Details of Attacks and Fix for EAP-AKA’

Kelley Burgin (kburgin@mitre.org)
Paul Rowe (prowe@mitre.org)
Current contact:

Joshua Guttman (guttman@mitre.org)

The MITRE Corporation

In this document we provide the details of two privacy attacks on the EAP-
AKA’ protocol that have been reported in the literature [1, 2]. We present
a proposed improvement designed to mitigate these attacks. By demonstrat-
ing how the attacks manifest in the Cryptographic Protocol Shapes Analyzer
(CPSA) [3], we can then verify that the modified protocol is no longer subject
to the attacks.

init_phase{ SN initiates authn w/UE

{IsucI} gy

{INg,SUCI, SN[} gn-uN

{{Ng, Ny, R, AUTN,
SN, AT_MAC|} gn-pN

aka-phase R, AUTN, SN, AT_MAC

RES-EAP, AT_MAC

{INg. Ny, RES-EAP,
AT-MAC} gN-HN

{INg, Ny, KSEAF-EAP,
SUPI}sN-HN

kconf—phase{ {IND #(SN,KSEAF-EAP)

Notes on calculating values:
AUTN is a function of SQN, R, and Kyp_gN
RES-EAP is a function of R and Kyp_gN
KSEAF-EAP is a function of SQN, R, SN,
and K yp_gn
AT_MAC yp_pgy is the keyed hash
of the message

N

Figure 1: Message diagram of the EAP-AKA’ protocol.

Protocol Description

Figure 1 shows the sequences of messages sent by the three parties in EAP-
AKA’. In the initialization phase, the user equipment (UFE) attempts to con-
nect to a serving network (SN) by sending its identifier (known as a SUCI)
encrypted for its own home network (HN). The SN forwards this request on a
secure channel to the HN who initiates a challenge response protocol with the
UE. Since the UE and HN are not within range of each other, the challenge
response protocol must be mediated by SN who relays the messages. When
the UFE receives the challenge message, it will respond in one of several ways

depending on whether certain checks succeed or fail. The AT _MAC is a mes-
sage authentication code (MAC) computed using a key shared by UE and HN.
If the MAC check fails, then the UE will reply with a MAC-FAILURE message
(not depicted in Fig. 1). If the MAC check succeeds, but the sequence number
embedded in AUTN is incorrect, the UFE responds with a SYNC-FAILURE mes-
sage (also not depicted) that includes enough information for the UE and HN
to resynchronize the sequence number. If both checks succeed, the UE replies
with an EAP response (denoted RES-FAP in Fig. 1). The HN will then pro-
vide SN with the value KSEAF-FEAP that allows the SN to compute a key it
will share with the UE.

Attack Description

To mount a privacy attack, a malicious actor only has to replay the challenge
message as it is relayed from the SN to the UE. Since these challenge messages
must be sent in the clear, it is easy for a malicious actor to receive and record
such messages for later use. Replaying it later is also trivial assuming the
adversary has equipment that can spoof a base station. As we explain below,
replaying this message later will allow an adversary to determine if the targeted
UF is within range of the adversary.

If the replayed message is received by a device that is not the targeted UFE,
that device will attempt to verify the MAC value by computing its own keyed
checksum over the message contents and comparing with AT_MAC. Since the
MAC in the replayed message was computed using the key shared only between
the targeted UE and the HN, this MAC check will always fail resulting in a
MAC-FAILURE message.

However, consider how the targeted device will respond. Since it uses the
same key as was used in the AT_MAC of the replayed message, the MAC check
will necessarily succeed. However, this message has embedded within it an old
sequence number. As long as the UE has advanced its sequence number this will
cause a synchronization failure, and it will reply with a SYNC-FAILURE message.

Since the targeted device responds differently from other devices when re-
ceiving a replayed message, an adversary can detect the presence of the targeted
UE if it receives a SYNC-failure message in response to the replay. This is a
violation of privacy for the owner of the UE. It provides a mechanism for an
adversary to at least confirm an approximate location of a targeted device (and
by proxy, a targeted individual). Worse still, if an adversary has the resources
to establish a network of rogue base stations, then a targeted UE can even be
tracked, building up a pattern of movement.

We modeled the protocol in CPSA to verify the existence of the attack
described above. We had to model the failure modes of user equipment devices
to demonstrate the differing response patterns. Figure 2 shows the output of
CPSA. Although the two leftmost protocol runs are shown at the same level in
the diagram as the successful run of a UFE, they could be significantly later, as
they are receiving the challenge message replayed from the successful run. While
CPSA does not display the messages on its arrows, notice that the leftmost run

is a run of a UF whose identity is distince from the targeted UF, but the next
run to the right is a run of the targeted UFE.

MAC(ue’) Sync(ue) UE(ue) HN SN
[]

®K—0

[] [] [] *———0

Figure 2: Depiction of privacy attack in CPSA’s output.

The replay attack has the additional consequence of allowing the adversary
to learn information about how frequently the targeted UE has connected. This
might reveal usage patterns that should remain private. This is achieved by re-
playing the same challenge message several times to the targeted UE. When it
replies with a SYNC-FAILURE message, this message contains SQN®AK , which
is the UE’s current sequence number xor’ed with some value derived from the
challenge message. When the challenge message is replayed a second time, the
UFE will reply with SQN’® AK , which is a new sequence number xor’ed with the
same AK. The adversary can xor these two values to obtain SQN®SQN’. This
allows the adversary to infer which bits of the sequence number have changed
between the two replays, revealing information about how many times the tar-
geted UE has connected in the meantime. Combined with information about
where the UE is on each successful replay attack, this constitutes a significant
privacy violation.

We also used CPSA to verify the existence of this attack. While Fig. 2 shows
that two distinct devices respond differently to the same replayed message, Fig. 3
demonstrates that the targeted UE always replies with SYNC-FAILURE messages,
even upon repeated replayes of the same message. This is what enables the xor
attack described above.

Proposed Improvement

The key insight that leads to our proposed improvement is that these attacks
would be impossible if the UE were unwilling to reply to the challenge unless
it was sure the challenge was generated in response to its current connection
request. The simplest way to ensure that the HN’s challenge message is tied to
the initial request is to include a unique number Ny in the UFE’s initial request.
We thus propose to include such a unique value Ny in the initial request and
to thread it through all subsequent messages.

Sync(ue) Sync(ue) UE(ue) HN SN

Figure 3: Depiction of xor attack in CPSA’s output.

The proposed changes are shown in Fig. 4 where additions and changes are
marked in bold text. The values AUTN, RES-EAP, and KSEAF-EAP are
computed in essentially the same way as before except that each occurrence of
R in the original computation is replaced with the pair R, Niy. When a device
receives the challenge message, it should avoid sending any failure messages if
the unique value Ny does not match the value it expects, as that is a signal
that the message is a replay or is intended for somebody else.

One important feature of this proposed improvement is that the new value
Ny need not be random. It suffices to ensure that the UE will never send two
requests with the same Ny . This is an advantage because it means that this so-

init—phasc{ SN initiates authn w/UE

{Isuctl} yn, Ny

{INg, SUCI, Ny SN[} sn-HN

{INg. Np, R,Ny, AUTN,
SN, AT_MAC|} sN_HN

aka-phase] - NU» AUTN, SN, AT_MA(]

RES-EAP, AT_MAC

{INg, Npr, RES-EAP,
AT_MAC gN_HN

{INg, N, KSEAF-EAP,
SUPI}SN-HN

kconffphasc{ N} (5N KSEAF-EAP)

Notes on calculating values:
AUTN is a function of SQN, R, N7, and Kpyp_ gy
RES-EAP is a function of R, Ny and K pyp_gn
KSEAF-EAP is a function of SQN, R, Ng;, SN,
and Kyp_gN
AT_-MAC yp_gN is the keyed hash
of the message

N

Figure 4: Message diagram of proposed improvement to EAP-AKA’ protocol.

lution can also apply to legacy devices that may not be able to reliably produce
sufficiently random values. For devices that can generate random values, it is
best to choose Ny randomly. For other devices, since using a simple counter
would allow somebody to infer usage information and violate the user’s privacy,
we recommend that the UE choose Ny to be the keyed hash of some internal
counter value such as Ny = #*(Kyg-gn, ctr) where #*(-) is a new hash func-
tion, initialized so as to be independent from the other hash functions used in
the protocol. This will ensure that the Ny values are sufficiently unrelated from
one run to the next that an adversary canot infer anything about usage patterns
from this value alone.

We modeled this modified version of the protocol in CPSA to determine if the
proposed changes would be sufficient to prevent the privacy attacks described
above. CPSA allows a user to input a “scenario” and it will show all the ways
that scenario might be part of a real execution. When we ask it to show all the
ways in which two distinct devices could reply with different error messages in
response to the same replayed message, CPSA determined that there were no
such executions. In other words, the CPSA analysis shows that the problematic
situation depicted in Fig. 2 is not possible (and hence there is no visual output
to show in a figure). Similarly, when asked to display all the ways a single device
might reply with SYNC-FAILURE messages to the same replayed challenge, CPSA
determines that this is impossible. In other words, the problematic situation
depicted in Fig. 3 is also cannot occur. We therefore have strong evidence,
backed by a formal analysis, that our proposed changes to the protocol are
improvements that mitigate the known privacy attacks.

References

[1] David Basin, Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, Ralf Sasse,
and Vincent Stettler. A formal analysis of 5G authentication. In Proceedings
of the 2018 ACM SIGSAC conference on computer and communications
security, pages 1383-1396, 2018.

[2] Ravishankar Borgaonkar, Lucca Hirschi, Shinjo Park, and Altaf Shaik. New
privacy threat on 3G, 4G, and upcoming 5G AKA protocols. Proceedings
on Privacy Enhancing Technologies, 2019(3):108-127, 2019.

[3] John D Ramsdell, Joshua D Guttman, Moses D Liskov, and Paul D Rowe.
The CPSA Specification: A Reduction System for Searching for Shapes in
Cryptographic Protocols. Technical report, The MITRE Corporation, 2009.

