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Abstract

A programming language for cryptographic protocols
eases design and implementation of application-specific
protocols for tasks such as electronic commerce and dis-
tributed access control. The language provides a mini-
mal expressiveness useful for defining new protocols.

We give the language a semantics via strand spaces,
so that the designer can prove that a new protocol
meets the security goals. This semantics also motivates
a compilation strategy, yielding protocol implementa-
tions faithful to their verified behavior.

We also aim to clarify the relation between the ab-
stract models used in protocol verification and the ac-
tual behavior of protocols as implemented.

1 Introduction

Cryptographic protocol analysis offers a number of
highly informative techniques, e.g. [17, 8, 19]. In addi-
tion, work on protocol design [14, 18] holds out the hope
of hand-crafted protocols for electronic commerce and
cross-organization distributed applications. These pro-
tocols must be faithful to the trust relations among the
participants, meaning their requirements for authenti-
cation and access control. If many protocols will be
invented in the coming years, abstractly justified for
specific tasks, how can they be implemented in a uni-
form, reliable way?

We describe here a cryptographic protocol program-
ming language cppl allowing a designer to express pro-
tocols at the Dolev-Yao level of abstraction. cppl and
its semantics are motivated by the strand space the-
ory [19], so that the designer can verify that a new pro-
tocol meets its confidentiality and authentication goals.
Alternative semantics could be given by translating the
domain-specific language into spi or the applied pi cal-
culus [4, 3], allowing other verification methods [17, 1].
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cppl is intended to provide minimal expressiveness
compatible with protocol design. First, a protocol run
must respond to choices made by its peer, as encoded in
different forms of message that could be received from
the peer. Second, the principal on behalf of whom the
protocol is executing must be able to dictate choices re-
flecting its trust management policy [2, 9, 20]. Finally,
cppl provides a mechanism to call subprotocols, so that
design may be modularized. The interface to a subpro-
tocol shows what data values must be supplied to it and
what values will be returned back on successful termi-
nation. The interface also shows what properties the
callee assumes about the input parameters, and what
properties it will guarantee to its caller about values re-
sulting from successful termination. These—branching
on messages received, consulting a trust management
theory, and subprotocols—are the three main forms of
expressiveness offered by cppl.

We also need some functionality from libraries. The
libraries include a cryptographic library—used to for-
mat messages, to encrypt and decrypt, to sign and ver-
ify, and to hash—and a communications library. The
latter connects to other principals on the network and
manages network level channels to them. These chan-
nels need not achieve any authentication or confiden-
tiality in themselves [15]. The third library is a trust
management engine. The trust management engine al-
lows us to integrate the protocol behavior with access
control in a trust management logic [2, 6, 22], giving an
open-ended way to control when to abort a run, and to
control the choice between one subprotocol and another.
Indeed, a primary goal of the paper is to present a way
to define protocols motivated by the connection between
trust management and protocols described in [20].

The language is organized around a specific view of
protocol behavior. In this view, as a principal executes
a single local run of a protocol, it builds up an environ-
ment that binds variables to values encountered. Some
of these values are given by the caller as values of pa-
rameters when the protocol is initiated; some are chosen



randomly; some are received as ingredients in incoming
messages; and some are chosen to satisfy trust manage-
ment requirements. These bindings are commitments,
never to be updated; once a value has been bound to a
variable, future occurrences of that variable (especially
when expected in an incoming message) must match
the value or else execution of this run aborts. The en-
vironment at the end of a run records everything learnt
during execution. A selection of this information is re-
turned to the caller.

Our treatment of trust management is tightly con-
nected. We associate a formula with each message
transmission or reception. The free variables of the for-
mula are variables in the environment. The formula
associated with a message transmission is a guarantee
that the sender must assert in order to transmit the
message. The formula associated with a message re-
ception is an assumption that the recipient is allowed
to rely on. It says that some other principal has pre-
viously guaranteed something. A protocol is sound if
in every execution, whenever one principal P relies on
P ′ having said a formula φ, then there was previously
an event at which P ′ transmitted a message, and the
guarantee formula on that transmission implies φ.

The same idea shapes our treatment of subprotocols.
A local message, sent by the calling protocol, starts a
subprotocol run. Hence, the caller makes a guaran-
tee that the callee can rely on. When the subprotocol
run terminates normally, it sends a message back to its
caller; the callee now makes a guarantee that the caller
can rely on in the remainder of its run.

Related Work Despite the large amount of work on
protocol analysis, the predominant method for design-
ing and implementing a new protocol currently consists
of a prolonged period of discussion among experts, ac-
companied by careful hand-crafted implementations of
successive draft versions of the protocol. The recent re-
working of the IP Security Protocols including the Inter-
net Key Exchange was an example, involving a complex
and important cluster of protocols.

Languages for cryptographic protocols, including spi
calculus and its derivatives [4, 3, 13, 10], have been pri-
marily considered tools for analysis rather than as pro-
gramming languages for implementation.

There has been limited work on compilation for cryp-
tographic protocols, with [24, 23, 12] as relevant exam-
ples. We add a more rigorous model of protocol behav-
ior, centered around the environment mentioned above.
We provide clear interfaces to communications services
and the cryptographic library. We stress a model for
the choices made by principals, depending on a trust
management interpretation of protocols and on an ex-
plicit pattern-matching treatment of message reception.

A semantics ties our input language to the strand space
model, and motivates the structure of our compiler.

Main Contributions This paper makes four main
contributions. First, we define a model of protocol
behavior, encoded in a very small language cppl. It
embodies the three main forms of expressiveness men-
tioned above. Second, we provide a strand space se-
mantics for cppl programs (Section 4). The semantics
yields a finite set of strands for each program, and each
strand is of finite length (Proposition 4). However, an
infinite set of executions are possible when these strands
(instantiated with different data values) interact with
each other and an active adversary.

Third, we view subprotocol call and return as local
secure communications, which we augment the strand
spaces to model. New theorems allow proving security
goals about the new mechanism (Section 5, Proposi-
tions 5–7). Finally, we describe a compilation strategy
motivated by the semantics (Section 6).

2 Access Control via a Protocol

As a very small example, suppose that a server B wishes
to offer a collection of data, and intends to transmit a
datum to a client A in encrypted form, assuming that
A is authorized to receive it. The authorization de-
cision may depend on different factors: In some cases
there is a confidentiality policy intended to prevent the
wrong principals from learning a secret. In other cases,
the goal is to deliver commercially valuable information,
e.g. information consisting of stock quotations, only to
subscribers who pay for it. Indeed, we may suppose
that there are two classes of service. Customers on the
expensive contract get the best quality of information,
while a cheaper service may provide information that
is less accurate or less up-to-date. In the case of stock
quotations, the lower class of service may provide quo-
tations rounded to the nearest eighth of a point, rather
than in exact thirty-seconds, or it may provide quotes
delayed by fifteen minutes. The protocol (Figure 1) is
a variant of the Needham-Schroeder-Lowe protocol.

Here, D is the name of the datum that A wishes to
receive, and Na is a nonce used to assure authentication
and freshness for the value of D. B freshly generates
the session key K to be used to protect the datum, and
A proves that it has received K (and wants genuinely
to receive D) by means of message 3. Finally in the last
message, B delivers the current value V of datum D en-
crypted with K, associated with the tag val to indicate
that high quality data is contained. If cheaper data
is delivered instead, the tag lo val informs the client,
which can report this to its caller. In either case, the
server wants to ensure that the client’s request is recent,
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Figure 1: Access Control via Needham-Schroeder-Lowe

rather than being a replay, as preparing the data may
cost time or money.

2.1 Growth of Environment during Execution

In a run of the client A, the environment must be initial-
ized with values for A,B, D provided by the caller, in-
dicating respectively the principal’s identity, the server
to interact with, and the data value to be retrieved.
In addition, the environment must provide a value for
KB , B’s public asymmetric encryption key. The first
action of the client is to select a fresh random value
Na. With this, the environment contains values for all
the ingredients in the first message to be sent. A call
to a cryptographic library can cause a message of the
correct form to be formatted as a bitstring. A call to
a communication library can cause the bitstring to be
sent, in the hope of the network delivering it to B.

When the communication library delivers a message,
apparently from B, the cryptographic library attempts
to decrypt it with A’s private key K−1

A (assuming the
latter is available). If the first component of the result-
ing plaintext is not Na, or if the last component is not
B, then execution aborts. Otherwise, the middle com-
ponent is bound to the variable K; it will be used as
a symmetric key. The client can now format the third
message with a call to the cryptographic library, and
send it with a call to the communication library.

Finally, when the client receives the last message,
the cryptographic library can decrypt it with the key
bound to variable K. If the first component is the tag
val, then the second component is bound to the variable
V ; another variable can be let-bound to indicate that
high precision data was received. If instead it contains
tag lo val, V should still be bound, and the auxiliary
variable should take a different value.

A symmetric sequence of actions occurs when the
server executes a run.

pubkey(A,KA) A’s public encryp. key is KA

requests(A,B,D, N) A requests D’s value
from B using N

supply(D,N) D’s value to be supplied via N
curr val(D,V,N) D’s value is V via nonce N

approx val(D,V,N) D is near V via nonce N

Table 1: Trust Management Predicates for Example

2.2 Trust Management Interpretation

We annotate the protocol by attaching trust manage-
ment formulas to the nodes [20]. The formulas for our
example, using the predicates shown in Table 1, are
shown in Table 2. We regard node m1 as asserting A’s
desire to receive the value of D from B. B ascertains
that this event has occurred only at node n3. In the
meantime, B asserts at node n2 that if A desires to re-
ceive D’s value from B, then B will supply it. After
n3, B can infer that A has asserted its desire to receive
D’s value, which B is now committed to transmitting,
either in the high-precision form or the low-precision
form. To decide which, the server attempts to prove
that A is entitled to high precision data; if it succeeds,
it takes the branch containing val and high precision
data. Otherwise, it takes the alternate branch with low
precision data. The guarantees on n4 and n′4 assert that
the current value of D is V to the selected precision.

Each principal works within its own local theory to
infer an instance of a guarantee formula before trans-
mitting the message the formula guards. The local
theory is augmented with the rely formulas associated
with messages previously received. These assumptions
make sense because the sender P previously guaranteed
some formula φ. Thus, the assumption takes the form
P says φ. The recipient P ′ can decide whether to trust P
to speak truly about the matter φ, depending on what
P ′ knows about P (i.e. formulas included in P ′’s local
theory) and the contents of φ. P ′ trusts P on a subject
φ if P ′ accepts the implication (P says φ) ⊃ φ.

A protocol is sound if in every execution the formulas
ρn on which principals rely are always true, in the sense
that an uncompromised principal made the assertion
that ρn says it made (Definition 9).

Different techniques could be used by principals
wanting to determine how to proceed in a run of this
protocol via logical inference and an explicitly repre-
sented theory. Frequently Datalog, or some variant or
extension, will be used [22, 7]. Since γn2 contains an
implication, an additional trick is needed here, namely
checking that the conclusion is deducible when the hy-
pothesis is added to the theory temporarily.
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γm1 requests(A,B,D, Na)
γn2 pubkey(A,KA) and

requests(A,B,D, Na) ⊃ supply(D,Na)
ρn3 A says requests(A,B,D, Na)
γn4 curr val(D,V,Na)
γn′

4
approx val(D,V,Na)

ρm4 B says curr val(D,V,Na)
ρm′

4
B says approx val(D,V,Na)

Table 2: Trust Management Annotations

statement := RETURN
| LET id = expression IN statement
| <-- send_branches
| --> id recv_branches

empty := /* nothing */

send_branches := empty
| (GUARANTEE formula; SEND id msg;

statement)
send_branches

recv_branches := empty
| (RECEIVE msg; RELY formula;

statement)
recv_branches

Table 3: Syntax of Statements

3 Protocol Syntax

We now describe cppl. Initially, we describe message
transmission and reception, later adding mechanisms
for declaring the interface to a protocol and for express-
ing subprotocol call and return.

3.1 Transmission and Reception

The main syntactic category of cppl is the statement.
A statement (Table 3) may return immediately, it may
let-bind a variable to the value of an expression in a
statement, or it may offer a choice of message transmis-
sions (<--) or message receptions (-->).

Each message transmission branch is guarded by a
formula. The branch may be selected only if the trust
management engine succeeds in establishing (“guaran-
teeing”) an instance of this formula. The environment
for the remainder of the run is augmented with the in-
stantiated variables. If the trust management engine
fails on every branch’s guarantee, then this run aborts.

Each message reception is guarded by a message pat-
tern msg. That branch may be selected only if the parser

expression := id | constant
| NEW kind
| CHANNEL(id) | ACCEPT()
| REMOTE(id)

msg := id | constant
| msg, msg
| {| msg |}_id | [| msg |]_id
| HASH(msg)

Table 4: Expressions and Message Patterns

recognizes an instance of this pattern in the message
received from the communication layer, on the chan-
nel id. Variables not previously bound are instantiated
to the values found by the parser. The trust manage-
ment engine can rely on the formula associated with
the selected pattern. The formula is added to the lo-
cal theory as a temporary premise, so it can be used
in proving guarantee formulas in the remainder of this
run. If the message received from the communication
layer does not match the pattern in any branch of a
message reception statement, then this run aborts.

Expressions are either identifiers, constants, new
nonces or keys, or forms interacting with the communi-
cations library (Table 4). New nonces and keys are ran-
domly generated by the cryptographic library. A chan-
nel expression requests a channel from the communi-
cations layer intended for bidirectional communication
with the principal named by the argument; however,
the channel provides neither authentication of origin nor
confidentiality. The accept expression is used to act as a
server; it yields a channel when a remote principal opens
a connection. The remote expression queries the com-
munication layer for the unauthenticated remote end-
point of the channel.

Message patterns interact with the cryptographic li-
brary instead of the communication layer. They allow
identifiers and constants to be specified as atomic mes-
sage patterns; concatenation of message patterns is in-
dicated by the comma; and encryption and signature
are indicated by {| msg |}_K and [| msg |]_K respec-
tively. Hashing is also represented.

The syntax of formulas is not described here; it varies
depending on the trust management engines that prin-
cipals will use. The parser delegates these formulas to
a parser specific to the trust management engine.

The AC NSL Example We specify the server (B)
behavior of our sample protocol in Table 5. It starts by
let-binding a channel and the principal at the remote
end of it. A message is received off the channel which
must match the pattern, with A appearing as the middle
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let Chan = accept() in
let A = remote(Chan) in
--> Chan
(receive {| N_a, A, D |}_KB;
rely true;
let K = new key in
<--
(guarantee gamma_n2;
send Chan {| N_a, K, B |}_KA;
--> Chan
(receive {| K |}_KB
rely rho_n3;
<--
(guarantee gamma_n4;
send Chan {| val, V |}_K;
let C = "hi_cost" in
return)

(guarantee gamma_n4’;
send Chan {| lo_val, V |}_K;
let C = "lo_cost" in
return))))

Table 5: Server Behavior in AC NSL

component. As a consequence of the message reception,
Na and D are bound to the values matched in the mes-
sage. No assumption is delivered in the rely statement,
as a message of this form could have been prepared by
anyone, even an attacker knowing B’s public key. B
then binds a newly generated value to serve as the ses-
sion key K, and asks the trust management engine to
guarantee pubkey(A,KA) as part of γn2 . Although A
was bound by a let-form, KA is as yet unbound. Thus,
the trust management engine operates in a logic pro-
gramming style, delivering an extension to the environ-
ment in which KA is bound to some key for which the
trust management engine proved pubkey(A,KA).

On the server side, the decision before the last trans-
mission is a trust management decision. The trust man-
agement engine is asked to guarantee that the client A
deserves high value information about datum D. If this
fails, then the server tries the next branch.

On the client side, the branch is on the form of mes-
sage received, specifically which tag is embedded (Ta-
ble 6). On the two branches, the variable C is bound
to different constants, and the protocol can return this
value to its caller, together with the value V , so that
the latter will be correctly interpreted.

3.2 Subprotocols

Since one wants to construct protocols by using oth-
ers as subprotocols, each protocol has an interface, and
can use other protocols according to their stated inter-

--> Chan
(receive {| val, V |}_K;
rely B says curr_val(D,V,N_a);
let C = "hi_cost" in
return)

(receive {| lo_val, V |}_K;
rely B says approx_val(D,V,N_a);
let C = "lo_cost" in
return)

Table 6: Client Choice in AC NSL

procedure := id (params) RELY formula
: (params) GUARANTEE formula

= statement end

statement := . . . (see Table 3)
| <-> subprot_call

call_site := invocation ELSE invocation

invocation := (GUARANTEE formula;
id(params): params;
RELY formula;
statement)

Table 7: Syntax for Protocols and Call Sites

faces (as in Table 7). The interface allows values to be
passed to the subprotocol by its caller. The interface
also specifies which parameters are to be returned by
the subprotocol if it completes successfully. The sub-
protocol returns no values to its caller if it aborts.

The interface also includes two formulas. One is a
formula serving as a precondition. Its free variables
should be only the input parameters to the subprotocol,
and it expresses a relationship among their values that
the subprotocol designer assumes to hold. The caller
must assure that this relationship holds before calling
the subprotocol. The other formula concerns the values
returned by the subprotocol. It expresses a relationship
that the subprotocol will guarantee in all cases of suc-
cessful termination. It must contain free only the input
and output parameters of the protocol. The procedure
headers for AC NSL are shown in Table 8.

The syntax for a subprotocol call site mirrors this
structure. It contains two branches, each guarded by a
guarantee formula. The branch will not be taken un-
less the trust management engine ensures an instance
of the guarantee. The call site names a subprotocol to
which it passes actual parameters. Values returned by
the subprotocol may be required to match known val-
ues, while others will be bound to variables for use in
the remainder of the caller’s execution. The call site
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ac_nsl_serv (B,KB,KBpriv)
rely pubkey(B,KB)

and key_pair(KB,KBpriv)
: (A,C,D,V)

guarantee supplied(A,C,D,V) = ...

ac_nsl_client (A,KA,KApriv,B,D)
rely pubkey(A,KA) and

key_pair(KA,KApriv)
: (N_a,C,V) guarantee

(C = "hi_cost" and
B says curr_val(D,V,N_a))

or (C = "lo_cost" and
B says approx_val(D,V,N_a))

= ...

Table 8: Procedure Headers for AC NSL

specifies a rely formula the summarizing the effect of
the subprotocol, which the trust management engine
can use in the remainder of the caller’s execution.

Mismatch between values returned by the call and
expected values, or an abort by the subprotocol, means
that this branch has failed, and that the next branch
will be tried. If both branches fail, the caller aborts.

A Certificate Retrieval Subprotocol In Table 5,
we assumed that the server’s trust management the-
ory could supply a value KA such that pubkey(A,KA).
Although some clients’ public keys are known, others’
must be retrieved from a directory of certificates. A
subprotocol can be used to retrieve them, ensuring that
they are sufficiently fresh. Although there are many
strategies for doing so, there is a single criterion for
the task, namely that the local trust management the-
ory learns the conclusion pubkey(A,KA). The rely-
guarantee framework uses the subprotocol to ensure this
follows from the local theory together with rely state-
ments that become available. The correctness of these
rely statements follows from protocol soundness as given
in Definition 9.

We show in Table 9 a protocol to retrieve a public
key from a directory D. The directory serves principal-
public key bindings signed by a certificate authority
C that may be verified using its (well-known) signa-
ture verification key Cver . D ensures freshness us-
ing some certificate revocation mechanism, so D is
trusted not to serve any revoked certificate. The
assumption directory service(D,C) makes explicit this
trust, which is reflected logically as an implication al-
lowing B to infer C says pubkey(A,KA) from D says
C says pubkey(A,KA). When certifying authority(C,A),
C says pubkey(A,KA) implies pubkey(A,KA).

retrieve_pubkey
(B,A,C,Cver,D,KD)
rely certifying_authority(C,A) and

sign_verification_key_of(C,Cver) and
directory_service(D,C) and
pubkey(D,KD)

: (A,KA) guarantee pubkey(A,KA) =
let Chan = channel(D) in
let N_b = new nonce in
let K = new key in
<--
(guarantee true;
send Chan {| certify_key, A, K, N_b |}_KD;
--> Chan
(receive {| cert_delivery, N_b,

[[ cert, A, KA ]]_Cver |}_K;
rely D says C says pubkey(A,KA);
return)) end

Table 9: Certificate Retrieval Protocol

B may try first to retrieve KA locally if it is known
to the local trust management theory, and only if this
fails invoke the certificate retrieval protocol (Table 10).

The directory server runs a procedure matching
retrieve pubkey, in which D guarantees C says
pubkey(A,KA) before sending the certificate.

3.3 Complete Programs

A complete program is a set of procedures, each named
by a different identifier. Each subprotocol call appear-
ing in these procedures must be the name of a procedure
also in the set. There is no constraint on the order in
which the procedures are defined, nor on whether they
call each other recursively. Any individual execution of
a protocol will involve only a finite number of princi-
pals, executing the procedures a finite number of times
(not necessarily to completion), and engaging in a finite
number of transmissions and receptions.

4 Strands as a Semantics

In this section we first (Sections 4.1–4.2) resume the
strand space theory. Section 4.3 provides a semantics
for our protocol language by associating a protocol in
the sense of Definition 3 to each program in the lan-
guage.

The semantics requires a new ingredient in the
strand space framework, to model the assumption of
security for local message delivery such as subprotocol
call and return. The same addition also allows reason-
ing about transport mechanisms that ensure confiden-
tial message delivery or authentication of message ori-
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null_protocol () rely true
: () guarantee true =

return end

retrieve_pubkey_if_needed
(B,A) rely true

: (A,KA) guarantee pubkey(A,KA) =
<->
(guarantee pubkey(A,KA);
null_protocol():();
rely true;
return)
else
(guarantee certifying_authority(C,A)

and sign_verification_key_of(C,Cver)
and directory_service(D,C)
and pubkey(D,KD);

retrieve_pubkey(B,A,C,Cver,D,KD):(A,KA);
rely D says C says pubkey(A,KA);
return) end

Table 10: Certificate Retrieval when Needed

gin [11]. In Section 5 we explain how to prove security
properties in this augmented framework.

4.1 Terms and Messages

Terms form a free algebra, built from atomic terms via
constructors. The atomic terms are partitioned into the
types principals, texts, tags, keys, and nonces, which
are used for normal messages, together with activation
identifiers which are used to represent subprotocol call
and return messages, but never appear in real messages
handled by the communication layer. In the present
formulation, channels never occur within messages, al-
though useful extensions could include that.

Some atoms are regarded as indeterminates (vari-
ables), while others are regarded as constants, repre-
senting particular data values used in a concrete run of
a protocol. However, no tags are used as variables; in-
stead, they are always protocol-specific constants found
literally in messages, such as val and lo val in the AC
NSL protocol example. We will continue to write tags
in sans serif font, while writing atoms a in general in
italics.

The terms in the algebra A are freely built up from
atoms using the operations of concatenation, encryp-
tion, signature, and hashing. These are written t0 ˆ t1,
{|t|}K , [[ t ]]K , and hash(t) respectively. In the present
formulation the second argument to an encryption or
signature is always an atomic key. Our convention for
public key encryption and digital signature is that the
key K is always the public key. In a public key en-

cryption {|t|}K , K is the public encryption key, and in a
digital signature [[ t ]]K , K is the public verification key.

A substitution is a finite function α mapping atoms
to atoms, such that (1) α respects types in the sense
that α(a) is an atom of the same type as a, and (2) the
domain of α consists only of variable atoms. We insist
that the range of a substitution is included in the atoms,
because the theory is less attractive when substitutions
may map variables to compound terms.

The application of a substitution α to a term t, writ-
ten t·α, is defined as expected: application of α to terms
is the homomorphism extending α’s action on atoms.

4.2 Strands, Protocols, and Bundles

Definition 1 A direction is one of the four symbols
+,−,+c,−a. A directed term is a pair 〈d, t〉 with t ∈ A
and d a direction. We write directed terms +t, +c t, etc.
(±A)∗ is the set of finite sequences of directed terms.
〈d, t〉 · α = 〈d, t · α〉.

A strand space over A is a set Σ with a trace map-
ping tr : Σ → (±A)∗ and a substitution application op-
erator s · α such that

tr(s · α)(i) = (tr(s)(i)) · α

for all s ∈ Σ, α, and i such that 1 ≤ i ≤ length(s).

Here we regard (±A)∗ as the set of functions from initial
sequences of positive integers to directed terms.

Message transmission has positive direction +,+c,
and reception has a negative direction −,−a. The
strands we construct in Section 4.3 to give semantics
to a cppl program are sequences of pairs, each consist-
ing of a directed term and a formula; in this case the
function tr is the function map first that returns the se-
quence of first elements. Some additional definitions,
including the subterm relation @ and the penetrator
strands, are in Appendix A. Strands that are not pen-
etrator behaviors are called regular strands.

Transmission that preserves confidentiality is a spe-
cial kind of message transmission; a node of this kind
we annotate with a subscript c on the positive sign. For
instance, +c t means transmission of t via some method
assumed to preserve confidentiality. Dually, reception
that provides authenticity is a special kind of message
reception indicated by a subscript a as in −a t. If a com-
munication arrow n → n′ ensures both confidentiality
and authentication, then n has annotation +c t and n′

has annotation −a t. Purely local communication such
as subprotocol call or return is of this kind.

The set N of all nodes forms a directed graph
〈N , (→ ∪ ⇒)〉 together with both sets of edges n1 → n2

for communication and n1 ⇒ n2 for succession on the
same strand (Definition 10). A bundle is a subgraph
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of 〈N , (→ ∪ ⇒)〉 for which the edges are causally well-
founded, expressing a possible execution. The content
of the annotations +c,−a comes from a modified notion
of bundle, in which the transmission +c t is delivered
only to a regular node, not a penetrator node, and in
which a reception −a t arrived from a regular node.

Definition 2 Let B = 〈NB, (→B ∪ ⇒B)〉 be a finite
acyclic subgraph of 〈N , (→ ∪ ⇒)〉. B is a bundle if:

1. If n2 ∈ NB and term(n2) is negative, then there is
a unique n1 such that n1 →B n2.

2. If n2 ∈ NB and n1 ⇒ n2 then n1 ⇒B n2.

B is a bundle with secure communication, or sc-bundle,
if in addition:

3 If +c t →B n or n →B −a t, then n is regular.

A notion of assured delivery could also be added to this
framework; this would be a property +d t such that if
n0 = +d t ∈ NB, then there exists an n1 ∈ NB such
that n0 →B n1.

In Section 5 we describe how to prove security-
relevant conclusions about sc-bundles.

We assume given some logic L, by which we mean
a set of formulas FORMULAL with a notion of substi-
tution and a consequence relation ∆ −→ φ [16]. The
formulas of L express trust management assertions.

Since we regard some atoms (other than tags) as
variables, we consider a strand to be parameterized by
the variable atoms in it. We sometimes write a strand s
in the form s[~x] to indicate that the variables appearing
in it make up the list ~x. Its instances are the strands
obtained from it by applying a substitution α that may
replace the atoms in ~x with others of the same types.
As in [20], we define:

Definition 3 (Protocol) An annotated protocol Π
consists of a set of regular strands {sj}j∈J together with
a pair of functions γ and ρ from nodes of these strands
to formulas of L, such that γ is defined on positive nodes
and ρ is defined on negative nodes. The strands sj are
the roles of the protocol.

The strand space ΣΠ over Π consists of all instances
of the parametric strands sj [~x] together with all penetra-
tor strands from Definition 11.

Substituting constants ~c for the variables ~x provides the
same value for all occurrences of a variable in sj , match-
ing our operational view, that a variable once bound
retains the same value throughout an execution.

Idea for a Semantics of Subprotocol Call Con-
fidential transmission and authenticated reception sug-
gest a semantics for subprotocol call and return. The

call and return will be successive nodes (+c and −a re-
spectively) on the strand s representing the behavior of
the caller. The activity of the callee is represented on a
separate regular strand s′.

The first node of s′ is a negative −a node that ac-
cepts the actual parameters with which s′ starts; the
last node is a +c node that returns values to the caller.
Further subprotocol calls from s′ are executed on other
strands s′′. This is akin to a remote procedure call
semantics, if one views the parts of the activity execut-
ing within different procedure invocations as making up
separate strands.

We also include a uniquely originating value a1 in
the invocation and return messages. This activation
identifier a abstracts the stack frame of the call. The
call is a transmission node n0 = +c t on s where a @ t,
and the return is a reception node n1 = −a t′ where
likewise a @ t′. Proposition 6 is the reason for including
activation identifiers in the semantics; it tells us how to
show the existence of a subprotocol strand in the same
sc-bundle, that is, a regular strand s′ which receives t
and eventually transmits t′. To ensure that s′ is the
expected subprotocol, we stipulate that t has the form

call ˆ prot name ˆ p ˆ a ˆ~b.

Here call is a special tag indicating that this is a sub-
protocol call message, prot name is a tag, which names
the procedure defining the callee, p is the identity of the
principal on behalf of which both caller and callee are
executing, a is the activation identifier, and the ~b are
the arguments passed as actual values to be bound to
the formal parameters of the callee. We stipulate that
the return term t′ has the form

return ˆ prot name ˆ p ˆ a ˆ~c.

Here return is a special tag indicating that this is a sub-
protocol return message, and ~c are the actual values
being returned to the caller.

Because subprotocol call uses a message transmitted
from caller to callee, there should be a guarantee for-
mula guarding the call site, and a rely formula at the
beginning of the subprotocol. Because subprotocol re-
turn uses a message transmitted from callee to caller,
the end of the subprotocol should assert a guarantee,
and a rely formula should follow the call site. Hence
the syntax given in Table 7.

4.3 The Protocol associated with a Program

To give a strand space semantics to a program in cppl,
we would like to assign to every program a protocol in

1See Definition 10; a uniquely originating value in a particular
bundle is one that was created only at one node.
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the sense of Definition 3, i.e. a set of parametric strands
{sj [~x]}j∈J , together with rely and guarantee formulas
for all of the negative and positive nodes (respectively)
on these strands. The strand space ΣΠ describing all
local runs of protocol procedures is thus the set of in-
stances of the roles sj , obtained by applying all substi-
tutions to them, together with the penetrator strands
of Definition 11.

The program consists of a number of procedure defi-
nitions of the form shown in Table 7, all having different
names. We in fact define the semantics independently
for each procedure. For each procedure we define a set
of parametric strands, and the semantics of the whole
program is simply the union of these sets. The heart of
the semantics is a process that defines a set of strands
recursively on the definition of statements.

In the strand space Σ we will construct, the strands s
are sequences of pairs we call “events”; each event con-
sists of a directed term and a formula. Thus, a strand s
is in (±A× FORMULAL)∗; i.e. it is a partial function
from an initial sequence of positive integers to events in
±A× FORMULAL.

We write x :: s to mean the partial function f on
positive integers such that f(1) = x and f(i + 1) =
s(i); this is defined on an initial sequence if f is. We
use nil for the trace without events, i.e. the everywhere
undefined function. We write s _ s′ for the result of
appending s′ after s, i.e. the function f such that f(i) =
s(i) if i ≤ k = length(s), and f(i) = s′(i− k) otherwise.
When S, T are sets of sequences, S _ T = {s _ t : s ∈
S and t ∈ T}.

Suppose that we are giving the semantics for a pro-
cedure with name name, which will be used by principal
p, will be activated with an activation identifier ai , and
we let the return parameters for the procedure be the
vector of atoms ~b. We write ~q = name ˆ p ˆ ai for the
concatenation of this call information. For brevity, we
write ~v for ~q,~b, γret , so that tret(~v) = return ˆ ~q ˆ~b is the
expected return message. If the guarantee formula as-
sociated with this normal termination of this procedure
is γret , we let

ret(~v) = (+c tret(ai), γret)

be the return event expected from this procedure, con-
sisting of message and guarantee.

We also define the abort event from the procedure
to be the event

abort(ai) = (+c abort ˆ ~q, true)

since no non-trivial formula results from failure.
If s ∈ (±A× FORMULAL)∗ is a strand, then AIS (s)

is the set of activation identifiers that occur in the
events of s. Since activation identifiers do not occur in

S~v(<-- β1 . . . βk) =
⋃

1≤i≤k

S~v(βi)

S~v(βi) = {〈+ti, γi〉 :: s : s ∈ S~v(σi)}

S~v(--> c β′1 . . . β′k) =
⋃

1≤i≤k

S~v(β′i)

S~v(β′i) = {〈−ti, ρi〉 :: s : s ∈ S~v(σi)}

Table 11: Semantics of Send and Receive Statements

formulas, this is the same as the activation identifiers
occurring in messages sent or received in s.

We give the semantics of statements, within a given
procedure, by a semantic function S~q,~b,γret

, where the
three parameters make available the call information
~q, the return parameters ~b, and the return guarantee
γret of the procedure. The statement semantics S~v(σ),
where σ is a statement, returns a set of strands. Every
behavior σ can engage in is an instance of some strand
in the set S~v(σ).

Semantics of Return The behavior of a return call
has one form, in which only the return message for the
parameters ~v = ~q,~b, γret is transmitted:

S~v(return) = {ret(~v) :: nil}

Semantics of Sending and Receiving A send
branch conses an event—consisting of the sent message
paired with the guarantee guarding the send—to the
front of any behavior of the following statement. If a
send statement has a number of branches, the semantics
is non-deterministic, taking the union of the behaviors
possible for the send branches, together with an abort
if all branches are refused. The semantics of a receive
statement is similar, but with the opposite sign.

This is summarized in Table 11, where we assume the
statement consists of k branches, of which the ith send
branch βi takes the form (guarantee γi; send ci ti; σi).
The ith receive branch β′i takes the form (receive ti;
rely ρi; σi). Channels are discarded in the semantics,
since the Dolev-Yao adversary controls the network and
misroutes messages as desired.

Semantics of Subprotocol Call The semantics of
procedure call involves the events that may occur when
a subprotocol is tried, even though it does not success-
fully commit. A branch commits if the invoking trans-
mission is followed by a successful return message.

If a branch’s guarantee fails and there is no invoca-
tion, it has not committed. If an invocation receives
no reply, either because the caller times out or because
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Us(bi) = {nil}
∪ {(+c call ˆ name ˆ p ˆ ai ′ ˆ ~bi, γi) :: nil}
∪ {(+c call ˆ name ˆ p ˆ ai ′ ˆ ~bi, γi) ::

(−a abort ˆ name ˆ p ˆ ai ′, true) :: nil}
Cs(b1) = {(+c call ˆ name ˆ p ˆ ai ′ ˆ ~bi, γi) ::

(−a return ˆ name ˆ p ˆ ai ′ ˆ ~bi, ρi) :: nil}

S~v(b1 else b2) =
⋃

s2∈S~v(b2)

Us2(b1)
_ {s2}

∪
⋃

s1∈S~v(b1)

Cs1(b1)
_ {s1}

∪ Unil(b1)
_ Unil(b2)

_ {abort(ai0) :: nil}

Table 12: Uncommitted and Committed Behaviors,
choosing variable ai ′ 6∈ (AIS (s) ∪ {ai0}), and Subpro-
tocol Call

the callee tries to return values that do not match those
already bound in the caller, then there is no commit.
Finally, if the guarantee succeeds but the invocation
causes an abort, then it has not committed.

Thus, the uncommitted behavior of a subprotocol call
branch is a strand of length 0, 1, or 2. When a subproto-
col call site executes its else branch, some uncommitted
behavior for the main branch will be prepended to the
behavior of the else branch. If the else branch also fails
to commit, then the caller must abort. The committed
behavior of a successful subprotocol is a strand of length
2, namely a call and a successful return, prepended to
the behavior of the statement it contains.

Subprotocol invocation semantics is in Table 12,
where the call site is β1 else β2, and each βi is:

guarantee γi; name ~bi : ~ci rely ρi; σi.

Here ~b,~c are the call and return parameters; and γi and
ρi are the formulas to guarantee and to rely on. Let p be
the current principal, and ai0 the activation identifier
of the strand executing this call. Us(b) is the set of
uncommitted behaviors b may contribute preceding the
behavior of the strand s, while Cs is the set of committed
behaviors b may contribute preceding the behavior of
the strand s.

The activation identifier used on a subprotocol invo-
cation and return is chosen to be distinct from the acti-
vation identifiers AIS (s) used later on the same strand
s, and distinct from the activation identifier ai0 received
by that strand when it was called. This is the only role
of the parameter s. The choice of ai ′ is made in some
canonical way from all other activation identifiers.

S~v(let i = i′ in σ) = S~q,~b[i′/i],γret [i′/i](σ[i′/i])

S~v(let i = e in σ) = S~v(σ)
(e not of form i′)

Table 13: Semantics of let Statements

Semantics of let Statements We divide let state-
ments let i = e in σ into two kinds (Table 13). Either
the expression e is an identifier i, or else it is a new,
remote, or channel expression. When the expression e
is an identifier i′, we interpret the let statement by sub-
stituting i′ in place of the target i throughout S~v(σ).

In the second case, when e is not an identifier, we
simply ignore the let : the semantics of the whole state-
ment is identical with the semantics of σ. When e is
a channel expression, this is natural, as channels are
invisible at the level of the Dolev-Yao semantics, and
in fact i will not appear in the semantics of σ. When
e is a remote expression, it evaluates (at run time) to
some principal that the communication layer believes to
be at the far end of the channel. However, the result-
ing strands are viewed as parametric roles. Thus, the
role will have instances in which any principal is sub-
stituted for i. This is just the desired interpretation, as
any principal could be at the far end of a new channel.

4.4 Properties of this Semantics

This semantics is in one sense a finite representa-
tion of the behavior of cppl programs. Suppose that
proc_name is a procedure where the nesting depth of
parentheses introduced by <--, -->, and <-> statements
is d. Suppose the branching factor at each such state-
ment is at most k. That is, each <-- or --> statement
has no more than k branches, and if there are any <->
statements in the procedure, then k ≥ 2. Suppose that
the statement forming the body of proc_name is σ.

Proposition 4 The cardinality |S~v(σ)| ≤ kd. If s ∈
S~v(σ), then length(s) ≤ (4 · d) + 1.

The maximum value (4 · d) + 1 is attained when s has
a sequence of subprotocol calls, and each involves a call
and an abort on its main branch followed by a call and
a return to commit to its alternative branch; at the very
end is one return.

If a cppl program contains j procedures each satis-
fying these bounds, then the resulting protocol Π con-
tains at most j · kd roles. Typically, k will be quite
small, d will be relatively small, and in fact |S~v(σ)| will
be much less than kd because many statements embed-
ded within σ will have fewer than k branches. For in-
stance, the server procedure in the version of AC NSL
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(Table 5) satisfies k = 2 and d = 4. However, the se-
mantics generates only two roles, one for each choice in
the innermost transmission statement.

In a different sense, the behaviors generated by a
protocol may be infinite, because there are infinitely
many sc-bundles B such where the regular strands are
instances of the roles of this protocol. To reason about
this infinite collection of bundles, we need some general
theorems, which we present next.

5 Reasoning about Secure Communication

To reason about authenticated or confidential commu-
nication, we use analogues to the unsolicited and outgo-
ing test principles (Propositions 15, 14). The principle
for authenticated communication is simple:

Proposition 5 If B is an sc-bundle and n is a regu-
lar node n ∈ B with sign −a, then there exists a reg-
ular node m ∈ B such that m → n, hence term(m) =
term(n).

For confidential communication, we use a simpler ana-
logue to the outgoing test:

Proposition 6 Suppose that a originates uniquely
within B (an sc-bundle) at node n0 with direction +c,
and a @ term(n1). Suppose there is no positive node
n′ such that a @ term(n′) and n0 ⇒∗ n′ ≺ n1. Then
in B there exists a regular edge m0 ⇒+ m1 such that
n0 → m0 ⇒+ m1 �B n1.

When n0 and n1 lie on the same strand, then the or-
dering relation n0 ≺ m0 ≺ m1 � n1 establishes the
recency of m0,m1. Time may be measured in a purely
local way along n0 ⇒+ n1, allowing the communica-
tion layer of the implementation to abort execution by
raising a timeout before the n1 could occur. Thus, m0

cannot have occurred longer ago than the locally chosen
timeout value.

When Proposition 6 is used for reasoning about sub-
protocol call, n0 ⇒ n1, and a node n′ cannot exist.

5.1 Tail Recursive Subprotocol Call

The tail call optimization can be validly performed with
a small change to this semantics. When making an op-
timized tail call, the subprotocol passes the same ac-
tivation identifier ai that it was given. This expresses
the idea that the new call overwrites and reuses the top
stack frame. The only alteration to Table 12 is that in
this case ai ′ = ai0, and the original caller should not
insist that the return or abort contains the same pro-
cedure name name; instead, a different value name′ is
accepted.

The principle needed to reason about subprotocol
calls with the tail call optimization is designed to be
usable several times in succession. It is therefore some-
what more complex than Proposition 6.

To state the principle, we need an auxiliary defini-
tion. Given an sc-bundle B with ordering �B, we say
that a set N of nodes is a, n1-full if (1) a originates
uniquely in B on some node n0 ∈ N ; (2) whenever
a @ term(n) and there exists an n′ ∈ N such that ei-
ther (2a) n �B n′ or else (2b) n′ ⇒+ n ≺B n1, then it
follows that also n ∈ N .

Proposition 7 Let B be a bundle with n1 ∈ B and
a @ term(n1). Let N be a, n1-full and suppose that
every positive node in N is +c, and term(n1) 6= term(n)
for every n ∈ N .

There exist regular nodes m0,m1 ∈ B such that
m0,m1 6∈ N and n → m0 ⇒+ m1 � n1 for some n ∈ N .

Proof. Let a originate uniquely at n0 by (1), and S =

{m ∈ B : m 6∈ N and a @ term(m) and m �B n1}.

S is non-empty as n1 ∈ S, so S has minimal elements
(Proposition 13). Let m0 be a minimal element of S. By
(2b), m0 does not follow any member of N on the same
strand. By (2a), m0 does not precede any member of
N on the same strand. Since by [25, Lemma 2.9] there
is a sequence of arrows leading from n0 to m0, and as
we have just seen, the last arrow is not ⇒, it must end
with an arrow n → m0. Since n ∈ N is positive, n is
+c and m0 is regular. Moreover, m0 is negative and
term(n) = term(m0). Thus, term(m0) 6= term(n1) and
m0 6= n1, hence there is a non-empty chain of arrows
leading from m0 to n1. As m0 is negative, the first
arrow of this chain must be m0 ⇒ m1.

In using Proposition 7 to reason about tail call, n0

represents the original call site where the activation
identifier a originates, and n1 represents the ultimate
return, so that n0 ⇒ n1. The set N represents a set
of calls to new strands; condition (2a) says that N is
connected in the sense that it contains all intermediate
strands lying between n0 and later calls in N with ac-
tivation identifier a. In the case of tail call, condition
(2b) tells us that when N contains any node of a strand
s′, then we should add to N all the nodes up to the final
tail call (which re-uses the activation identifier a). The
assumption that n ∈ N implies term(n) 6= term(n1)
says that no regular strand already in N executes a re-
turn that could match n1. Then the proposition tells us
to infer that there is another regular strand containing
m0 ⇒+ m1 which is another tail call using a.

We developed the theory of sc-bundles in this paper
to provide a semantics for subprotocol call. However, it
has independent interest, allowing us to replicate within
strand spaces the theory of “security transactions using
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secure transport protocols” of Broadfoot and Lowe [11].
In establishing that protocols are correct, assuming that
certain messages pass over a medium ensuring confi-
dentiality or authenticity, one would use Propositions 5
and 15, as well as an additional result combining the
content of Propositions 7 and 14.

5.2 Protocol Soundness

Two definitions from [20] help clarify the relationship
between the notion of bundle and the trust management
annotations that allow a principal to control its protocol
executions. Permissibility formalizes the idea that a
guarantee formula must be proved by a principal, using
its local theory and earlier rely formulas as premises.

Definition 8 A regular strand s of ΣΠ is permissible
for Π and Th up to k if, for each i ≤ k such that s ↓
i = n is positive, γn is derivable from {ρm : m = s ↓
j is negative and j < i} in Th.

Suppose each principal P holds theory ThP . An sc-
bundle B is permissible if every regular strand s is per-
missible for ThP up to its B-height k.

Permissible bundles are the only ones that can really
happen, assuming that all of the regular principals play
by the rules and do not execute n without proving γn

from earlier ρms. The adversary does not have to prove
anything, and adversary nodes have no annotations.

Central to our approach is the notion of protocol
soundness. A protocol is sound if, in every execution,
when one principal engages in a negative node n, then
ρn is a consequence of the assertions other principals
made on earlier nodes m. Naturally, soundness can as-
sume that the execution respects some unique origina-
tion and non-origination assumptions, satisfied in a set
B. The principal executing node m is called prin(m).

Definition 9 Soundness. Bundle B supports a nega-
tive node n ∈ B relative to theory Th iff ρn is a conse-
quence of the set of formulas {prin(m) says γm : m ≺B n}
in Th. If Π is an annotated protocol, and B is a set of
sc-bundles, then Π is sound for B in Th if, whenever
B ∈ B, for every negative n ∈ B, B supports n.

Soundness results are essentially a form of authentica-
tion theorem. They say that every bundle containing
a node n contains certain earlier, “supporting” nodes.
For instance, the proof that a bundle of AC NSL sup-
ports the server’s third node n3 is very similar to stan-
dard proofs of the responder’s guarantee in NSL (see
for instance [19]). It uses the same unique origination
and non-origination assumptions. It would be false were
this protocol based on the original Needham-Schroeder
protocol, which is an unsound basis for the trust man-
agement goals of AC NSL.

A sound protocol is a coordination mechanism. Prin-
cipals reason purely locally, using their own theories.
The rely formulas they use as premises are however co-
ordinated with guarantees derived by other principals,
when the protocol is sound.

6 Compilation

The compiler for cppl2 is organized around a runtime
environment, which records the values bound to atoms.
These values are bitstrings and other implementation-
level objects such as communications channels. Each
execution step modifies this runtime environment. For
instance, a let statement augments the environment
with a new binding. A receive statement causes the re-
ceived message to be parsed; the right bitstrings must
be recognized for atoms that are already bound, and
other values that were encountered will be installed,
bound to atoms that were not previously bound. A send
statement can also cause atoms to be bound, because
the trust management system, operating in a logic-
programming style, delivers new bindings that make the
guarantee formula true.

Each statement is compiled to a procedure of one
argument, namely the runtime environment. Each such
procedure may do communication or trust management
reasoning before selecting which statement to continue
with. It executes a tail call to the procedure compiled
from that statement, with a possibly extended runtime
environment.

Compiler state The compiler maintains two main
data structures as it makes a recursive descent through
the abstract syntax tree of a statement. One is a
compile-time environment, which maps atoms to indices
into the runtime environment. The runtime environ-
ment is implemented simply as a vector.

The other data structure is a list of the rely formu-
las that have been traversed on the descent, starting
with the rely formula given in the procedure interface.
On traversing each receive statement branch, the com-
piler augments this list with the newly encountered rely
formula. On traversing each branch of a transmit state-
ment, the compiler generates a call to the trust man-
agement engine that packages these rely formulas as
extra premises, available in proving an instance of the
current guarantee formula. In this call, the runtime en-
vironment will also be passed as a parameter, so that
the trust management engine—if successful—can return
the extended runtime environment.

2As of this writing (July 15, 2004), the compiler is not yet
implemented. Parts of a prototype have been written.
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let rec iter_send rte = function
[] -> abort ()

| (gamma, chan, fmt, resume) :: rest ->
match TME.infer rte rhos gamma with

None -> iter_send rte rest
| Some rte’ ->

Comms.send (rte chan) (fmt rte);
(resume rte’)

let rec iter_recv msg rte = function
[] -> abort ()

| (parser, resume) :: rest ->
match (parser msg) with

None -> iter_recv msg rte rest
| Some rte’ -> resume rte’

Table 14: Send and Receive Dispatching

Control The main runtime control is shown in Ta-
ble 14 expressed in OCaml. The compiler considers the
branches of send and receive statements in sequence,
so its code is more deterministic than the semantics of
Table 11. This refinement is unproblematic, as the secu-
rity properties we wish to establish (e.g. authentication
and protocol soundness) are safety properties.

A send branch consists of: a formula gamma; an in-
dex into the runtime environment pointing to the chan-
nel to send the message on; a procedure fmt to format
the message using values from the runtime environment;
and resume, the procedure representing the statement
embedded within this branch. TME.infer invokes the
trust management engine to prove an instance of gamma
from the available rely formulas in the current run-time
environment. To fail, it returns None. To succeed it
returns a Some rte’, where rte’ extends rte.

When a message msg is received from the commu-
nications layer, it is provided to the successive receive
branches, each of which contains a parsing procedure
and a resumption to apply to the extended environ-
ment if the parser succeeds. The parsing procedure,
like the format procedure used in send branches, must
be generated by the compiler.

Format Functions The compiler constructs the for-
mat function fmt for each transmission branch by a re-
cursive descent through its message pattern, determin-
ing a sequence of calls to the cryptographic library.

Message Parsers Constructing the message parser
for a receive branch is more challenging. Some keys
may be delivered in the message, and then used to de-
crypt other parts of it, which may in turn furnish other
keys. The order in which to process the parts may not

be obvious. The pattern of a message, in the sense of
Abadi-Rogaway [5], records what portions of the mes-
sage are accessible. If the pattern of a message (starting
with the current compile-time environment) is identical
with the message, then the message can be fully de-
coded. Otherwise, we raise a compile-time error. Cal-
culating the pattern of a message also indicates the or-
der dependencies for destructuring parts of the message.
The optimal parser respects these dependencies, so as to
decode submessages containing keys, before encrypted
submessages that use those keys.

7 Conclusion

We have described cppl, a programming language with
just the expressiveness needed to express cryptographic
protocols at the Dolev-Yao level. cppl’s semantics sup-
plies a finite set of parametric strands defining the possi-
ble behaviors of any program. The strand space theory
can be used to prove security properties of programs, us-
ing existing techniques and theorems newly introduced
here for reasoning about subprotocol call. A compila-
tion strategy is suggested by the semantics, organized
around a runtime environment. The compiler issues
calls on a cryptographic library to parse messages at
run time. It issues calls on a trust management engine
to choose future behavior.

In future work we will incorporate primitives such
as Diffie-Hellman; this should be possible in a crypto-
graphically sound way [21]. Mechanized analysis of the
strands generated from cppl programs is under devel-
opment. Also desirable would be to incorporate existing
certificate parsers into the run-time message parsers, so
certificates in standard formats, contained in the mes-
sages, can be recognized and their content made avail-
able to the trust management engine.
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A Additional Strand Notions

Definition 10 Fix a strand space Σ:

1. The subterm relation @ is the smallest reflexive,
transitive relation such that t @ {|g|}K if t @ g,
and t @ g ˆ h if either a @ g or a @ h.

(Hence, for K ∈ K, we have K @ {|g|}K only if
K @ g already.)

2. A node is a pair 〈s, i〉, with s ∈ Σ and i an integer
satisfying 1 ≤ i ≤ length(tr(s)). We often write
s ↓ i for 〈s, i〉. The set of nodes is N . The directed
term of s ↓ i is tr(s)(i).

3. There is an edge n1 → n2 iff term(n1) = +t or +c t
and term(n2) = −t or −a t for t ∈ A. n1 ⇒ n2

means n1 = s ↓ i and n2 = s ↓ i + 1 ∈ N .

n1 ⇒∗ n2 (respectively, n1 ⇒+ n2) means that
n1 = s ↓ i and n2 = s ↓ j ∈ N for some s and
j ≥ i (respectively, j > i).

4. Suppose I is a set of terms. The node n ∈ N is
an entry point for I iff term(n) = +t for some
t ∈ I, and whenever n′ ⇒+ n, term(n′) 6∈ I. t
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originates on n ∈ N iff n is an entry point for
I = {t′ : t @ t′}.

5. An term t is uniquely originating in S ⊂ N iff
there is a unique n ∈ S such that t originates on
n, and non-originating if there is no such n ∈ S.

If a term t originates uniquely in a suitable set of nodes,
then it plays the role of a nonce or session key. If it
is non-originating, it can serve as a long-term shared
symmetric key or a private asymmetric key.

Definition 11 A penetrator strand is a strand s such
that tr(s) is one of the following:

Mt: 〈+t〉 where t ∈text
KK : 〈+K〉 where K ∈ KP
Cg,h: 〈−g, −h, +g ˆ h〉
Sg,h: 〈−g ˆ h, +g, +h〉
Eh,K : 〈−K, −h, +{|h|}K〉
Dh,K : 〈−K−1, −{|h|}K , +h〉
Vh,K : 〈−[[h ]]K , +h〉
Ah,K : 〈−K−1, −h, +[[h ]]K〉
Hh: 〈−h, +hash(h)〉

A node is a penetrator node if it lies on a penetrator
strand, and otherwise it is a regular node.

Definition 12 A node n ∈ B = 〈NB,→B ∪ ⇒B〉 if
n ∈ NB. The B-height of a strand s is the largest i
such that 〈s, i〉 ∈ B or 0 if there is none. ≺B is the
transitive closure of →B ∪ ⇒B, and �B is its reflexive,
transitive closure.

Proposition 13 If B is a bundle, �B is a partial or-
der. Every non-empty subset of the nodes in B has �B-
minimal members.

We reason about secrecy using the notion of safety [19].
We write safe for safe keys, i.e. keys that the penetra-
tor can never learn or use [19]. Since long term shared
keys and private asymmetric keys are never transmit-
ted in reasonable protocols, these keys are safe unless
compromised before execution of the protocol. Session
keys are safe if transmitted only on +c nodes or nodes
protected by keys K with K−1 ∈ safe.

If we consider the abstract syntax tree of a term t,
and t0 @ t, then there is a branch leading from the root
(labeled t) to some subtree labeled t0. Moreover, by
Definition 10 Clause 1, this branch does not traverse
any key edge leading from a term {|h|}K to its key K.

When S is a set of terms, t0 occurs only within S
in t if, regarding t as an abstract syntax tree, every
branch from the root to an occurrence of t0 that avoids
key edges traverses some occurrence of a t1 ∈ S before
reaching t0. It occurs outside S in t if t0 @ t but t0 does
not occur only within S in t. A term t0 occurs safely in
t if it occurs only within S = {{|h|}K : K−1 ∈ safe} in t.

The Authentication Tests given here are in a simpler
and stronger form than in [19].

Proposition 14 (Outgoing Authentication Test)
Suppose B is a bundle in which a originates uniquely
at n0; a occurs only within S in term(n0) and a occurs
safely in S; and n1 ∈ B is negative and a occurs outside
S in term(n1).

There are regular m0,m1 ∈ B such that m0 ⇒+

m1, where m1 is positive, a occurs only within S in
term(m0), and a occurs outside S in term(m1). More-
over, n0 � m0 ≺ m1 ≺ n1.

Proposition 15 (Unsolicited, Incoming Tests)
Suppose n1 ∈ B is negative, {|h|}K @ term(n1), and
K ∈ safe. (Unsolicited test:) There exists a regular
m1 ≺ n1 such that {|h|}K originates at m1. (Incoming
test:) If in addition a @ h originates uniquely on
n0 6= m1, then n0 ≺ m0 ⇒+ m1 ≺ n1.

B Full Syntax of Protocol Language

procedure := id (params) RELY formula :

(params) GUARANTEE formula

= statement end

statement := RETURN

| LET id = expression IN statement

| <-- send_branches

| --> id recv_branches

| <-> call_site

send_branches := empty

| (GUARANTEE formula; SEND id msg;

statement) send_branches

recv_branches := empty

| (RECEIVE msg; RELY formula;

statement) recv_branches

call_site := invocation ELSE invocation

invocation := (GUARANTEE formula;

id(params): params;

RELY formula;

statement)

msg := id | msg, msg

| {| msg |}_id | [[ msg ]]_id

| HASH(msg)

expression := id

| new_expr

| REMOTE(id) | channel_expr

new_expr := NEW KEY | NEW NONCE
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channel_expr := CHANNEL(id) | ACCEPT()

params := empty | id more_ps

more_ps := empty | , id more_ps

id := token | token : type

type := PRINCIPAL | TEXT

| KEY | NONCE

| TAG

empty := /* empty */
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