a set of paths11 to the defined
constant that is to be unfolded. The interface procedure calculates a path for
each natural number and then calls the primitive inference defined-constant-
unfolding with this new information. More precisely, the interface procedure
orchestrates a conversation in which information can be exchanged a number
of times between the user and the system. For example, when the user ap-
plies the command unfold-single-defined-constant to some sequent node, the
system will list the constants that occur in the assertion of sequent, the user
will select one, and then the system will unfold the constant if there is only
one occurrence of it in the sequent. If there is more than one occurrence, the
system will ask the user for which occurrences to unfold.

Second, commands may combine primitive inferences into larger, more
humanly understandable units. They may thus lift the user to a higher
level of inference than that of primitive inferences. As an illustration, con-
sider again the command unfold-single-defined-constant. After this command
calls the primitive inference to unfold some specified occurrences of a defined
constant, the beta-reduction primitive inference is called repeatedly until
no beta-reductions are possible. This has the desirable effect of building in
beta-reduction into constant unfolding.

And, third, commands provide the user with new inferences that realize
a certain pattern of primitive inferences. These kind of commands, which
we sometimes informally call strategies , usually add several new inference
nodes to a deduction graph at one time. Some of the simplest and most
useful strategies break down the logical structure of an assertion (e.g, by ap-
plying the direct-inference primitive inference repeatedly), or else instantiate
universal assumptions, existential assertions, and theorems.

An extremely important strategy is used for proving theorems by induc-
tion. The strategy takes, among other arguments, an inductor which specifies
what induction principle to use, how to apply the induction principle, and

11By a path we mean a sequence of natural numbers that “navigates” from the topmost
node of an expression, regarded as a tree, to some subexpression. It is thus one way of
formalizing and implementing the notion of an occurrence.

22

for every n : Z implication
• 0 ≤ n
• ∑n

j=0 j
6 = n7/7 + n6/2 + n5/2− n3/6 + n/42.

Figure 3: The Sum of Sixth Powers

for every f, g : Z ⇀ R, a, b : Z implication
• for every z : Z implication
◦ a ≤ z ∧ z ≤ b
◦ f(z) ≤ g(z)
• ∑b

a f ≤
∑b
a g.

Figure 4: The Monotonicity of Summation

what heuristics to employ in trying to prove the basis and induction step.
imps allows the user to build his own inductors; the induction principles
are axioms or theorems of an appropriate form. For example, the induction
principle for the integers in Real Arithmetic is just the full second-order in-
duction axiom. The induction strategy is very effective on many theorems
from elementary mathematics; in some simple cases, the strategy can pro-
duce a complete proof (two such formulas are printed in Figures 3–4), while
in other cases it does part of the work and then returns control to the user.

imps also has “ending” strategies, the most basic of which is called prove-
by-logic-and-simplification. These strategies correspond to statements like
“and the theorem follows from the above lemmas” that are commonly given
in informal proofs. They make complicated, but shallow inferences using lots
of logical deduction and simplification. These strategies have the flavor of
the proof search strategies of classic automated theorem provers; hence, they
give imps an automated, as well as interactive, theorem proving capability.

4.3 Soundness

We intend, of course, that the user can only make sound inferences in imps.
Our scheme for guaranteeing this is rather simple: imps allows the user
to modify a deduction graph only by posting sequent nodes or by calling
primitive inferences (either directly or indirectly). Since posting a sequent
node does not affect the inferences encoded in a deduction graph, imps will be
sound as long as each primitive inference is sound. The primitive inferences

23

have been carefully implemented so that there is a high degree of assurance
that they do indeed only make sound inferences. With this scheme, there is no
problem about the soundness of commands since they ultimately only affect
a deduction graph through the application of primitive inferences. Hence,
our machinery of deduction graphs and primitive inferences makes a type
discipline like ml’s unnecessary for assuring that complex reasoning does not
go awry.

4.4 Theory-Supported Reasoning

The logical content of a theory is determined by its language and set of
axioms. As an imps object, a theory also has a variety of other characteristics,
such as the sequence of defined constants that have been introduced, and
the sequence of theorems that have been derived so far. This section will
discuss mechanisms that support theory-specific reasoning, by which we mean
reasoning that is sound only relative to the axiomatic content of particular
theories.

4.4.1 Simplification

Humanly understandable proofs must take relatively large steps, so that the
reader is not overwhelmed with a forest of detail. The expression simplifier
is crucial to achieving human-sized proof steps. It is always invoked on an
expression relative to a context Γ, and serves three primary purposes:

• To invoke a variety of theory-specific transformations on expressions,
such as rewrite rules and simplification of polynomials (given that the
theory has suitable algebraic structure, such as that of a ring);

• To make simplifications based on the logical structure of an expression,
often at locations deeply nested within it;

• To discharge the great majority of definedness and sort-definedness
assertions needed to apply many forms of inference.

The notion of quasi-equality, mentioned in Section 2.3, serves as the correct-
ness requirement for the simplifier: If the simplifier transforms an expression
e to e′ relative to the assumptions of a context Γ (in a theory T), then T

24

and Γ must together entail e ' e′. That is to say, either e and e′ are both
defined and share the same denotation, or else they are both undefined. In
lutins, quasi-equality justifies substituting e′ in place of e at any occurrence
at which e′ is free for e.

The algorithm traverses the expression recursively; as it traverses propo-
sitional connectives it does simplification with respect to a richer context.
Thus, for instance, in simplifying an implication A ⊃ B, A may be assumed
true in the “local context” relative to which B is simplified. Similarly, in
simplifying the last conjunct C of a ternary conjunction A∧B∧C, A and B
may be assumed in the “local context.” On the other hand, when a variable-
binding operator is traversed, and there are context assumptions in which
the bound variable occurs free, then the simplifier must either rename the
bound variable or discard the offending assumptions. The strategy of ex-
ploiting local contexts is justified in [36], and has since been incorporated in
other work (such as [27]).

At any stage in this recursive descent, if a theory-specific procedure may
successfully be used to transform the expression, it is applied. These proce-
dures currently include:

1. Algebraic simplification of polynomials, relative to a range of algebraic
theories (see Section 4.4.3);

2. A decision procedure for linear inequalities, based on the variable elim-
ination method used in many other theorem provers, for instance by
Boyer and Moore [5];

3. Rewrite rules for the current theory T , or for certain theories T0 for
which imps can find interpretations from T0 into T (see Section 4.4.5).

Since in lutins functions may be partial and terms may be undefined, term
simplification in lutins must involve a considerable amount of definedness
checking. For example, simplifying expressions naively may cancel undefined
terms, reducing a possibly undefined expression such as 1/x−1/x to 0, which
is certainly defined. In this example, the previous replacement is valid if the
context Γ can be seen to entail the definedness or “convergence” of 1/x. In
general, algebraic reductions of this kind produce intermediate definedness
formulas to which the simplifier is applied recursively. These formulas are
called convergence requirements.

25

Rewrite rules also generate convergence requirements. Suppose that we
have a theorem of the form

∀x : α . s[x] = s′[x]

which is being used as a rewrite rule from left to right. If a portion of an
expression being simplified is of the form s[t], then we would like it to be
rewritten to s′[t], but only if t ↓ α. If t is undefined, or if it has a value in
the type of α but not in α, then the change is not justified as an instance of
the theorem.

Despite these apparently stringent restrictions, the imps simplifier is able
to work effectively. Although allowing partial functions in theories does re-
quire checking definedness of expressions, one of the significant lessons that
we have learned from imps is that this difficulty can be overcome.

If no transform is applicable, then a simplification routine determined by
the top-most constructor or quasi-constructor of the expression to be simpli-
fied is applied. These routines normally invoke the simplifier recursively on
subexpressions, with different contexts. The routines for a few constructors,
especially the definedness constructors (Section 4.4.2), use special routines
exploiting information extracted from the axioms and theorems of the con-
text’s theory.

The simplification procedures are used systematically in the course of
building deduction graphs. For instance, if A simplifies to truth relative
to Γ, then the sequent Γ ⇒ A is recognized as valid without any further
inference. In addition, the power of the simplifier ensures that the same proof
idea may be successfully applied to different formulas when the differences
between them are syntactic and superficial.

The emphasis on a powerful simplification procedure to allow large infer-
ence steps in the course of interactive proof development is shared with Eves
and its predecessor m-Eves [11, 12, 40], as well as the more recent pvs [39].

4.4.2 Reasoning about Definedness

Because simplification involves large numbers of convergence requirements,
it is important to automate, to the greatest extent possible, the process of
checking that expressions are well-defined or defined with a value in a partic-
ular sort. This kind of reasoning must rely heavily on axioms and theorems
of the axiomatic theory at issue. The algorithm for simplifying definedness

26

assertions is separated into two layers, according to whether recursive calls
to the simplifier are involved.

The Lower Level of Definedness Checking In the lower level, there
are no recursive calls to the simplifier; two kinds of information are used:

• Totality theorems of the form ∀x1 : α1, . . . , xn : αn . f(x1, . . . , xn) ↓ α.

• Unconditional sort coercions of the form ∀x : α . x ↓ β.

The unconditional sort coercion theorems, together with the syntactic order-
ing on sorts �, defined in Section 2, determines a pre-order � on sorts. In
particular, if S is a set of unconditional sort coercion formulas in a language
L, then �S is the weakest pre-order extending � for L, such that:

• α�S β if a formula of the form ∀x : α . x ↓ β is in S;

• α1, . . . , αn → αn+1 �S β1, . . . , βn → βn+1 whenever αi �S βi for all i
with 1 ≤ i ≤ n+ 1.

α �S β if and only if in every model of S, the denotation of α is included
in the denotation of β. The relation �S is a pre-order rather than a partial
order because for two different syntactic sorts α and β, we may have α�S β
and β �S α; in this case α and β have the same denotation in every model
of S. Fix some collection S of axioms and theorems of T , with respect to
which definedness-checking is being carried out.

The relation �S together with the totality theorems are used in imps

by an algorithm for checking definedness. We use totality information and
unconditional sort coercions to extract “critical pairs of subterms and sorts,”
or simply critical pairs, from t and α. By a set of critical pairs, we mean a
set of pairs 〈si, βi〉 such that:

• Each si is a subterm of t, and

• If si ↓ βi holds for each i, then t ↓ α.

In particular, if the null set is a set of critical pairs for t and α, then t ↓ α
is true. Naturally, {〈t, α〉} is always a set of critical pairs for t and α. More
useful sets of critical pairs may be computed for many expressions using two
main principles:

27

• Suppose that C∪{〈si, βi〉} is a set of critical pairs, where si is a variable,
constant, or λ-expression, and γ is its syntactically declared sort. If
γ �S βi, then si ↓ βi is patently true, so C is also a set of critical pairs.

• Suppose that γ �S α, t is an application f(a1, . . . , an), and S contains

∀x1 : β1, . . . , xn : βn . f(x1, . . . , xn) ↓ γ.

If Ci is a set of critical pairs for ai and βi, then
⋃
iCi is a set of critical

pairs for t and α. If t is a conditional term “if φ then s1 else s2,” then
critical pairs for s1 and s2 may be combined to provide a set for t.

These principles mechanize definedness checking for a fragment of lutins

that corresponds to order sorted theories in higher order logic [32].
Frequently, a set of critical pairs will be relatively small, even if it is non-

null. Moreover, the terms it contains may be far smaller than t. For instance,
consider the term t:

(i+ j − k) · (i− j + k) · (i− k + j/2)

where k, j, i range over the integers Z, and all of the function symbols denote
the usual binary functions on the reals. The only critical pairs for t to be
defined among the rationals Q is 〈j/2,Q〉. In this case, we would like to
combine the results of the lower level with the fact that

∀p, q : Q . q 6= 0 ⊃ p/q ↓ Q.

For this reason, the results of the lower level of definedness-checking are
passed to the upper layer, which uses this sort of conditional information.

The Upper Level of Definedness Checking In this layer, conditional
information about definedness is consulted. The simplifier is invoked on the
resulting assertions, in an attempt to reduce them to truth.

The conditional theorems used in this level are stored in a domain-range
handler for the theory. It contains three primary kinds of information about
the domain and range of functions, and the relations between sorts, in the
theory.

• Definedness conditions of the form

∀x1 : α1, . . . , xn : αn . ψ(x1, . . . , xn) ⊃ f(x1, . . . , xn) ↓ α.

28

• Value information of the form

∀x1 : α1, . . . , xn : αn . φ(x1, . . . , xn, g(x1, . . . , xn)).

These theorems characterize the range of g, and can be used in checking
the definedness of expressions of the form f(. . . g(t1, . . . , tn) . . .).

• Conditional sort coercions of the form

∀x : β . φ(x) ⊃ x ↓ α.

To check the definedness of a term f(t1, . . . , tn) in sort α, we look for a
definedness condition

∀x1 : α1, . . . , xn : αn . ψ(x1, . . . , xn) ⊃ f(x1, . . . , xn) ↓ α,

or alternatively a sort coercion condition

∀x : β . φ(x) ⊃ x ↓ α,

where β is the syntactic sort of f(t1, . . . , tn) (i.e., the declared range of f).
If a definedness condition for α is found, then we form the new goal

ψ(t1, . . . , tn). Moreover, for each subterm ti that is of the form g(s1, . . . , sm)
and has a value condition φi, we add φi(s1, . . . , sm, g(s1, . . . , sm)) to Γ, thus
forming an expanded context Γ′. Finally, we call the simplifier on Γ′ and
ψ(t1, . . . , tn).

If instead only a sort coercion is found, we call the simplifier on the asser-
tion (λx : β . φ)(f(t1, . . . , tn)). As part of establishing this, imps must ensure
that f(t1, . . . , tn) ↓ β. In the course of doing so, a definedness condition for
β may be used. Recursive calls of yet greater depth are, however, almost
certain to be in vain, and are prevented by the implementation.

The assertions that, in imps, are expressed using partial functions and
subtypes can also be expressed, more cumbrously, in ordinary simple type
theory. Nevertheless, the machinery of subtypes and definedness assertions
helps to guide imps’s automated support. It provides syntactic cues that the
reasoning embodied in these algorithms is likely to be useful.

29

4.4.3 Transforms

Each theory contains a table with information used by the simplifier. This
table is organized as a hash table of procedures (called transforms) each of
which will transform an expression in a sound manner. Look-up in this table
is done by using constructor and the leftmost function constant as keys.
Rewrite rules are implemented in this way, as are algebraic simplification
procedures that would be impractical to represent as rewrite rules.

In imps some of the transforms can be generated in a uniform way, inde-
pendently of the specific constants which play the role of the algebraic op-
erations. This means that the simplifier can be crafted to provide particular
forms of simplification, when the constants have certain algebraic properties.
For instance, algebraic simplification for an arbitrary field, for real arith-
metic, and for modular arithmetic are derived from the same entity, called
an algebraic processor. An algebraic processor is applied by establishing a
correspondence between the operators of the processor (e.g., the addition
and multiplication operators) and specific constants of the theory. In the
imps theory of fields, where the field elements form the type K, the algebraic
processor is configured by stipulating that the multiplication operator is the
function constant ×K, the addition operator is the function constant +K, the
zero is the individual constant oK, and so on. Certain operators need not be
used; for instance, modular arithmetic does not have a division operator in
general. Depending on the correspondence between operators and constants,
the algebraic processor generates a set of formulas that must be theorems in
the theory in order for its manipulations to be correct.

4.4.4 Macetes

In imps we have used the name macete (in Portuguese, a macete is a clever
trick) to denote user-definable extensions of the simplifier which are under
direct control of the user. Formally, a macete is a function which takes as
arguments a context and an expression and returns an expression. Macetes
are used to apply a theorem or a collection of theorems to a sequent in a
deduction graph. Individual theorems are applied by theorem macetes built
automatically when a theorem is installed in a theory. Compound macetes
are constructed ultimately from theorem macetes, together with a few special
macetes such as beta-reduction and simplification, using a few simple macete

30

constructors, which are just functions from macetes to macetes. They in-
clude constructs to apply a number of macetes in succession, or repeatedly
until no further changes can be made. Compound macetes provide a simple
mechanism for applying lists of theorems in a manner which is under direct
user control.

One kind of theorem macete based on straightforward matching of ex-
pressions is called an elementary macete. To explain their behavior, we need
two auxiliary notions. An expression e matches a pattern expression p if and
only if there is a substitution σ such that σ applied to p is α-equivalent to e.
If Γ is a context and σ is a substitution, we say that Γ immediately entails σ
is defined if, for each component x 7→ t of σ, with x of sort α, simplification
reduces t ↓ α to truth.

Though any kind of theorem can be used to generate an elementary
macete, for the purposes of this exposition, let us assume the theorem is the
universal closure of a conditional equality of the form φ ⊃ p1 = p2. When
applied to a context-expression pair (Γ, e), the macete works as follows. The
left-hand side p1 is matched to e. If the matching succeeds, then the resulting
substitution σ is applied to the formula φ. If the φ[σ] is entailed by Γ, and
if Γ immediately entails that σ is defined, then the macete returns p2[σ], the
result of applying the substitution σ to the right-hand side p2. If any stage
of this process fails, then the macete simply returns e. (This mechanism is
described in more detail in [48].) Elementary macetes are used to apply a
theorem within its home theory.

Another kind of theorem macete is called a transportable macete. It is
based on a much more interesting kind of matching we call translation match-
ing, which allows for inter-theory matching of expressions. A translation
match is essentially a two-fold operation consisting of a theory interpreta-
tion and ordinary matching. An expression e is a translation match to a
pattern expression p if and only if there is a theory interpretation Φ and
a substitution σ such that σ applied to the translation of p under Φ is α-
equivalent to e. After using translation matching, transportable macetes
work in much the same way as elementary macetes. Transportable macetes
are used to apply a theorem outside of its home theory.

We end this section with three simple examples of elementary and trans-
portable macetes chosen from the hundreds of examples contained in the

31

imps initial theory library. The theorem

∀x : R . 0 ≤ x ⊃ |x| = x

of Real Arithmetic generates an elementary macete which rewrites an ex-
pression of the form |s| to s provided the simplifier can verify that s is a
nonnegative real number (in the local context of the expression). The theo-
rem

∀x : R, y : Z . 0 < x ⊃ 0 < xy

generates an elementary macete which reduces a goal of the form 0 < rn to
a new goal 0 < r provided the simplifier can verify that r and n are defined
in the reals and integers, respectively. Finally, the theorem

∀x, y : U . x ∈ {y} ≡ x = y

of Indicators generates a transportable macete which rewrites an expression
of the form a ∈ {b} to a = b, regardless of what are the sorts of a and b.

4.4.5 Transportable Rewrite Rules

Transportable rewrite rules make use of translation matching also, but within
the simplifier. If an unconditional equality p1 = p2 (or a formula of some other
suitable syntactic form) is a theorem of T0, then it may be installed into the
simplifier for use within a theory T1. When simplifying an expression e, we
use translation matching to find Φ and σ as before. If we are successful, and
if the context ensures that σ is defined, then we may replace e by (Φ(p2))[σ].
Transportable rewrite rules are used to provide efficient simplification based
on rewrites from generic theories about such things as mappings and finite
sequences. For instance, the theorem

∀t, u : N ⇀ ind1, e : ind1 . append{(e :: t), u} = (e :: append{t, u})

rewrites expressions in which a cons is nested within an append. The role of
translation matching in this case is simply to select a sort σ as the instance
for ind1.

32

5 User Interface

The imps user interface, which is a removable component of imps, is pri-
marily written in gnu Emacs [47]; the imps core is written in T [33, 41],
a sophisticated version of Scheme. The user interface is implemented using
the subordinate process mechanism of gnu Emacs, which allows a program
executing in T to issue commands to Emacs, and vice versa. Thus imps can
request that formulas and derivations be presented to the user, specially for-
matted by Emacs, while conversely the user can frame his requests to imps

using the interactive machinery of Emacs. The interface provides additional
facilities in case Emacs is running under the X Window System, for instance
a menu-driven mode.

The user interface provides for three major activities: interactive theorem
proving, theory development, and parsing and printing. Most of the actual
interface code is devoted to the first activity. Each of these activities is
discussed below.

5.1 Interactive Theorem Proving

The imps user interface provides facilities for directing, monitoring, record-
ing, and replaying proofs. The facilities to monitor the state of the proof
include graphical displays of the deduction graph as a tree, TEX typesetting
of the proof history, and TEX typesetting of individual subgoals in the deduc-
tion graph. The graphical display of the deduction graph permits the user
to visually determine the set of unproven subgoals. The TEX typesetting
facilities allow the user to examine each sequent in the proof or an entire
proof in a mathematically more appealing notation than is possible by raw
textual presentation alone.

There are various facilities to direct proofs. For example, for any particu-
lar subgoal, the interface presents the user with a well-pruned list of macetes
which can be applied to that subgoal. This list is obtained by using syn-
tactic and semantic information which is made available to the interface by
the imps supporting machinery. In situations where over 400 theorems are
available to the user, there are rarely more than 10 macetes presented to the
user as options.

The interface assists the user with command syntax for commands which
require additional arguments. For example, in order to apply the command

33

instantiate-universal-assumption the user must specify the universal assump-
tion to be instantiated and the instantiations of the variables. In such cases,
the interface will prompt the user for the necessary arguments, if it cannot
first determine them from other available information. Thus in the previous
example, when there is only one universal assumption, the interface will not
ask the user which formula to instantiate.

Finally, there is a mechanism for producing a transcript of an interactive
proof. The resulting transcript is a segment of text which can be edited and
replayed fully or partially, in much the same way that a text editing macro
replays a sequence of commands entered at the keyboard. This is especially
useful for building new proofs which differ in small ways from previously
constructed ones.

5.2 Theory Development

The imps user creates and modifies a theory, theory interpretation, theory
constituent (such as a definition or theorem), or other imps object by eval-
uating an expression called a definition form (or def-form for short). The
approximately 30 def-forms provide a mechanism for extending the mathe-
matics of the imps system. The user interface provides templates to the user
for writing def-forms. Def-forms are stored in files which can be loaded as
needed into a running imps process.

For instance, the def-form introducing the natural numbers as a defined
sort within Real Arithmetic is:

(def-atomic-sort NN

"lambda(x:zz, 0<=x)"

(theory h-o-real-arithmetic)

(witness "0"))

This stipulates that the natural numbers will be those integers satisfying
λx : Z . 0 ≤ x; it also advises imps to consider 0 when checking that this
predicate is non-empty.

The def-form that introduces the symmetry translation reversing group
multiplication, mentioned in Section 3.3, reads:

34

(def-translation MUL-REVERSE

(source groups)

(target groups)

(fixed-theories h-o-real-arithmetic)

(constant-pairs

(mul "lambda(x,y:gg, y mul x)"))

(theory-interpretation-check using-simplification))

It stipulates that the theory of groups forms both the source and the target
of the translation, and that vocabulary defined in Real Arithmetic should be
left unchanged. Only the binary function symbol mul is to be translated,
to the lambda-expression shown. imps is requested to use the simplifier to
ascertain that the theory interpretation obligations of this translation are in
fact met, so that the translation is an interpretation.

5.3 Parsing and Printing

Interaction with imps requires an extensive amount of reading of expres-
sions from the keyboard, or from files, and of displaying of expressions on
the screen, or writing them to files. Abstractly, an expression is a tree-like
structure determined by the imps logic. In the implementation of imps an
expression is a data structure which corresponds very closely to its tree struc-
ture, but has in addition a large amount of cached information available to the
deductive machinery. For the imps user, an expression is typically something
which can be represented as text, for instance

∫ b
a lnxdx. The correspondence

of an expression as a data structure to an external representation for input
or output is determined by the user syntax which is employed. imps allows
multiple user syntaxes, so for example, the syntax that is used for reading in
expressions (usually text) may be different from the syntax used to display
expressions (which could be text or text interspersed with TEX commands.)
This flexible arrangement means users can freely change from one syntax to
another, even during the course of an interactive proof. In other words, the
core machinery is completely syntax independent.

35

6 IMPS and Mathematical Analysis

To a large extent, the development of imps has been guided by our attempts
to prove theorems in mathematical analysis—both theorems about the real
numbers and theorems about more abstract objects such as Banach spaces or
spaces of continuous functions from one metric space to another. The imps

logic and little theories methodology have made it possible to develop parts
of graduate-level analysis without sacrificing either clarity or naturalness.

With partial functions, higher-order operators, and subtypes, lutins is
well-suited to be a logic for analysis. The value of having a natural way
of dealing with partial functions in the development of analysis cannot be
overestimated. Many of the important operators of analysis, such as the
integral of a function or the limit of a sequence, are most conveniently treated
as partial higher-order functions. For example, the limit of a sequence ξ =
(xn)n∈N is defined whenever there is a unique real number a satisfying a
familiar predicate ϕ(ξ, a), and when ϕ(ξ, a) holds, the limit of ξ is the number
a. Having a logic with partial functions and possibly nondenoting terms, we
can define the limit operator by

lim(ξ) = ι a : R . ϕ(ξ, a)

without having to specify separately its domain.
Analysis is rife with various types of spaces and classes of functions. The

little theories approach is an especially good framework for organizing this
kind of mathematics. An example of little theories used to advantage in imps

is the proof of an open mapping theorem (for certain Banach space functions
close to the identity) given in [19]. Other examples are briefly described in
subsection 7.3.

Mathematical analysis has traditionally served as a ground for testing
the adequacy of formalizations of mathematics, because analysis requires
great expressive power for constructing proofs. Nonetheless, most work in
automated theorem proving has been in areas other than analysis. One
notable exception to this is the work of W. Bledsoe and his students which
has dealt with problems in analysis and general topology beginning in the
early 70’s (see Bledsoe’s discussion in [3]). In particular, this group has built
a series of powerful provers combining resolution and other techniques (such
as variable elimination) to reason about formulas involving real inequalities.
One recent prover in this direction developed by L. Hines is described in [30].

36

An entirely different approach to automated theorem proving in analysis
is taken by E. Clarke and X. Zhao [8]. They have successfully implemented
a system which can reason about a large class of expressions encountered
in real analysis, including trigonometric functions, real inequalities, limits,
infinite summations, derivatives, and integrals. Clarke and Zhao’s system,
called Analytica is implemented on top of the commercially available sys-
tem Mathematica. Mathematica provides it with a wide range of facilities
not possessed by other provers. These include sophisticated algebraic ma-
nipulation, reduction rules that apply analytic identities and the ability to
determine closed forms for transforms of functions in many cases, and solu-
tions of differential equations. Though Analytica combines theorem proving
capabilities with very sophisticated symbolic manipulation capabilities in an
interesting way, it has several drawbacks. Firstly, since Mathematica is un-
sound (for example in doing beta-reduction), the soundness of Analytica
itself becomes an issue. Moreover, it is not clear how Analytica can relate
the formal facilities for manipulating objects offered by Mathematica with
the underlying semantics of these objects. For example, is there a defini-
tion for the integral or a set of axioms characterizing the integral, or are the
manipulations performed by Mathematica code the ultimate arbiter of what
integration means? Finally, it is not clear how Analytica can handle abstract
objects such as Banach spaces, which are very useful in all kinds of analysis,
even “classical” analysis.

7 Initial Theory Library

A theory library is a collection of theories, theory interpretations, and theory
constituents (e.g., definitions and theorems) which serves as a data base of
mathematics. A theory library is composed of sections; each section is a
particular body of knowledge that is stored in a set of files consisting of def-
forms. A section can be loaded as needed into a running imps process. In
the course of using imps, an imps user builds his or her own theory library
on top of the initial theory library that is supplied with imps.

The imps initial theory library contains a large variety of basic mathe-
matics. It offers the user a well-developed starting point for her or his own
theory library. It also is a rich source of examples that illustrates some of the
diverse ways mathematics can be formulated in imps. The initial theory li-

37

brary includes formalizations of the real number system and objects like sets
and sequences; theories of abstract mathematical structures such as groups
and metric spaces; and theories to support specific applications of imps in
computer science.

This section describes the major theories that are contained in the imps

initial theory library. Along the way, we point out some of the more impor-
tant theorems we have proven in these theories.

7.1 Real Numbers

Two theories of the real numbers are contained in the initial theory library.
These theories are equivalent in the sense that each one can be interpreted in
the other; moreover, the two interpretations compose to the identity. These
interpretations are constructed in the theory library using the imps transla-
tion machinery.

The first is Complete Ordered Field, a theory in which the real num-
bers are specified as a complete ordered field and the rational numbers and
integers are specified axiomatically as substructures of the real numbers.
Exponentiation to an integer power is a defined constant denoting a partial
function.

The second axiomatization is Real Arithmetic, which we consider to be
our working theory of the real numbers. The axioms of Real Arithmetic
include the axioms of Complete Ordered Field, formulas characterizing expo-
nentiation as a primitive constant and formulas which are theorems proven
in Complete Ordered Field. These theorems are needed for installing an alge-
braic processor and for utilizing the definedness machinery of the simplifier.
The proofs of these theorems in the theory Complete Ordered Field require
a large number of intermediate results with little independent interest. The
use of two equivalent axiomatizations frees our working theory of the reals
from the burden of recording these uninteresting results.

The theory Real Arithmetic is equipped with routines for simplifying
arithmetic expressions and rational linear inequalities (see Section 4.4.1).
These routines allow the system to perform a great deal of low-level reason-
ing without user intervention. The theory contains several defined entities;
e.g., the natural numbers are a defined sort and the higher-order operators
Σ and Π are defined recursively.

Real Arithmetic is a useful building block for more specific theories. If a

38

theory has Real Arithmetic as a subtheory, the theory can be developed with
the help of a large portion of basic, everyday mathematics. For example,
in a theory of graphs which includes Real Arithmetic, one could introduce
the concept of a weighted graph in which nodes or edges are assigned real
numbers. We imagine that Real Arithmetic will be a subtheory of most
theories formulated in imps.

7.2 Generic Objects

One of the advantages of working in a logic like lutins, with a rich structure
of functions, is that generic objects like sets and sequences can be represented
directly in the logic as certain kinds of functions. For instance, sets are rep-
resented in imps as indicators , which are similar to characteristic functions,
except that x is a “member” of an indicator f iff f(x) is defined. Operators
on indicators and other functions representing generic objects are formalized
in imps as quasi-constructors, and theorems about these operators are proved
in “generic theories” that contain neither constants nor axioms (except for
possibly the axioms of Real Arithmetic). Consequently, reasoning is per-
formed in generic theories using only the purely logical apparatus of lutins

(and possibly Real Arithmetic). Moreover, theorems about generic objects
are easy to apply in other theories since the operators, as quasi-constructors,
are polymorphic and since the theory interpretations involved usually have
no obligations to check.

The initial theory library contains theorems about operators (i.e., quasi-
constructors) on the following kinds of generic objects:

• Sets. There are operators for basic set operations such as union, in-
tersection, complement, membership, subset, etc. Since sets are repre-
sented as indicators, most of the basic theorems are proved by just the
command simplify-insistently.

• Unary functions. The operators formalize basic function notions such
as composition, domain, range, inverse function, injectiveness, etc.
These operators supplement the built-in function machinery of lutins.

• Sequences. Sequences over a sort α are represented as partial functions
from the natural numbers to α. Lists are identified with sequences

39

whose domain is a finite initial segment of the natural numbers. The op-
erators include basic list operations: nil, car, cdr, cons, and append.

• Pairs. A pair of elements a, b of sort α, β is represented as a function
whose domain equals the singleton set {〈a, b〉}. The operators include
a pair constructor and the two pair selectors.

This part of the initial theory library also contains theorems about the
ι constructor and about the cardinality of sets. Several of the cardinality
theorems (e.g., the Schröder-Bernstein theorem and the theorem that says
a subset of a finite set is itself finite) are surprisingly difficult to prove in
complete detail.

7.3 Analysis

The structure of the imps analysis theory library aggressively exploits the
little theories approach outlined earlier in Section 3, providing users with
an extensive network of theories and interpretations between them. This
approach is desirable because it permits users to state and prove once and
for all the basic facts in a high degree of generality and reuse the results in
more specific contexts.

The analysis library consists of about 25 theories and over 100 theory
interpretations. Most of the theory interpretations (close to 90 percent) are
created automatically by the system when the theories are created or by the
translation-match machinery. What follows is only a small sample of theories
that are actually available:

• Partial Order. This is the theory of an abstract set S with a tran-
sitive, reflexive, and anti-symmetric relation ≺. This theory provides
a framework for stating and proving general theorems about ordering
relations, including definitions and characterizations of the supremum
and infimum of a set. One of the more interesting theory interpre-
tations that are explicitly constructed in this section of the library is
the “order reversing” interpretation which takes the constant symbol
≺ into the defined constant symbol � (defined by x � y if and only if
y ≺ x.) This allows results about suprema to be immediately usable as
results about infima. It is also clear that results in Partial Order can
be interpreted in the theory Real Arithmetic.

40

• Metric Space. This is the theory of an abstract set P with a two-
place real-valued function d on P which is non-negative, symmetric,
satisfies the triangle inequality, and for which d(x, y) = 0 only if x = y.
This theory is appropriate for defining metric and topological properties
such as limits of sequences, open sets, closed sets, completeness, and
sequential compactness. The theory library contains statements and
proofs of numerous facts about these concepts.

• Metric Spaces 2-Tuples. This is the theory of a pair of abstract met-
ric spaces. It is the natural setting for notions about mappings be-
tween spaces, such as continuity, uniform continuity, and the Lipschitz
property. In this theory we can easily prove abstract versions of the
intermediate value and Bolzano-Weierstrass theorems which assert, re-
spectively, that the image of a connected or sequentially compact set is
connected or sequentially compact (see [20] for details). By transport-
ing machinery developed in this theory to the theory of metric spaces,
we obtain several versions of the contractive-mapping fixed-point prin-
ciple of Banach.

• Mappings into a Pointed Metric Space. A theory for spaces of bounded,
everywhere defined functions from a set into a metric space with a
distinguished point a. A function is bounded whenever its range is
contained in a closed ball centered at a. Basic properties of these spaces
(such as completeness conditions) are formulated in this theory.

• Normed Spaces. This is the theory of a real vector space with a norm
function. A sample theorem in this theory is an open mapping theorem
for certain functions which are near the identity in a suitable sense (for
a discussion of the proof of this theorem in imps, see [19]).

• Mappings from an Interval to a Normed Space. This is the theory of
an abstract normed space together with an arbitrary interval of real
numbers. This theory is used for defining the fundamental notions of
calculus of functions of one variable such as differentiation and inte-
gration. Important theorems proved in the library are the mean value
theorems for differentiation and integration (see Figure 5).12

12In this formulation, U denotes the underlying sort of vectors and I denotes an arbitrary
(possibly unbounded) interval of real numbers.

41

for every a, b : I, f : I ⇀ U,m : R implication
• conjunction
◦ ∃y : I a < y
◦
∫ b
a f ↓

◦ ∀x : I ‖f(x)‖ ≤ m
• ‖

∫ b
a f‖ ≤ m · |b− a|.

Figure 5: The Mean Value Theorem for Integrals

7.4 Algebra

The initial library contains theories of the following algebraic structures:

• Monoids . A monoid is a set with an associative binary operation and
an identity element. In the theory monoids, a constant monoid%prod

is defined recursively as the iterated product of the primitive monoid
operation. Basic properties of this constant are proven in monoids and
then transported to theories with their own iterated product operators,
such as Real Arithmetic with the operators Σ and Π.

• Groups and Group Actions. The rudiments of group theory are devel-
oped in the theory network consisting of these two theories and various
interpretations of Group Actions in Groups and of Groups in itself.
The theorem that the quotient of a group by a normal subgroup is
itself a group is proved as well as the Fundamental Counting Theorem
for group theory, of which Lagrange’s theorem is an easy corollary.

• Fields. Basic operations for fields (exponentiation to an integer power
and multiplication by an integer) are defined. The theory is developed
sufficiently for installing an algebraic processor for simplification. Some
useful identities, such as the binomial theorem, are proved.

7.5 Computer Science

The theory library for computer science is currently less developed than that
for mathematics. However, three significant facilities exist.

42

for every p : state→ prop ⇐⇒
• for every s : state implication
◦ accessible(s)
◦ p(s)
• conjunction
◦ ∀s : state initial(s) ⊃ p(s)
◦ ∀s1 : state, a : action (accessible(s1) ∧ p(s1) ∧ next(s1, a) ↓) ⊃

p(next(s1, a)).

Figure 6: Induction on Accessibility for Deterministic State Machines

State Machine Theories Reusable parametric theories (in the sense de-
scribed in Section 3.3) characterize a number of different kinds of state ma-
chine. A state machine theory axiomatizes a state space, which need not be
finite, together with a transition function or relation, depending on whether
the machine being specified is known to be deterministic or not. Typical
theorems include the induction theorems for accessible states, one of which
is shown in Figure 6. When such a theorem has been proved, it may be
applied with the full power of the induction command (Section 4.2).

In order to specify a particular state machine, say, a deterministic one,
the user develops an axiomatic theory T characterizing the objects that will
serve as states and as inputs. He then instantiates the parametric theory P
of deterministic state machines. To do so, he supplies an interpretation Φ
from P to T . As a consequence, all defined expressions from P are made
available in T , possibly under a suitable renaming, and all the theorems of
P are available through the interpretation Φ.

Safety theorems are then expressed in terms of the resulting accessibility
predicate, and liveness assertions may be expressed directly. Refinement
relations between two state machines may be formulated in the direct way,
using a joint theory describing both individual machines.

Domain Theory for Denotational Semantics A simple parametric the-
ory of continuous functions and related notions developed for denotational se-
mantics. We have developed an imps theory representing the official Scheme
denotational semantics using this as a basis.

43

Facility for Defining Free Recursive Datatypes Many applications in
computing use datatypes that are constructed recursively by a number of
operations from previously given objects and some atoms. These datatypes
are often specified by a bnf-like notation. For instance, if elt denotes a class
of previously given objects, then the finite lists composed of these elements
may be specified by the clauses:

L ::= NIL | CONS elt L

In other cases, for instance in the abstract syntax for a programming lan-
guage, different sorts of objects, such as statements, expressions, and vari-
ables, may be defined by mutual recursion, starting from given objects such
as identifiers:

s ::= WHILE e s | SEMICOLON s1 s2 | ASSIGN v e | ...

e ::= v | PLUS v1 v2 | BLOCK s e | ...

v ::= VAR ident

A specification such as these is normally interpreted as denoting the free
algebra generated by regarding each atom as a constant and each constructor
as a function symbol. Hence, it justifies an induction principle and a principle
of function definition by primitive recursion.

imps provides a procedure which given a legitimate specification will gen-
erate a new theory T . The specification may stipulate an already known
theory T0 to characterize the given objects (list elements and identifiers in
the examples above). T will be a model conservative extension of T0, by
which we mean that any model of T0 may be enlarged to form a model of T
by adding suitable new objects. In particular, T is satisfiable if T0 is.
L(T) extends L(T0) by adding one new type τ . If the specification de-

clares several new categories (such as statements, expressions, and variables
in the example above), then each of these will be represented by a subsort of
τ . A clause may be represented by a sort inclusion; for instance, the sort v is
included within e above. Otherwise, it is represented by a function serving
as a datatype constructor. Axioms of T ensure that the ranges of different
datatype constructors are disjoint, and do not include the values of atoms;
the domain of a datatype constructor is characterized exactly by the sorts of
its arguments. The second order induction principle for τ is also an axiom.
The primitive recursion principle is supplied as a theorem, although its proof
is not generated at the time that T is constructed.

44

8 Conclusion

imps is an interactive proof development system intended to support stan-
dard mathematical notation, concepts, and techniques. In particular, it pro-
vides a flexible logical framework in which to specify axiomatic theories, prove
theorems, and relate one theory to another via inclusion and theory inter-
pretation. Theory interpretations are used extensively in imps for reusing
theories and theorems. The imps logic is a conceptually simple, but highly
expressive version of higher-order logic which allows partially defined (higher-
order) functions and undefined terms. The simple types hierarchy of the
logic is equipped with a subtyping mechanism. Proofs are developed in imps

with the aid of several different deduction mechanisms, including expression
simplification, automatic theorem application, and a mechanism for orches-
trating applications of inference rules and theorems. The naturalness of the
logic and the high level of inference in proofs make it possible to develop
machine checked proofs in imps that are intuitive and readable.

The imps initial theory library provides evidence for the claim that imps

supports the traditional methods of mathematics. The theory library now
contains repeatable proofs of almost a thousand theorems, including signifi-
cant portions of algebra and analysis. Sources include traditional presenta-
tions, such as parts of a graduate course in algebra and parts of Dieudonné’s
Foundations of Modern Analysis [13]. Because standard mathematical de-
velopment is possible in imps, the system should be an accessible, effective
tool to a wide range of mathematically educated users.

Acknowledgments

We are grateful to the MITRE-Sponsored Research program, which funded
the development of imps.

Several of the key ideas behind imps were originally developed by
Dr. Leonard Monk on the Heuristics Research Project, also funded by
MITRE-Sponsored Research, during 1984–1987. Some of these ideas are
described in [36].

The authors are also grateful for the suggestions received from the ref-
eree.

45

References

[1] P. B. Andrews. An Introduction to Mathematical Logic and Type Theory:
To Truth through Proof. Academic Press, 1986.

[2] P. B. Andrews, S. Issar, D. Nesmith, and F. Pfenning. The tps theorem
proving system (system abstract). In M. E. Stickel, editor, 10th In-
ternational Conference on Automated Deduction, volume 449 of Lecture
Notes in Computer Science, pages 641–642. Springer-Verlag, 1990.

[3] W. W. Bledsoe. Some automatic proofs in analysis. In Automated The-
orem Proving: After 25 Years. American Mathematical Society, 1984.

[4] G. S. Boolos. On second-order logic. Journal of Philosophy, 72:509–527,
1975.

[5] R. S. Boyer and J S. Moore. Integrating decision procedures into heuris-
tic theorem provers: A case study of linear arithmetic. Technical Report
icsca-cmp-44, Institute for Computing Science, University of Texas at
Austin, January 1985.

[6] L. Cardelli and P. Wegner. On understanding types, data abstraction,
and polymorphism. Computing Surveys, 17:471–522, 1985.

[7] A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

[8] E. Clarke and X. Zhao. Analytica—a theorem prover in mathemat-
ica. In D. Kapur, editor, Automated Deduction—CADE-11, volume 607
of Lecture Notes in Computer Science, pages 761–765. Springer-Verlag,
1992.

[9] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, J. T. Sasaki, and S. F. Smith. Implementing Mathemat-
ics with the Nuprl Proof Development System. Prentice-Hall, Englewood
Cliffs, New Jersey, 1986.

[10] T. Coquand and G. Huet. The calculus of constructions. Information
and Computation, 76:95–120, 1988.

46

[11] D. Craigen, S. Kromodimoeljo, I. Meisels, B. Pase, and M. Saaltink.
eves: An overview. Technical Report CP-91-5402-43, ORA Corpora-
tion, 1991.

[12] D. Craigen, S. Kromodimoeljo, I. Meisels, B. Pase, and M. Saaltink.
Eves system description. In D. Kapur, editor, Automated Deduction—
CADE-11, volume 607 of Lecture Notes in Computer Science, pages
771–775. Springer-Verlag, 1992.

[13] J. Dieudonné. Foundations of Modern Analysis. Academic Press, 1960.

[14] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press,
1972.

[15] W. M. Farmer. Abstract data types in many-sorted second-order logic.
Technical Report M87-64, The mitre Corporation, 1987.

[16] W. M. Farmer. A partial functions version of Church’s simple theory of
types. Journal of Symbolic Logic, 55:1269–91, 1990.

[17] W. M. Farmer. A simple type theory with partial functions and sub-
types. Annals of Pure and Applied Logic, 64:211–240, 1993.

[18] W. M. Farmer. A technique for safely extending axiomatic theories.
Technical report, The mitre Corporation, 1993.

[19] W. M. Farmer, J. D. Guttman, and F. J. Thayer. Little theories. In
D. Kapur, editor, Automated Deduction—CADE-11, volume 607 of Lec-
ture Notes in Computer Science, pages 567–581. Springer-Verlag, 1992.

[20] W. M. Farmer and F. J. Thayer. Two computer-supported proofs in
metric space topology. Notices of the American Mathematical Society,
38:1133–1138, 1991.

[21] S. Feferman. Systems of predicative analysis. Journal of Symbolic Logic,
29:1–30, 1964.

[22] G. Gentzen. Investigations into logical deduction (1935). In The Col-
lected Works of Gerhard Gentzen. North Holland, 1969.

47

[23] J. A. Goguen. Principles of parameterized programming. Technical
report, sri International, 1987.

[24] J. A. Goguen and R. M. Burstall. Introducing institutions. In Logic
of Programs, volume 164 of Lecture Notes in Computer Science, pages
221–256. Springer-Verlag, 1984.

[25] M. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh lcf: A Mech-
anised Logic of Computation, volume 78 of Lecture Notes in Computer
Science. Springer-Verlag, 1979.

[26] M. J. C. Gordon. hol: A proof generating system for higher-order
logic. In G. Birtwistle and P. A. Surahmanyam, editors, VLSI Specifica-
tion, Verification, and Synthesis, pages 73–128. Kluwer, Dordrecht, The
Netherlands, 1987.

[27] J. Grundy. Window inference in the hol system. In Proceedings of the
1991 International Workshop on the hol Theorem Proving System and
its Applications, pages 177–89. IEEE Computer Society Press, 1991.

[28] J. D. Guttman. A proposed interface logic for verification environments.
Technical Report M91-19, The mitre Corporation, 1991.

[29] L. Henkin. Completeness in the theory of types. Journal of Symbolic
Logic, 15:81–91, 1950.

[30] L. M. Hines. The central variable strategy of str+.ve. In D. Kapur,
editor, Automated Deduction—CADE-11, volume 607 of Lecture Notes
in Computer Science, pages 35–49. Springer-Verlag, 1992.

[31] W. A. Howard. The formulae-as-types notion of construction. In To H.
B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formal-
ism, pages 479–490. Academic Press, 1980.

[32] M. Kohlhase. Unification in order-sorted type theory. In A. Voronkov,
editor, Logic Programming and Automated Reasoning, volume 624 of
Lecture Notes in Computer Science, pages 421–432. Springer-Verlag,
1992.

48

[33] D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams. or-

bit: An optimizing compiler for scheme. In Proceedings of the sigplan

’86 Symposium on Compiler Construction, volume 21, pages 219–233,
1986. Proceedings of the ’86 Symposium on Compiler Construction.

[34] P. Martin-Löf. Constructive mathematics and computer programming.
In L. J. Cohen, J. Los, H. Pfeiffer, and K. P. Podewski, editors, Logic,
Methodology, and Philosophy of Science VI, pages 153–175, Amsterdam,
1982. North-Holland.

[35] J. D. Monk. Mathematical Logic. Springer-Verlag, 1976.

[36] L. G. Monk. Inference rules using local contexts. Journal of Automated
Reasoning, 4:445–462, 1988.

[37] Y. N. Moschovakis. Elementary Induction on Abstract Structures.
North-Holland, 1974.

[38] Y. N. Moschovakis. Abstract recursion as a foundation for the theory of
algorithms. In Computation and Proof Theory, Lecture Notes in Math-
ematics 1104, pages 289–364. Springer-Verlag, 1984.

[39] S. Owre, J. M. Rushby, and N. Shankar. pvs: A prototype verification
system. In D. Kapur, editor, Automated Deduction—CADE-11, volume
607 of Lecture Notes in Computer Science, pages 748–752. Springer-
Verlag, 1992.

[40] B. Pase and S. Kromodimoeljo. m-Never system summary. In E. Lusk
and R. Overbeek, editors, 9th International Conference on Automated
Deduction, volume 310 of Lecture Notes in Computer Science, pages
738–39. Springer-Verlag, 1988.

[41] J. A. Rees, N. I. Adams, and J. R. Meehan. The T Manual. Computer
Science Department, Yale University, fifth edition, 1988.

[42] J. Rushby, F. von Henke, and S. Owre. An introduction to formal
specification and verification using ehdm. Technical Report sri-csl-91-
02, sri International, 1991.

[43] B. Russell. On denoting. Mind (New Series), 14:479–493, 1905.

49

[44] B. Russell. Mathematical logic as based on the theory of types. American
Journal of Mathematics, 30:222–262, 1908.

[45] S. Shapiro. Second-order languages and mathematical practice. Journal
of Symbolic Logic, 50:714–742, 1985.

[46] J. R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.

[47] R. M. Stallman. gnu Emacs Manual (Version 18). Free Software Foun-
dation, sixth edition edition, 1987.

[48] F. J. Thayer. Obligated term replacements. Technical Report MTR-
10301, The mitre Corporation, 1987.

[49] H. Weyl. Das Kontinuum. Veit, Leipzig, 1918.

[50] A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge
University Press, 1910. Paperback version to section *56 published 1964.

50

