Authentication Tests: Analyzing and Designing Cryptographic Protocols

Joshua D. Guttman F. Javier Thayer Jonathan C. Herzog Lenore D. Zuck

March 2002

http://www.ccs.neu.edu/home/guttman/

Supported by the National Security Agency

Presented 21 March 2002

Clifford Lectures, Tulane University Mathematics Department

1

+

Cryptographic Protocols

• For instance, Secure Sockets Layer (SSL)

- Creates secure channel, browser to server
- Agree on new shared secret
- Use secret for encryption, integrity
- What is a cryptographic protocol?
 - Short, conventional sequence of messages
 - Uses cryptography
 - Goals: key distribution, authentication
- Frequently wrong
 - Even if the crypto is fine
 - May also amplify issues in crypto

MITRE

+

+

2

Trust Infrastructure

- Authenticate via cryptography
 - Principal demonstrates knowledge of
 - A private (asymmetric) key matching a certified public key, or
 - A shared secret key
 - Establishes identity
- Create new shared secrets
 - Entwined with authentication
 - Basis for secure conversation
 - Allows easy repeated authentication
- Preserve confidentiality or control access

MITRE

3

+

+

Today's Goals

+

- Focus on one class of protocols, one type of flaw
 - Structural rather than cryptographic
- Explain how to prove correctness
- Illustrate how same ideas provide a protocol design method

MITRE

+

Example: Needham-Schroeder

 K_A, K_B Public keys of A, B

- N_a, N_b Nonces, one-time random bitstrings
 - $\{t\}_K$ Encryption of t with K
- $N_a \oplus N_b$ New shared secret

MITRE

+

+

5

Why are Crypto Protocols Hard?

- Attacker chooses pattern of communication
- Attacker may also be a player
 - May hold keys
 - Will misuse them freely
- Attacker manipulates honest players
 - They play by the rules
 - Forced to serve as oracles
 - Protocol creates "unintended services"

6

+

+

Needham-Schroeder Failure

Due to Gavin Lowe, 1995

MITRE

+

+

+

Diagnosis of a Failure

- Who was duped?
- Not A: Meant to share N_a , N_b with P
- B: Thinks he shares N_a , N_b only with A
 - Secrecy failed: P knows N_a , N_b
 - Authentication failed:
 - \circ A had no run with B
 - \circ B thinks A did

MITRE

8

+

+

Regular strands

 $\mathsf{NSInit}[A, B, N_a, N_b]$

 $NSResp[A, B, N_a, N_b]$

MITRE

+

+

NS Attack: Penetrator Activity

MITRE

+

+

Protocol Executions are Bundles

• Send, receive events on strands called "nodes"

- Positive for send
- Negative for receive
- Bundle B: Finite graph of nodes and edges representing causally well-founded execution; Edges are arrows →, ⇒
 - For every reception -t in \mathcal{B} , there's a unique transmission +t where $+t \rightarrow -t$
 - When nodes $n_i \Rightarrow n_{i+1}$ on same strand, if n_{i+1} in \mathcal{B} , then n_i in \mathcal{B}
 - \mathcal{B} is acyclic

MITRE

+

A Bundle

+

MITRE

+

Precedence within a Bundle

- Bundle precedence ordering $\preceq_{\mathcal{B}}$
 - $n \preceq_{\mathcal{B}} n'$ means sequence of 0 or more arrows \rightarrow , \Rightarrow lead from n to m
 - $\preceq_{\mathcal{B}}$ is a partial order by acyclicity
 - $\preceq_{\mathcal{B}}$ is well-founded by finiteness
- Bundle induction: Every non-empty subset of B has ∠_B-minimal members
- Reasoning about protocols combines
 - Bundle induction
 - Induction on message structure

MITRE

+

Messages

+

• Terms freely generated from

- Names, texts
- Nonces
- Keys

using the operators:

- Concatenation t_0, t_1
- Encryption with a key $\{|t_0|\}_K$
- Other algebras also interesting but today we'll use the free one

Subterms and Origination

 Subterm relation □ least transitive, reflexive relation with

N.B. $K \sqsubset \{|h|\}_K \text{ implies } K \sqsubset h$

• Represents *contents* of message, not how it's constructed

• t originates at n_1 means

```
n_1 is a transmission (+)

t \sqsubset \operatorname{term}(n_1)

if n_0 \Rightarrow \cdots \Rightarrow n_1, then t \not\sqsubset \operatorname{term}(n_0)
```

 Unique origination, non-origination formalize a probabilistic assumption

MITRE

+

Guessing a Nonce

Guessing a private key (e.g. K_A^{-1}) similarly improbable

MITRE

+

+

An Authentication Goal

• Suppose:

+

- Bundle \mathcal{B} contains a strand Resp $[A, B, N_a, N_b]$
- K_A^{-1} non-originating
- N_b originates uniquely in \mathcal{B}
- Then:
 - There is a strand $Init[A, B, N_a, N_b]$ in \mathcal{B}

Authentication: correspondence assertions (of form $\forall \exists$) This is false for NS

MITRE

A Secrecy Goal

• Suppose:

+

- Bundle \mathcal{B} contains a strand Resp $[A, B, N_a, N_b]$
- K_A^{-1}, K_B^{-1} non-originating
- N_b originates uniquely in \mathcal{B}
- Then:
 - There is no node $n \in \mathcal{B}$ with term $(n) = N_b$

Form: \forall This also is false for NS

MITRE

Why NS Fails

+

 $\mathsf{NSInit}[A, X, N_a, N_b]$

 $NSResp[A, B, N_a, N_b]$

MITRE

+

Lowe's Fix

+

 $\mathsf{NSInit}[A, B, N_a, N_b]$

 $NSResp[A, B, N_a, N_b]$

MITRE

+

Outgoing Authentication Test

MITRE

NSL: Responder's Outgoing Test

This is an outgoing test

What regular strand can transform $\{|N_1, N_2, B|\}_{K_A}$?

MITRE

+

Outgoing Test Conclusion

+

Incoming Tests

+

Assume a originates uniquely at m_0 $\{|...a...|\}_K \not\sqsubset \operatorname{term}(m_0)$ Conclude nodes n_0, n_1 exist in \mathcal{B} and are regular $m_0 \prec n_0 \prec n_1 \prec m_1$

MITRE

Another Protocol (ISO reject)

Mere authentication, using incoming tests

MITRE

+

The Incoming Tests

MITRE

+

+

B

The Transforming Edges

$$\xrightarrow{A, N_a} B \\ \xrightarrow{N_b, A, \{|N_b, N_a, A|\}_{K_B^{-1}}}$$

Produce same term (just rename free variables)

MITRE

+

Counterexample to One Security Goal

MITRE

+

ISO Reject: Corrected Version

$$\begin{array}{c}
A \\ & A, N_{a} \\ & \\
N_{b}, A, \{N_{b}, N_{a}, A\}_{K_{B}^{-1}} \\ & \\
N_{a}', B, \{N_{b}, B\}_{K_{A}^{-1}} \\ & \\
N_{a}', B, \{N_{b}, B\}_{K_{A}^{-1}} \\ & \\
\end{array}$$

MITRE

+

The Transforming Edges

$$A, N_{a} \longrightarrow B$$

$$N_{b}, A, \{|N_{b}, N_{a}, A|\}_{K_{B}^{-1}}$$

$$N_{a}', B, \{|N_{b}, B|\}_{K_{A}^{-1}}$$

Each test now requires a single, explicit transforming edge

MITRE

+

SSSL, a Simplified SSL

MITRE

+

Protocol Design

+

• Largely a matter of

- selecting incoming, outgoing tests
- inserting a single, explicit transforming edge for each
- Choosing an example: comparison with SSL
 - Provides good secrecy and authentication
 - Requires customer to trust merchant
 - Frequently undesirable
- Better: three-party protocol for customer, merchant, and bank
 - Credit card number goes to bank only
 - Item purchased shared with merchant only
 - All three must agree on price

MITRE

Secure Electronic Transaction

• SET protocol:

- Visa, MasterCard, bank alliance
- Protocol complete in 1997
- In use nowhere
- Spectacularly complex
 - Hard to analyze
 - Hard to implement
 - Creates risk
- Our goal:

simple, correct by design alternative

MITRE

+

Protocol Goals

+

Participants: Customer C, Merchant M, Bank B

Confidentiality All data to remain secret Data for a pair not to be disclosed to third participant

Authentication, I Each *P* receives guarantee: *Q* received and accepted *P*'s data

Non-Repudiation *P* can prove its **Authentication**, **I** guarantee to a third party

Authentication, II Each Q receives guarantee: data purportedly from P originated with P, in a recent run

MITRE

+

Assumptions

+

• Uncompromised public/private keypairs:

- Private signature key (Public part for verification)
- Private decryption key (Public part for encryption)

We write $\llbracket h \rrbracket_P$, $\{ |h| \}_P$

• Good hash function h

MITRE

Two Party Subprotocols

• Goals are essentially pair-wise

(except confidentiality for shared data)

• Hence, design set of six two-party subprotocols

- C.M, C.B, M.B, etc.
- Each P.Q achieves goals for role P

• Piece them together, later

Confidentiality Send data as $\{\ldots, \text{ sec}_{P,Q}, \text{ shared}_{P}\}_{Q}$

MITRE

+

Authentication, I

Each P receives guarantee: Q received and accepted P's data

• Use incoming test:

MITRE

+

+

Non-Repudiation

P can prove its **Authentication**, **I** guarantee to a third party

- No additional protocol contents needed
 - P discloses $N_{P,Q}, \ldots, \text{sec}_{P,Q}, \text{shared}_P$
 - Third party verifies signature
 - $\llbracket \dots, N_{P,Q}, h(\mathsf{sec}_{P,Q}, \mathsf{shared}_P) \rrbracket_Q$

MITRE

+

+

Authentication, II

Each Q receives guarantee: data purportedly from P originated with P, in a recent run

• Again, use incoming test (right-to-left)

MITRE

+

+

Preventing Confusion among Subprotocols

• Multiple protocols on same network lead to failures

- New transforming edges
- Undermine authentication tests
- We have just designed six protocols
 - Are they still right if executed together?
 - Safer to tag each message with protocol name *C.M*, *C.B*, *M.B*, etc

 General theorem: disjoint encryption guarantees protocol independence (CSFW 2000)

MITRE

+

Final Two-Party Protocol

MITRE

+

Piecing together the Three Party Protocol

MITRE

+

+

Coordinating the subprotocols

• When to start:

- C starts when ready
- M starts on receipt of C.M messages
- B starts on receipt of C.B messages
- When to emit new messages
 - On receipt of a P.Q message P or Q follows the subprotocol
- When to forward message
 - On receipt of a P.Q message forward it if neither P nor Q

MITRE

+

Protocol Design via Authentication Tests

• Designed new electronic commerce protocol

- Trust relations in electronic transactions
- Uniform, correct-by-design protocol
- Authentication tests:
 - Strong protocol proof method
 - Strong heuristic for design
- But:
 - Purely structural
 - Assume crypto perfect
 - Additional issues if crypto imperfect
- Cryptographic protocols: trust infrastructure for distributed systems

MITRE

+

+