
Logical Protocol Analysis for Authenticated
Diffie-Hellman?

Daniel J. Dougherty Joshua D. Guttman

Worcester Polytechnic Institute
{dd,guttman}@wpi.edu

Abstract. Draft of August 15, 2011. Diffie-Hellman protocols for
authenticated key agreement construct a shared secret with a peer using a
minimum of communication and using limited cryptographic operations.
However, their analysis has been challenging in computational models
and especially in symbolic models.

In this paper, we develop a framework for protocol analysis that com-
bines algebraic and strand space ideas. We show that it identifies exact
assumptions on the behavior of a certifying authority. These assumptions
establish the confidentiality and authentication properties for two pro-
tocols, the Unified Model and Menezes-Qu-Vanstone (MQV). For MQV,
we establish a stronger authentication property than previously claimed,
using a stronger (but realistic) assumption on the certifying authority.

Verification within our framework implies that the adversary has no
strategy that works uniformly, independent of the choice of the cyclic
group in which the protocol operates. Indeed, we provide an equational
theory which constitutes an analysis of these uniform strategies. We pro-
vide an abstraction, the notion of indicator, which leads to easy proofs of
protocol correctness assertions. Computational soundness awaits further
investigation.

1 Introduction

The Diffie-Hellman key exchange [8] is a widely used cryptographic idea. Each
principal A,B chooses a random value, x, y resp., raising a base g to this power
modulo a suitable prime p:

A, x • gx

// •gy

oo B, y (1)

They can then both compute the value (gy)x = gxy = (gx)y (modulo p, as
we will no longer explicitly repeat). Since there is reason to believe that gxy

is indistinguishable from gz for randomly chosen z, we can treat gxy as a new
shared secret for A,B. The protocol is thus secure against a passive adversary,

? Supported by the National Science Foundation under grant CNS-0952287.

2 Draft, August 15, 2011

who observes what the compliant principals do, but can neither create messages
nor alter (or misdirect) messages of compliant principals.

It is however certainly not secure against an active adversary, which can
choose its own x′, y′, sending gy

′
to A instead of gy, and sending gx

′
to B instead

of gx. In this case, each of A,B actually shares one key with the adversary, who
can act as a man in the middle, re-encrypting messages in any conversation
between A and B. So as not to prejudice ourselves in evaluating the possible
attacks, we will write RB for the public value that A receives, purportedly from
B, and RA for the public value that B receives, purportedly from A. In the
intended case, RA = gx and RB = gy.

One approach to authenticating a Diffie-Hellman exchange, originating in the
Station-to-Station protocol STS [9], is digitally to sign parts of the exchange. For
instance, in a simplified STS, the exchange in Eqn. 1 is followed by the signed
messages:

A •
[[gx, RB]]A// •

[[gy, RA]]Boo B (2)

where the signatures exclude a man in the middle.1 STS requires an additional
message transmission and reception for each participant, in each session. More-
over, each participant must also prepare one digital signature and also verify
one digital signature specifically for that session. STS requires some public key
infrastructure to certify the signature verification keys of A and B.

An alternative to using per-session digital signatures is implicit verifica-
tion [2]. Here the goal is to ensure that any principal that can compute the
same value as A can only be B. To implement this idea, each principal main-
tains a long-term secret, which we will write a for principal A, b for B; they
publish the long-term public values ga, gb, which we will refer to as YA, YB , etc.
The trick is to build the use of the private values a, b into the computation of the
shared secret, so that only A,B can do it. For instance, in the “Unified Model”
UM of Ankney, Johnson, and Matyas, the principals combine long term values
with short term values by concatenating and hashing. They follow the exchange
of Eqn. 1 with these computations, where H(x) is a hash of x:

A : k = H(YB
a, RB

x) B : k = H(YA
b, RA

y), (3)

obtaining a shared value if RA = gx and RB = gy. We will write kum(c, Y, z,R) =
H(Y c, Rz). A and B respectively compute

kum(a, YB , x,RB) and kum(b, YA, y, RA). (4)

Here again some public key infrastructure is required so that each principal
knows to associate the intended peer P with the right public value to YP . How-
ever, no digital signature needs to be generated or checked specific to this run.
If A frequently has sessions with B, A can amortize the cost of verifying B’s
certificate once, by keeping YB in secure storage.

1 We use t, t′ for the result of concatenating t with t′. A digitally signed message [[t]]A
means the message t concatenated with a digital signature algorithm’s output when
applied to a hash of t, using a signing key associated with the principal A.

Draft, August 15, 2011 3

One might prefer a protocol in which the operations are only algebraic, as
distinguished from UM’s combination of algebraic operations such as exponenti-
ation with the rather different operations of concatenation and hashing. Indeed
Menezes-Qu-Vanstone (MQV) [23] does exactly this, computing the key via the
rules:

A : k = (RB · YB [RB])sA B : k = (RA · YA[RA])sB (5)

where sA = x+a[RA] and sB = y+ b[RB]. The “box” operator coerces numbers
mod p to a convenient form in which they can be used as exponents. In the
literature this is generally written with a bar, as RB , which is typographically
more cumbersome. We will discuss it more below. Now, in a successful run, A
obtains the value

(gy · (gb)gy
)sA = (g(y+bgy))(x+agx) = g(sB ·sA) (6)

and B obtains gsA·sB , which is the same value. MQV differs from UM and other
related protocols only in the function that the principals use to compute the key.
MQV uses the definition:

kmqv(a, Y, x,R) = (R · Y [R])(x+a[gx]) (7)

This key computation makes MQV algebraically challenging to model and to
analyze. There is indeed some controversy about its security [18,20,21,24].

Rigorous treatment in computational models is hard, and until now, they
have been out of reach in symbolic models [11,19,22]. These symbolic approaches
to protocol analysis have relied on unification as a central part of their reasoning.
Unifiability, in the presence of the ring structure used in Eqn. 6, is undecidable,
essentially by the unsolvability of Hilbert’s tenth problem.

Nevertheless, interesting and relevant problems could be clarified by a more
suitable symbolic approach. Exactly what constraints do the protocols assume
about the authority that certifies public values YP ? When do the protocols re-
quire an additional step of key confirmation, or including the principals’ identities
in the key computation? How can we define the authentication that “implicit
authentication” provides?

Our contributions. We formalize UM and MQV within the strand space
model [16,27], adapted to this purpose, and especially to use a message algebra
rich enough to express their operations. We have given special attention to the
constraints on the certifying authority.

We establish confidentiality in this model, i.e. that a session key is not dis-
closed to an active adversary in either UM or MQV, on reasonable assumptions.
One can also prove in a similar manner that session keys are not disclosed when
other session keys become disclosed, or when long term keys are disclosed, al-
though we will not do so here. Our notion of disclosure is, however, a weaker
assertion than indistinguishability of a real session key from a random value, to
which our model is not currently well-suited.

More interestingly, for MQV we identify a slightly tighter requirement on
a certifying authority. This states that a full run of the certification protocol

4 Draft, August 15, 2011

may never be included between the beginning of a user session yielding a session
key, and its end. This is easily implemented. If user sessions always time out
before some maximum time t elapses, then the CA only needs to ensure that
at least time t elapses between receiving a certification request and transmit-
ting the corresponding certificate. Other implementation strategies could also
be imagined.

We will prove that this assumption about the ordering of user sessions and
CA sessions eliminates attacks similar to Kaliski’s [18]; as a consequence, we
can prove an authentication result stronger than claimed by Blake-Wilson and
Menezes [2] and Law et al. [23]. When two compliant principals A,B actually
share a session key generated via MQV, do they necessarily know their partners?
The Kaliski attack on MQV finds a situation in which a non-compliant E con-
vinces B that the key is shared with E, even though it is shared with A. However,
we will prove that our CA ordering assumption eliminates such executions.

We believe this establishes that our method delivers results that would be
hard to obtain in other ways. This result combines information about the possible
orderings of events and the algebraic properties of the values transmitted and
received in those events. The strand space framework has always provided a
reliable framework for reasoning about the causal relations among events, and
thus their possible temporal orderings. In this paper, we weld that together with
a message algebra for DH operations.

Since reasoning about equations between messages is hard in this algebra, for
the MQV analysis we have introduced the notion of an indicator. An indicator
is a vector of integers that describes how many occurrences each of a number
of critical variables has in a particular level of exponent of a message value.
We prove (Thm. 18) that these values are preserved under adversary actions
when the critical variables are unavailable to the adversary. This means that
the adversary is unable to create a message with an indicator different from
any he was given. The indicators also provide a convenient fingerprint to use to
determine whether messages can be equated by instantiating only non-critical
variables. If they have different indicators, then they cannot be. The indicators
provide the main proof technique in Section 6.

Structure of this paper. We start by introducing the strand space theory, as
we will use it here (Section 2). We then turn to the Universal Model protocol
in Section 3, which we use to introduce our specification style, to define a set of
constraints on the CA, and to introduce the security properties that we will also
study in MQV.

After this we characterize the algebra of basic messages more mathematically,
and introduce the notion of indicator (Section 4). Section 5 provides more detail
on the adversary, and establishes that indicators are preserved by adversary
actions.

In Section 6, we establish the main results about MQV confidentiality and
authenticity. Section 7 provides some conclusions and comments on related (and
future) work.

Draft, August 15, 2011 5

2 Strands and Bundles

In this paper, we will adapt the strand space ideas to our context, in which
messages may form a more complex algebraic structure than [16,27] envisage.

Strands. A strand is a sequence of local actions called nodes. Each local action
in a strand is called a node, and a node may be either a message transmission,
a message reception, or else a local or neutral node. Neutral nodes are events
in which a principal consults or updates its local state [15]. We write bullets
• for transmission and reception events and circles ◦ for “neutral” events, in
which a principal consults or updates its long-term state. Double arrows indicate
successive events on the same strand, e.g. ◦ ⇒ • ⇒ •.

Each strand is either a regular strand, which represents the sequence of local
actions made be a single principal in a single local session of a protocol, or else
an adversary strand, which represents a single action of the adversary. Only
regular strands use neutral nodes ◦. An adversary strand consists of zero or
more reception nodes followed by one or more transmission nodes. It represents
the adversary obtaining these newly transmitted values as a function of the
values received; or creating it, if there are no reception nodes. All values that
the adversary handles are received and transmitted; none are silently obtained
from any long-term state.

We regard the messages transmitted and received on • nodes, and obtained
from long-term state on neutral nodes ◦, as forming an abstract algebra. Con-
catenation and encryption are operators that construct values in the algebra
from a pair of given values, and we regard v0, v1 as equal to u0, u1 just in case
v0 = u0 and v1 = u1. Similarly, {|v0|}v1 equals {|u0|}u1

just in case v0 = u0 and
v1 = u1. That is, they are free operators.

The basic values that are neither concatenations nor encryptions include
principal names; keys of various kinds; group elements x, x · y, and gx; and text
values. We regard variables (“indeterminates”) such as x as values distinct from
values of other forms, e.g. products z · y, or from other variables. A variable
represents a “degree of freedom” in a description of some executions, which can
be instantiated or restricted. It may also represent an independent choice, as A’s
choice of a group element x to build gx is independent of B’s choice of y. The
algebra of basic message values is defined in Section 4 as the normal forms of an
AC rewriting system.

If n is a node, and the message t is transmitted, received, or coordinated with
the state on n, then we write t = msg(n).

Ingredients and origination. A value t1 is an ingredient of another value t2,
written t1 v t2, if t1 contributes to t2 via concatenation or as the plaintext of
encryptions: v is the least reflexive, transitive relation such that:

t1 v t1, t2, t2 v t1, t2, t1 v {|t1|}t2 .

By this definition, t2 v {|t1|}t2 implies that (anomalously) t2 v t1. Also, for basic
values v1, v2, if v1 v v2 then v1 = v2.

6 Draft, August 15, 2011

A value t originates on a transmission node n if t v msg(n), so that it is an
ingredient of the message sent on n, but it was not an ingredient of any message
earlier on the same strand. That is, m⇒+ n implies t 6v msg(m).

A basic value is uniquely originating in an execution if there is exactly one
node at which it originates. Freshly chosen nonces or DH values gx are typically
assumed to be uniquely originating. A value is non-originating if there is no
node at which it originates. A long term secret such as a signature key or a
private decryption key is assumed to be non-originating to formalize being un-
compromised. Because the adversary strands always receives their arguments as
incoming messages, an adversary strand that encrypts a message requires that
the key has been transmitted. Similarly, a decryption strand requires the same
for the symmetric key, or for the inverse decryption member of a key pair.

Very often in DH-style protocols unique origination and non-origination are
used in tandem. When a compliant principal generates a random x and transmits
gx, the former will be non-originating and the latter uniquely originating.

Executions are bundles. We formalize the idea of a protocol execution by
bundles. A bundle is a directed, acyclic graph. Its vertices are nodes on some
strands (which may include both regular and adversary strands). Its edges in-
clude the strand succession edges n1 ⇒ n2, as well as communication edges
written n1 → n2. Such a dag B = (V,E⇒ ∪ E→) is a bundle if it is causally
self-contained, meaning:

– If n2 ∈ V and n1 ⇒ n2, then n1 ∈ V and (n1, n2) ∈ E⇒;
– If n2 ∈ V is a reception node, then there is a unique transmission node
n1 ∈ V such that msg(n2) = msg(n1) and (n1, n2) ∈ E→;

– The precedence ordering �B for B, defined to be (E⇒ ∪ E→)∗, is a well-
founded relation.

The first clause says that a node has a causal explanation from the occurrence
of the earlier nodes on its strand. The second says that any reception has the
causal explanation that the message was obtained from some particular trans-
mission node. The last clause says that causality is globally well-founded. It
holds automatically in finite dags B, which are the only ones we consider here.

When we assume that a value is non-originating, or uniquely originating, we
are effectively constraining which bundles B are of interest to us, namely those
in which the value originates on no node of B, or on one node of B, respectively.

3 The Unified Model

We first consider the Unified Model UM. In this section, we first (Section 3.1)
describe the protocol, both the way that the session keys are agreed, and also the
interaction between the clients and the certifying authority. We then describe
the certification process. We turn then in Section 3.3 to defining the security
goals. In Sections 3.4 and 3.5 we then establish a confidentiality property and
an authentication property.

Draft, August 15, 2011 7

3.1 The Protocol

We regard UM as involving several events that were left implicit in the intro-
duction. We summarize this in Fig. 1. The top and bottom rows shows the

◦ +3

A,a,cA

• +3

gx

��

• +3 • +3 ◦
d(A,B)

RA��

RB

OO
cB

OO

cA
��

◦ +3
B,b,cB

• +3 • +3
gy

OO

• +3 ◦
d(B,A)

kA = kum(a, YB , x, RB) kB = kum(b, YA, y, RA)

cP = [[cert YP , P]]CA d(P, P ′) = keyrec P, P ′, kP

Fig. 1. The UM Protocol

initiator’s actions and the responder’s actions, respectively. In the initiator we
have successively:

1. A neutral node consulting its principal’s local state to obtain its own name,
long term secret DH value, and certificate;

2. A transmission node sending RA, where RA is gx for a freshly chosen value
x;

3. A reception node receiving the ephemeral value RB ;
4. A reception node for the peer’s certificate cB associating YB with B’s iden-

tity; and
5. A neutral node that deposits the principals’ names and the resulting session

key as a new key record into the principal’s local state database.

The responder’s actions are identical except that in place of nodes 2 and 3,
we have their duals; i.e. a reception node receiving some ephemeral value RA,
followed by a node transmitting RB , where RB is gy for a freshly chosen value
y.

3.2 The Certificate Authority

We identify a protocol role for certificate authorities also. It receives a request
containing the principal name P and the public value YP , and may then emit a
public key certificate cP .

cert req P, Y

��
• +3 •

[[cert Y, P]]CA

OO

8 Draft, August 15, 2011

It does so after some procedure we will not represent, which is intended to ensure
that the principal P possesses an a such that ga = Y . The same Y should never
be certified with two different principals P, P ′, lest a participant A not know
whether a particular session key was shared with P or P ′. For instance, if a
priest had the same public value Y as a district attorney, a confession meant for
one might be received by the other. However, if each principal chooses his long
term secret at random from a set far larger than the set of principals, then this
event is unlikely.

To request certification, a compliant principal transmits:

• cert req P, ga

// ,

having made sure to choose a freshly generated long term secret a. Thus, when-
ever we have a certification request from a compliant principal, we will assume
that a is non-originating, and that ga originates uniquely at this transmission.
The CA’s (unrepresented) procedure is intended to ensure P has met these con-
ditions, before the CA emits the certificate.

Even if a CA cannot check for all collisions, we can still avoid the bad con-
sequences of colliding certificates by altering the protocol. We could include an
additional step of key confirmation, using a different hash function H ′ to gener-
ate a confirmation key k′ = H ′(YA

b, RA
y). By exchanging messages containing a

MAC of the ephemeral values and principal identities, each principal can ensure
that no confusion has occurred.

A : •
mack′ (3, A, B, gx, RB)// • : B

mack′ (2, B, A, Ra, g
y)oo (8)

Instead of the key confirmation messages of Eqn. 8, one can also diversify the
session key using the intended principal identities:

k = H(A, B, YB
a, RB

x) = H(A, B, YA
b, RA

y).

This key computation prevents the district attorney (if complying with the pro-
tocol) from receiving a message intended for the priest.

The CA can ascertain whether Y is a genuine group element via the little
Fermat theorem, ensuring that there exists an a such that Y = ga, and in
particular that Y 6= g1. We embody these comments in some assumptions about
the client and server behaviors in certification:

Principal Certification. When a compliant principal P successfully requests
a certificate with long term public value Y , we will assume that Y uniquely
originates with this request. Since the protocol requires that Y is of the
form ga, this means that P has chosen a value a independent of other values
chosen elsewhere. Thus, we will also assume that a is non-originating.

Certificate Authority. A certificate cP = [[cert Y, P]]CA is useful only if
certificates cannot be constructed by the adversary, i.e. the Certificate Au-
thority’s signature key KCA is uncompromised. We will assume that sk(KCA)
is non-originating.

Draft, August 15, 2011 9

We also assume that the CA ensures that there exists an a such that: (1)
a 6= 1; (2) Y = ga; and (3) if a is non-originating and there is also another
certificate

cP ′ = [[cert Y, P ′]]CA

for the same Y , then P = P ′.

Any other party has a negligible likelihood of selecting the same a for any pur-
pose, and the adversary has a negligible likelihood of inferring it from the later
usage of Y . The CA establishes (3) by a proof-of-possession interaction. If Y = gv,
and a principal P possesses v, then there are only two cases. One is that P is
compliant, in which case v is a freshly chosen value a, and thus with overwhelm-
ing probability distinct from any previously chosen a′. The other case is that P
in non-compliant (“the adversary”), in which case in our model v is not non-
originating: the adversary transmits v to itself to perform operations with it.

3.3 Security Properties of UM

In particular, an adversary cannot obtain a key shared with a compliant A or
B, who has engaged in a session apparently with a B or A, if the latter’s long
term secret is used only in accordance with the protocol. Writing A for either
the initiator or responder, we have the confidentiality property:

Security Goal 1 (UM Confidentiality) Suppose that A ran a session yield-
ing k = H(YB

a, Ry
B), and a, b 6= 1 are non-originating.

Then k is not disclosed to the adversary.

The ephemeral values x, y make the keys in different sessions independent, so
that key re-establishment for A,B is still possible even if a session key becomes
compromised. We will discuss such properties later in a separate paper.

Moreover, we also have an authentication property. If two compliant prin-
cipals A,B obtain the same key k, then each believes it to be shared with the
other:

Security Goal 2 (UM Authentication) Suppose A,B both ran sessions yield-
ing

H(YD
a, RD

x) = k = H(YC
b, RC

y),

and A and B received certificates

[[cert YD, D]]CA and [[cert YC , C]]CA

respectively. If a, b are non-originating, then C = A and D = B.

This is a stronger authentication property than Blake-Wilson and Menezes claim [2,
Sec. 4.3], in reference to MQV, namely, “implicit key authentication is only con-
sidered in the case where B engages with an honest entity (which E isn’t).”2 In
our terminology, their claim means,

2 See also [23, Sec. 5.2], where the same point is made.

10 Draft, August 15, 2011

Security Goal 3 (UM Weak Authentication) Suppose A,B both ran ses-
sions yielding

H(YD
a, RD

x) = k = H(YC
b, RC

y),

and A and B received certificates

[[cert YD, D]]CA and [[cert YC , C]]CA

respectively. If a, b are non-originating, and if some c is non-originating such
that gc = YC , then C = A and D = B.

So in this goal, A,B, and C, namely B’s apparent peer, must be assumed com-
pliant. Using our stronger goal, even a non-compliant E cannot cause authenti-
cation failure. It is in this sense that we have discovered a more exact property
that a suitable CA definition can achieve.

3.4 Confidentiality for UM

The confidentiality property Goal 1 states that the adversary cannot obtain a
session key in a session satisfying reasonable assumptions.

Suppose that B has engaged in a run of UM as responder. Moreover, suppose
that the other parameters of the run are:

A,RA, y, YA, b,CA

where, YA having been certified, we will infer that YA is of the form ga. Then if
a, b 6= 1 are non-originating, k is not disclosed to the adversary.

Proof sketch. If there were such a node n on which k is transmitted, and thereby
disclosed to the adversary, it would be either a regular node or an adversary node.
No regular node, however, transmits a value of this form. Thus, n would be an
adversary node. However, in that case, the adversary must have constructed
H(YA

b, RA
y) from an earlier transmission of YA

b, RA
y, which in turn must

have been constructed from earlier transmissions of YA
b and RA

y.
1. No regular node can transmit YA

b.
In particular, YA having been certified, we have from CA assumption (1) that

YA 6= g1, hence YA
b 6= YB . Moreover, since YB = gb was certified, b 6= 1, whence

YA
b 6= YA. Thus YA

b was not transmitted on the certification nodes for A, YA or
B, YB .

Moreover, YA
b was not transmitted on any other certification request by a

compliant principal. A compliant principal selects a value gc, but we know that
YA is of the form ga, so that YA

b = gab, hence distinct from any gc at all.3 Nor,
for the same reason, does YA

b originate as the ephemeral value of any compliant
strand.

3 We formalize this below, Section 4. However, a, b being choices made independently
of each other and of c, betting on ab = c is a strategy that loses for the adversary
with overwhelming probability.

Draft, August 15, 2011 11

2. No adversary action can produce YA
b. Although the adversary has the

values YA = ga and YB = gb, in order to incorporate b into the exponent of ga,
or in order to incorporate a into the exponent of gb, the adversary would have
to have access to a (non-originating) value a or b. ///

In a world with no compromise, x, y would have no role in ensuring confi-
dentiality. Their only role is to ensure that the confidentiality of the key for one
secure conversation is independent of the compromise of other session keys. We
will not pause here to establish this in more detail.

In step 2 we use a central principle, which we will formalize in a stronger
form in Section 5. For now, we codify it as:

Principle 4 If the adversary originates ge, then e = e1 · e2 where both ge1 and
e2 have been previously transmitted.

Principle 4 also leads to a result when A has engaged in a full run of UM as
initiator similar to this result about B as responder.

3.5 Authentication for UM

The authentication goal for UM, Goal 2 states that, on reasonable assumptions,
if two compliant principals agree on a key, then they agree on their identities.

Suppose that A,B have engaged in a full runs of UM as initiator, yielding

H(YD
a, RD

x) = k = H(YC
b, RC

y),

and A and B received certificates

[[cert YD, D]]CA and [[cert YC , C]]CA

respectively. Since YC , YD have been certified, we will infer that they are of the
form gc, gd. If a, b are non-originating, then C = A and D = B.

A may have executed either an initiator session or a responder session. The
protocol permits two principals, each of whom starts a session as initiator, to
successfully complete a run with each other. However, if one executes a local
session as responder, the other must have acted as initiator.

Proof sketch. Since B’s session yields k = H(gab, gxy) and Y b
D = gab, we may

infer that B’s private value is b. Since A’s session yields k = H(gab, gxy) and
Y a
D = gab, YD = gb = YB . Since the CA certifies YC with at most one principal’s

identity, and since B’s session involves the certificate [[cert YB , B]]CA, it follows
that D = B.

The other result is similar. ///

4 A Theory of Groups with Exponentiation

In this section we present an axiomatization of a theory of equational theory of
groups with exponentiation. It is appropriate to say “a theory” rather than “the

12 Draft, August 15, 2011

theory” for the following reason. Our goal is to model the actions of the adversary
as the construction of terms built from terms that he receives as messages. From
this perspective the operations of the signature embody the computational power
that we model for the adversary. For example the adversary should be able to
multiply two values he possesses, and take inverses as well. He should be able to
do exponentiation, but not retrieve an exponent from a value that might have
been constructed and sent as an exponentiation. This of course is a reflection of
the Computational Diffie-Hellman Assumption.

This assumption is reflected in a completely straightforward way in our for-
malism. Namely, we do not provide a logarithm function in our signature.

Capturing adversary ability by writing terms is the standard insight under-
lying symbolic analysis of protocols. When terms are considered modulo some
equations, of course syntactic analysis is more complex. Algebraically rich set-
tings such as those of interest in this paper call for careful consideration of which
equations to work with. A crucial point is that we want to model what the ad-
versary can do uniformly over all values of q. The sense in which equations AGˆ
below capture this uniformity is the content of Theorem 13.

Definition 5. The theory AGˆ is the equational theory determined by the fol-
lowing data.

– Three sorts G, E, and NZE, with NZE a subsort of E.
– Operators:

◦ : G×G→ G

id :→ G

inv : G→ G

∗ : E × E → E

1 :→ NZE

i : NZE → NZE

exp : G× E → G

bar : G→ NZE

∗∗ : NZE → NZE

– Equations: as given in Table 1

The inclusion of the operator ∗∗ is a device for ensuring that the sort NZE is
closed under ordinary E-multiplication (by writing the equation that states that
∗∗ coincides with * on NZE).

Note that no equations involve bar. So the operations in G and in E are not
bound to be related in any way.

4.1 Rewriting with theory AGˆ

In order to work with the theory AGˆ we will present it as a rewrite theory,
orienting the equations of AG .̂ To achieve confluence we will also add new rules,

Draft, August 15, 2011 13

(G, ◦, i, id) is an abelian group

(a ◦ b) ◦ c = a ◦ (b ◦ c)
a ◦ b = b ◦ a
b ◦ id = b

b ◦ inv(b) = id

(E,+, 0,−, ∗ ,1, i) is a commutative unitary ring

(x + y) + z = x + (y + z)

x + y = y + x

x + 0 = x

x + (−x) = 0

(x ∗ y) ∗ z = x ∗ (y ∗ z)

x ∗ y = y ∗ x

x ∗ (y + z) = (x ∗ y) + (z + z)

x ∗ 1 = x

Multiplicative inverse is defined for elements of sort NZE

i(u ∗ v) = i(u) ∗ i(v)

i(1) = 1

i(i(w)) = w

Exponentiation makes G a unitary right E-module

ax ∗ y = (ax)y

a1 = a

(a ◦ b)x = ax ◦ bx

a(x+y) = ax ◦ ay

idx = id

NZE is closed under multiplication

u ∗ ∗v = u ∗ v

Table 1. The theory AGˆ

corresponding to equations that are derivable from AGˆ yet are are necessary to
join critical pairs.

Definition 6. Let R be the set of rewrite rules given in Table 2. The rewrite
relation →AGˆ is rewriting with R modulo associativity and commutativity of
id ,+, and ∗ .

Termination and Irreducible Forms

Lemma 7. The reduction →AGˆ is terminating and confluent modulo AC.

14 Draft, August 15, 2011

At sort G

b ◦ id → b

b ◦ inv(b) → id

inv(id) → id

inv(a ◦ b) → inv(a) ◦ inv(b)

inv(inv(b)) → b

idx → id

(a ◦ b)x → (ax) ◦ (bx)

(inv(a))x → inv(ax)

(ax)y → a(x ∗ y)

a0 → id

a(x+y) → (ax) ◦ (ay)

a−(x) → inv(ax)

a1 → a

At sort E

x + 0 → x

x + (−(x)) → 0

x ∗ (y + z) → (x ∗ y) + (x ∗ z)

x ∗ 1 → x

−(0) → 0

−(x + y) → −(x) + (−(y))

−(−(x)) → x

0 ∗ x → 0

−(x) ∗ y → −(x ∗ y)

At sort NZE

u ∗ ∗v → u ∗ v
i(u ∗ v) → i(u) ∗ i(v)

i(1) → 1

i(i(w)) → w

Table 2. Rewrite rules for →AGˆ

Proof. Termination can be established using the AC-recursive path order defined
by Rubio [26] with a precedence in which exponentiation is greater than inverse,
which is in turn greater than multiplication (and 1). This has been verified with
the Aprove termination tool [13].

Then confluence follows from local confluence, which is established via a
verification that all critical pairs are joinable. We do not give details of the
critical-pair checking here, in part because confluence is a direct consequence of
Theorem 13 below.

Lemma 8. If e : E is irreducible then e is a sum (m1 + . . . + mn) where each
mi is of the form

e1 ∗ . . . ∗ ek k ≥ 0

where

– the case n = 0 is taken to mean e = 0
– the case k = 0 is taken to mean mi = 1
– no ei is of the form i(ej), and
– each ei is one of:

x i(x) [t] i([t])

where x is a G-variable and t : G is a G-normal form

We will call terms of the form mi above irreducible monomials

Draft, August 15, 2011 15

Lemma 9. If t : G is irreducible then t is a product

t1 ◦ . . . ◦ tn n ≥ 0

where

– the case n = 0 is taken to mean t = id
– no ti is of the form inv(tj)
– each ti is one of:

v inv(v) ve inv(ve)

where v is a G-variable e : E is an irreducible monomial.

Note that in an irreducible G-term, the symbols + and 1 do not occur.

4.2 A Completeness Result for AGˆ

The following models for the language of AGˆ will be of interest.

Definition 10.

– For prime q, the model Mq is given by the following data.
Let Zq denote the additive group of integers mod q and Fq denote the field
of order q (with domain {0, 1, . . . , q − 1}). The interpretation of the sort G
is Zq, (that, is, with ◦ interpreted as addition), the interpretation of the sort
E is Fq, with the arithmetic operators are interpreted in the canonical way,
and the interpretation of the sort NZE is the set of non-0 elements of Fq.
The “bar” function symbol [·] is interpreted by the following function

[a] =

{
a if a 6= 0
1 if a = 0

Here we exploit the fact that the underlying sets for Zq and Fq are the same.
– If D is a non-principal ultrafilter over the set of prime numbers,

∏
D Mq

denotes the ultraproduct structure
∏

D{Mq | q prime }. Here we view each
Mq as an ordinary structure in unsorted first-order logic, treating the sorts
G, E, and NZE as unary predicates.

– The model Q[] comprises the additive group of rational numbers considered
as a vector space over itself, with the “bar” function symbol is interpreted
via the same recipe as for the Mq. That is, the interpretation of the sort G
is Q, (with ◦ interpreted as addition), the interpretation of the sort E is Q,
with the arithmetic operators are interpreted in the canonical way, and the
interpretation of the sort NZE is the set of non-0 elements of Fq.

For the notion of ultraproduct of structures see, for example, [6]; the crucial
facts about ultraproducts for our purposes are (i) a first-order sentence is true
in
∏

D Mq if and only if the set of indices at which it is true is a set in D, and
(ii) when D is non-principal, every cofinite set is in D.

16 Draft, August 15, 2011

Lemma 11. The structure Q[] can be embedded as a submodel of
∏

D Mq.

Proof. Each Mq is a field, so
∏

D Mq is a field, since ultraproducts preserve all
first-order sentences. The characteristic of

∏
D Mq is 0, since for each prime p,

the equation 1 + 1 + · · · + 1 = 0 (p occurrences of 1) holds only at Mp, and
D contains no finite sets. Since Q is the prime field of characteristic 0, it is
embeddable in

∏
D Mq, and this field embedding respects the function [·], since

[·] is definable by the same first-order formula in Q[] and in each Mq. ///

Lemma 12. If t : G is in normal form, t 6≡ id, then there exists η : Vars →
(Q \ {0}) such that for every subterm t′ of t, η(t′) 6= 0 in Q[].

Proof. First note that in an irreducible term not identically id or 0, the constants
id and 0 do not occur. Now, in the structure Q[], exponentiation is interpreted
as multiplication, so it suffices to consider the expression obtained by replacing
◦ and inv by + and −, and the exponentiation operator by ∗ , and viewing t
as an ordinary rational expression over the rationals, albeit with the [·] operator
still allowed to appear.

First consider the case where there are no occurrences of [·]. Then we are
concerned with an ordinary rational expression t in several variables x1, . . . , xk,
not identically 0. We may view t as determining a real function ft : Rk → R.
In fact each subterm t′ of t similarly determines a function from Rk to R. Let
U ⊆ Rk be the set of points p = (p1, ...pk) such that ft′(p) 6= 0 for every subterm
t′ of t. Since t is not identically 0 and is irreducible, U is not empty, and, as the
preimage of R \ {0}, is open. So U contains a rational point r = (r1, ..., rk) with
each ft′(r) 6= 0. We take η to map each xi to ri.

Now for the general case, when [·] subterms can arise, consider the term t1
obtained from t by simply forgetting the [·] operator, that is, treating it as the
identity function. The η that works for t1 will in fact suffice for the original term
t. This is because, for each subterm [u] of t, the value of η(u) in Q[] will not be
0, so the value of [η(u)] in Q[] will be η(u). ///

The next theorem characterizes the sense in which the theory AGˆ functions
as an analysis of uniform equality.

Theorem 13. For each pair of G-terms s and t, the following are equivalent

1. AGˆ ` s = t
2. the equation s = t holds in every model based on Zq, Fq where the [·] is

interpreted as any function from Zq to the non-0 elements of Fq

3. the equation s = t holds in every model Mq

4. for infinitely many q, the equation s = t holds in Mq

5. there exists an ultrafilter D such that
∏

D Mq |= s = t
6. Q[] |= s = t
7. if s reduces to s′ with s′ irreducible, and t reduces to t′ with t′ irreducible,

then s′ and t′ are identical modulo associativity and commutativity of ◦, +,
and ∗ .

Draft, August 15, 2011 17

Proof. It suffices to establish the cycle of entailments 1 implies 2 implies 3 . . .
implies 7 implies 1. The first three of these are immediate.The implication 4
implies 5 follows from the fact that for any infinite set I there exists an ultrafilter
D containing I. The fact that 5 implies 6 follows from the fact that Q[] can be
embedded as a submodel of

∏
D Mq. For 6 implies 7, suppose that Q[] |= s = t

and that s and t reduce to irreducible terms s′ and t′ respectively. Form the
term u ≡ s′ ◦ inv(t′). By hypothesis Q[] |= u = id . By Lemma 12, any irreducible
form of s′ ◦ inv(t′) is id . Since s′ and t′ are themselves irreducible it must be the
case that s′ ≡ t′.

It is immediate that 7 implies 1. ///

As a corollary of Theorem 13 we note that the above equivalences hold for E-
term equations as well. Since: given a pair of terms e and e′, we may form the
equation ge = ge

′
, and note that this is provable iff e = e′ is provable, and is

true in a given model M iff e = e′ is.
Another consequence of Theorem 13—specifically the implication from 1 to

7—is the fact that the reduction relation → is Church-Rosser. This discharges
the proof obligation remaining from Lemma 7

Discussion. The equivalence of AG -̂provability with equality in the models
Mq (items 2, 3, 4 in Theorem 13) is the technical content of our claim that AGˆ
captures “uniform equality” between terms with exponentiation.

On the other hand the model Q[] is very convenient technically: the fact that
a single model serves to witness uniform equality can simplify analyses. See for
example the analysis of MQV in Section 6 below. The theory of fields has no
equational presentation, and indeed there are no free fields (every non-trivial
field homomorphism is a monomorphism). The theory AGˆ has free models, of
course, its term-models, but these are not fields. So the field Q[] serves as a sort
of stand-in for a field “term-model” in the sense that it that witnesses precisely
the equations that hold in all of the finite fields.

It follows from results of Ax [1] that the model
∏

D Mq satisfies precisely
those first-order sentences in the language of field theory true in each of the Mq

(equivalently, in all but a finite number of the Mq).

4.3 Indicators for terms

The notion of indicator is our key technical device for analyzing terms. Indicators
are an invariant that allow us to measure the ways that certain atoms (for our
purposes, non-originating values) are “present” in a term. They are a refinement
of the standard notion of an atom occurring term, a necessary refinement given
the fact that terms are considered modulo equations.

The basic terms are the terms built from atoms by the group operations and
exponentiation. We will define indicators for all terms t. Let Zk denote the set
of all k-tuples of integers. For intuition about the following definition, think of
N as being a set of non-originating values for a protocol. If m is a monomial
occurring as a subterm of a term t, say that m is “maximal” if it occurs as an

18 Draft, August 15, 2011

exponent in t, that is, if the smallest subterm of t of which m is a proper subterm
is of the form bm.

Definition 14. Fix a vector N = 〈v1, . . . , vd〉 of E-variables. If m is an irre-
ducible monomial, the N -indicator vector for m is 〈z1, . . . , zk〉 where zi is the
multiplicity of vi in m.

If t is an arbitrary term in normal form, the set IndN (t) is the collection of all
indicator vectors of the monomials m occurring as maximal-monomial subterms
of t.

Example: For N = {x, y}, if t is

gx i(y) · gzx[g
x] · gxx[g

y]

IndN (t) = {〈1,−1〉, 〈1, 0〉, 〈2, 0〉}

Definition 15. If T = {t1, . . . , tk} is a set of terms then the set Gen(T) of terms
generated by T is the least set containing T and closed under the term-forming
operations.

Theorem 16. Suppose T is a collection of terms such that every e ∈ T of sort
E is N -free. Then

1. every e ∈ Gen(T) of sort E is N -free, and
2. if u ∈ Gen(T) is of sort G and z ∈ Ind(u) then for some t ∈ T , z ∈ Ind(t).

Proof. The proof of each assertion is by induction on the number of operations
used to construct terms from elements of T .

The interesting cases are when u is of the form u1u2 or te where t, u1, u2
and e are each in Gen(T). We may assume that these latter terms are in normal
form.

In the first case, then, u is a product

t1 ◦ . . . ◦ tn

where each factor comes from u1 or u2. Since each ti is of the form v, inv(v), ve, or inv(ve)
the normal form of this term is simply the result of cancelling any factors (from
different ui) that are inverses of each other. Clearly no new E-subterms are cre-
ated by this, so no new indicator vectors are created, and our assertion follows.

The other case is when u is te. Note that since e is in Gen(T) we know that
e is N -free. It suffices to show that Ind(te) = Ind(t). We may assume that t is
in normal form as usual, so that te is

(t1)e ◦ . . . ◦ (tn)e

Each (ti)
e is of the form

ve (i(v))e (ve
′
)e (inv(ve

′
))e

Draft, August 15, 2011 19

The first two terms are N -free. The second kind of term reduces to ve ∗ e′ , and
the indicator set for this term is precisely Ind(e) since e′ is N -free. The last term
reduces to inv(ve

′ ∗ e) and we can argue just as in the previous case.
The cases for the operations of concatenation and encryption are immediate

applications of the induction hypothesis, since these non-algebraic constructions
simply perpetuate indicator vectors freely through terms.

5 A Limitation of the Adversary

As described in the Introduction, an adversary strand consists of zero or more
reception nodes followed by a transmission node. Formally we have

Definition 17. An adversary strand is a strand of one of the following forms:

– Emission of a basic value or indeterminate a: 〈+a〉
– A constructor strand: 〈−a1 ⇒ . . .⇒ −an ⇒ +t〉 where is t is in Gen(a1, . . . , an)
– A destructor strand 〈−t⇒ +s1 . . .⇒ +sn〉 where t is a concatenation of the

values si.
– An encryption strand 〈−K ⇒ −t⇒ +{|t|}K〉
– An decryption strand 〈−K−1 ⇒ −{|t|}K ⇒ +t〉

An adversary web constructed from a collection of node-disjoint adversary strands
S1, . . . , Sk is an acyclic graph whose nodes are the nodes of the Si with an edge
from node n to node n′ if either (i) n ⇒ n′ on some strand or (ii) n is a
transmission node, n′ is a reception node, and msg(n) = msg(n′).

The crucial aspect of an adversary web is that no message received can con-
tain a non-originating value.

Theorem 18. Let N be the set of non-originating variables in a bundle B and
let W be an adversary web of B. If u is a message transmitted on this web, then
every N -indicator at level k in u is an N -indicator at a level k′ ≤ k in some
message transmitted by a regular strand.

Proof. Let TR be the set of messages received on W , and let TM be the set of
basic values emitted by W ; set T = TR ∪ TM . The message u is in Gen(T). The
set TR is N -free, as a consequence of the fact that every message received on W
must have originated, and TM is N -free since it is a set of basic values not in N
(indeed, each term in TM has an empty indicator set). So Theorem 16 applies,
and any N -indicator at level k in u is an N -indicator at a level k′ ≤ k in some
message of T . Since each t ∈ TM has empty indicator set we conclude that every
indicator in u comes from a message in TR, as desired.

Corollary 19. Let N , B, and W be as in Theorem 18. If z is a level-0 indicator
in a message transmitted on W then z is a level-0 indicator of some message
transmitted by a regular strand.

Principle 4 from Section 3.1 is an immediate consequence of the theorem.

20 Draft, August 15, 2011

6 Completing the MQV Analysis

The MQV message flow (see Fig. 2) is the same as in UM. Only the key compu-
tation function kmqv(a, Y, x,R) = (R · Y [R])(x+a[gx]) differs.

◦ +3

A,a,cA

• +3

gx

��

• +3 • +3 ◦
d(A,B)

RA��

RB

OO
cB

OO

cA
��

◦ +3
B,b,cB

• +3 • +3
gy

OO

• +3 ◦
d(B,A)

cP = [[cert YP , P]]CA d(P, P ′) = keyrec P, P ′, kmqv(· · ·)

Fig. 2. The MQV Protocol Message Flow

Confidentiality of MQV. MQV is more challenging to analyze than UM,
because it depends more intimately on the structure of the algebra. UM com-
putes its key kum(a, Y, x,R) = H(Y a, Rx), so there is no algebraic interaction
between the long-term values and the ephemeral values. By contrast, the MQV
key computation kmqv(a, Y, x,R) = (R · Y [R])(z+c[gz]) mixes the long and short
term values c, z and R, Y . In the normal form of Section 4, we have:

kmqv(a, Y, x,R) = Rx ·Ra[gx] · Y x[R] · Y a[gx][R].

Consider the case in which Y = gb and a, b 6= 1 are non-originating. Then we
have:

kmqv(a, g
b, x,R) = Rx ·Ra[gx] · gbx[R] · gab[g

x][R].

Observe, if we take indicators relative to the vector of variables 〈a, b〉, then the
last term gives an indicator of 〈1, 1〉. However, no regular node ever transmits a
message with two non-zero positions in any indicator vector. Moreover, adver-
sary strands never create new indicators. This immediately implies that the key
cannot be disclosed:

Security Goal 20 (MQV Confidentiality) Suppose that A ran a session yield-
ing k = kmqv(a, g

b, x,R), and a, b 6= 1 are non-originating.

Then k is not disclosed to the adversary.

Authentication in MQV. Let us turn now to the authentication goal for
MQV. Here we would like to show that, when two compliant principals A,B
share the same key at the end of a session, then each knows the identity of
the other. This is in fact not true for MQV without a further constraint on the
certification authority, as Kaliski points out [18].

Draft, August 15, 2011 21

The problem is that an adversary, observing A’s ephemeral public value RA,
may generate a new ephemeral value RE as well as a long-term value YE , which
depend on RA and YA:

RE = RA · (YA)[RA] · g−1 YE = g[RE]−1

The adversary asks CA to certify the value YE , for which it can successfully prove
possession of the exponent. The resulting certificate leads B to think that the
key is shared with E, when in fact it is shared with A. The inverses cause E’s
operations to cancel out. Thus, a mischievous priest E can induce a criminal to
confess to a compliant district attorney A, which could have led to an unexpected
plot twist in the Hitchcock movie with Montgomery Clift [17]. We prove this
scenario depends essentially on E’s ability to incorporate an ephemeral value
into E’s certified long-term value.

The proof again relies on the invariance of indicator vectors (Cor. 19).
Consider indicators expressed in terms of the variable vector 〈a, b, x, y〉. Thus,

YA = ga has indicator {〈1, 0, 0, 0〉}, and YB = gb has indicator {〈0, 1, 0, 0〉}.
Every certified long-term public value not involving these variables has indicator
{〈0, 0, 0, 0〉}.

Security Goal 21 (MQV Authentication) Suppose sessions of A,B yielded

kmqv(a, YD, x,RD) = k = kmqv(b, YC , x,RC),

respectively, and A and B received certificates

[[cert YD, D]]CA and [[cert YC , C]]CA

respectively. Suppose that the indicators of YC , YD are each among

{〈1, 0, 0, 0〉}, {〈0, 1, 0, 0〉}, and {〈0, 0, 0, 0〉}.

If a, b are non-originating, then C = A and D = B.

We will not want to instantiate any of the non-originating values a, b, x, y, since
this would reflect an unreasonable constraint on the behavior of the regular
participants.

If there were a counterexample to our claim—an execution in which the
premises are satisfied, but the conclusion is not true—then the adversary uses
some strategy to determine what messages to prepare and deliver hoodwink
the regular participants. Our uniformity assumption implies that this strategy
continues to work as the underlying algebra varies (i.e. as q increases), as the
function [·] varies, and as the specific parameters of the run vary. That is,
the adversary strategy may be specified using algebraic expressions of in the
signature of AG .̂ Moreover, whenever the adversary selects a value to deliver to
a regular participant, the theory AGˆ must entail that the value computed by
the adversary equals the value expected by the recipient.

22 Draft, August 15, 2011

Proof. We would like to show that the sessions agree on the long-term secrets,
i.e. that a = d and b = c, so by our CA assumption (3), A = D and B = C.

Reducing kA to normal form, we obtain:

gxz · gaz[g
x] · gcx[g

z] · gac[g
x][gz]

and kB has the normal form:

gyw · gbw[gy] · gdy[g
w] · gbd[g

y][gw]

Since we have assumed them equal, we must consider what permutations of the
factors can equate the normal forms.

The indicators constrain which combinations are compatible. For instance,
gxz has an indicator of the form 〈?, ?, 1, ?〉, since x is definitely present with
multiplicity 1. However, we cannot be sure that z is a simple value, as it may
have been built using a, b, y.

On the other hand, gdy[g
w] has an indicator of the form 〈?, 0, 0, 1〉 since y is

definitely present, while b, x are definitely absent. The absence of x here depends
crucially on our assumption that the certified value gd is x-free; including a
d in the exponent therefore cannot introduce any dependence on x. Similarly,
gbd[g

y][gw] has an indicator of the form 〈?, 1, 0, 0〉, since b is definitely present, and
a is possibly present, as d = a is possible. This reasoning yields the indicators for
our terms of interest shown in Table 3. We ask now: what are the possible ways

gxz 〈?, ?, 1, ?〉 gyw 〈?, ?, ?, 1〉
gaz[g

x] 〈1, ?, ?, ?〉 gbw[gy] 〈?, 1, ?, ?〉
gcx[g

z] 〈?, ?, 1, 0〉 gdy[g
w] 〈?, ?, 0, 1〉

gac[g
x][gz] 〈1, ?, 0, 0〉 gbd[g

y][gw] 〈?, 1, 0, 0〉
Table 3. Factors and their indicators

that the “?” can be filled in to make the indicators match? A little investigation
shows that there is only one solution.

Let us temporarily label the indicators in the left column as L1, L2, L3, and
L4, and similarly R1, R2, R3, and R4 for the right column. We first notice that
neither of L3 or L4 can match with R1 or R3 because of the conflict at index 4
of the vectors. So we must have {L1, L2 } match with {R1, R3 } and {L3, L4 }
match with {R2, R4 }. But L1 cannot be paired with R3 due to the conflict at
index 3. Similarly L3 cannot be paired with R4 due to the conflict at index 3.

Thus, the only scenario that matches the indicator variables correlates L1
with R1, L2 with R3, L3 with R2, and L4 with R4. No other instantiations are
consistent with the information in the indicators. We must have:

gxz = gyw (9)

gaz[g
x] = gdy[g

w] (10)

gcx[g
z] = gbw[gy] (11)

gac[g
x][gz] = gbd[g

y][gw] (12)

Draft, August 15, 2011 23

By Eqn. 9, we must identify gxz = gyw, but since we may not instantiate x or
y, we have (for some v) w 7→ xv and z 7→ yv. With this information, Eqn. 10
reduces to a(yv)[gx] = dy[gxv]. Eqn. 11 reduces to cx[gyv] = b(xv)[gy].

If the adversary has any uniform strategy to satisfy these equations, then it
must work in particular in the structure Q[] (see Defn. 10). In that model, the
“exponentiation” operator is interpreted by multiplication in the additive group
of rationals, while the field operations in E are interpreted in the usual way. The
box [·] is the identity (apart from 0). Hence we must have:

a(yv)gx = dygxv (13)

cxgyv = b(xv)gy (14)

By cancellation, Eqn. 13 yields a = d and Eqn. 14 yields c = b. Eqn. 12 is
compatible with this solution.

To return now to the identities of the principals, we know from the first node
of A’s session that its own certificate took the form [[cert ga, A]]CA. We also know
that B received a certificate for its partner having the form [[cert gd, D]]CA.
Since we now know a = d, the assumption that the CA never recertifies the same
long-term public value with different identities implies that D = A.

By a symmetric argument about B’s session, C = B. ///

In fact, in “most” models we will also have v = 1, i.e. z = y and w = x. By
Eqns 10–11, this will hold in all models in which the interpretations of exponen-
tiation and [·] do not compose to form a linear transformation.

7 Conclusion and Related Work

Related Work. Within the symbolic model, there has been substantial work
on some aspects of DH, starting with Boreale and Buscemi [4], which provides
a symbolic semantics [12,25] for a process calculus with algebraic operations for
DH. The symbolic semantics is based on unification. Goubault-Larrecq, Roger,
and Verma [14] use a method based on Horn clauses and resolution modulo
AC, providing automated proofs of passive security. Maude-NPA [10,11] is also
usable to analyze many protocols involving DH, again depending heavily on
unification. All of these approaches appear to face a fundamental problem with
a theory like the AGˆ theory of Section 4, in which it would be unwise to rely on
the decidability of the unifiability problem (see Section 4.2).

Küsters and Truderung [22] finesse this issue by rewriting each protocol anal-
ysis problem using their AC theory involving exponentiation into a corresponding
problem that does not require the AC property, and can work using standard
ProVerif resolution [3]. Their approach covers a surprising range of protocols,
although, like [7], not implicit authentication protocols.

Conclusion. In this paper, we have applied the strand space framework in a
new setting, namely implicitly authenticated DH protocols, specifically UM and
MQV. We have established that by choosing among different ordering constraints

24 Draft, August 15, 2011

on the CA, we can identify different authentication properties that MQV can
achieve.

While there are certainly some properties that a computational analysis can
clarify, to which our approach is unsuited—beginning with a stronger notion of
security—we have also shed light on issues that would have been hard to uncover
in computational models.

An important area of future work is to study the computational soundness of
our approach, to determine exactly what conclusions (expressed in the compu-
tational model) a proof in this model establishes. For DH operations, there has
been limited work on computational soundness even in the passive case, with
Bresson et al. [5] giving a recent treatment.

Our completeness result in Section 4, Thm. 13, suggests that “uniformly
algebraic” attacks are captured in our model. Let us call an attack uniformly
algebraic if the actions of the adversary consist of a collection of algebraic ex-
pressions in the signature of Section 4; for every message received by a regular
participant, the adversary uses one of these algebraic expressions to prepare the
message to be delivered. After the adversary chooses its strategy, we instantiate
the algebra with a finite cyclic group. The attack succeeds if there is, regard-
less of the choice of group, a non-negligible probability that the message will be
accepted. Non-negligibility here is interpreted relative to the logarithm of the
cardinality of the group.

It would be important to discover if, under the Computational Diffie-Hellman
assumption, there are attacks that a polynomial-time probabilistic Turing ma-
chine could execute which, though not uniformly algebraic, has a non-negligible
probability of success.

The work that we describe here is entirely handcrafted. It would be highly de-
sirable to introduce techniques for automated symbolic protocol that are flexible
enough to incorporate both the specifications (such as the CA ordering assump-
tion) and reasoning in the style of Section 6. We believe that an approach using
model-finding in geometric logic, a generalization of Horn logic, is promising.

Acknowledgments. We are grateful to Moses Liskov, Cathy Meadows, John
Ramsdell, Paul Rowe, Paul Timmel, and Ed Zieglar for vigorous discussions.

References

1. James Ax. The elementary theory of finite fields. The Annals of Mathematics,
88(2):pp. 239–271, 1968.

2. Simon Blake-Wilson and Alfred Menezes. Authenticated Diffe-Hellman key agree-
ment protocols. In Selected Areas in Cryptography, pages 630–630. Springer, 1999.

3. Bruno Blanchet. An efficient protocol verifier based on Prolog rules. In 14th
Computer Security Foundations Workshop, pages 82–96. IEEE CS Press, June
2001.

4. M. Boreale and M.G. Buscemi. Symbolic analysis of crypto-protocols based on
modular exponentiation. Mathematical Foundations of Computer Science 2003,
pages 269–278, 2003.

Draft, August 15, 2011 25

5. Emmanuel Bresson, Yassine Lakhnech, Laurent Mazaré, and Bogdan Warinschi.
Computational soundness: The case of Diffie-Hellman keys. In Veronique Cortier
and Steve Kremer, editors, Formal Models and Techniques for Analyzing Security
Protocols, Cryptology and Information Security Series. IOS Press, 2011.

6. C.C. Chang and H.J. Keisler. Model Theory, volume 73 of Studies in Logic and
the Foundations of Mathematics, 1990.

7. Yannick Chevalier, Ralf Küsters, Michaël Rusinowitch, and Mathieu Turuani. De-
ciding the security of protocols with Diffie-Hellman exponentiation and products
in exponents. FST TCS 2003: Foundations of Software Technology and Theoretical
Computer Science, pages 124–135, 2003.

8. W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, November 1976.

9. Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Authentication
and authenticated key exchanges. Designs, Codes and Cryptography, 2(2):107–125,
1992.

10. Santiago Escobar, Catherine Meadows, and José Meseguer. State space reduction
in the Maude-NRL protocol analyzer. Computer Security-ESORICS 2008, pages
548–562, 2008.

11. Santiago Escobar, Catherine Meadows, and José Meseguer. Maude-NPA: Crypto-
graphic protocol analysis modulo equational properties. Foundations of Security
Analysis and Design V, pages 1–50, 2009.

12. Marcelo Fiore and Mart́ın Abadi. Computing symbolic models for verifying cryp-
tographic protocols. In Computer Security Foundations Workshop, June 2001.

13. J. Giesl, P. Schneider-Kamp, and R. Thiemann. Aprove 1.2: Automatic termination
proofs in the dependency pair framework. In Proceedings IJCAR ’06, LNAI 4130,
pages 281–286. Springer, 2006.

14. Jean Goubault-Larrecq, Muriel Roger, and Kumar Verma. Abstraction and resolu-
tion modulo AC: How to verify Diffie-Hellman-like protocols automatically. Journal
of Logic and Algebraic Programming, 64(2):219–251, 2005.

15. Joshua D. Guttman. Fair exchange in strand spaces. In M. Boreale and S. Kremer,
editors, SecCo: 7th International Workshop on Security Issues in Concurrency,
EPTCS. Electronic Proceedings in Theoretical Computer Science, Sep 2009.

16. Joshua D. Guttman. Shapes: Surveying crypto protocol runs. In Veronique Cortier
and Steve Kremer, editors, Formal Models and Techniques for Analyzing Security
Protocols, Cryptology and Information Security Series. IOS Press, 2011.

17. Alfred Hitchcock. I confess. Warner Brothers, March 1953. http://www.imdb.

com/title/tt0045897/.
18. Burton S. Kaliski. An unknown key-share attack on the MQV key agreement

protocol. ACM Transactions on Information and System Security, 4(3):275–288,
2001.

19. Deepak Kapur, Paliath Narendran, and Lida Wang. An E-unification algorithm
for analyzing protocols that use modular exponentiation. RewritingTechniques and
Applications, pages 150–150, 2003.

20. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In
Advances in Cryptology–CRYPTO 2005, pages 546–566. Springer, 2005.

21. Sebastian Kunz-Jacques and David Pointcheval. About the Security of MTI/C0
and MQV. Security and Cryptography for Networks, pages 156–172, 2006.

22. Ralf Küsters and Tomasz Truderung. Using ProVerif to analyze protocols with
Diffie-Hellman exponentiation. In IEEE Computer Security Foundations Sympo-
sium, pages 157–171. IEEE, 2009.

http://www.imdb.com/title/tt0045897/
http://www.imdb.com/title/tt0045897/

26 Draft, August 15, 2011

23. L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for
authenticated key agreement. Designs, Codes and Cryptography, 28(2):119–134,
2003.

24. A. Menezes, University of Waterloo. Dept. of Combinatorics, Optimization, and
University of Waterloo. Faculty of Mathematics. Another look at HMQV. Citeseer,
2005.

25. Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-process
cryptographic protocol analysis. In 8th ACM Conference on Computer and Com-
munications Security (CCS ’01), pages 166–175. ACM, 2001.

26. Albert Rubio. A fully syntactic AC-RPO. In Paliath Narendran and Michaël
Rusinowitch, editors, RTA, volume 1631 of Lecture Notes in Computer Science,
pages 133–147. Springer, 1999.

27. F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces:
Proving security protocols correct. Journal of Computer Security, 7(2/3):191–230,
1999.

	Logical Protocol Analysis for Authenticated Diffie-Hellman
	Daniel J. Dougherty Joshua D. Guttman

