Authentication Tests: Analyzing and Designing Cryptographic Protocols

Joshua D. Guttman
F. Javier Thayer
Jonathan C. Herzog
Lenore D. Zuck

March 2002
http://www.ccs.neu.edu/home/guttman/
Supported by the National Security Agency
Presented 21 March 2002
Clifford Lectures, Tulane University Mathematics Department

MITRE

Cryptographic Protocols

- For instance, Secure Sockets Layer (SSL)
- Creates secure channel, browser to server
- Agree on new shared secret
- Use secret for encryption, integrity
- What is a cryptographic protocol?
- Short, conventional sequence of messages
- Uses cryptography
- Goals: key distribution, authentication
- Frequently wrong
- Even if the crypto is fine
- May also amplify issues in crypto

MITRE

Trust Infrastructure

- Authenticate via cryptography
- Principal demonstrates knowledge of
- A private (asymmetric) key matching
a certified public key, or
- A shared secret key
- Establishes identity
- Create new shared secrets
- Entwined with authentication
- Basis for secure conversation
- Allows easy repeated authentication
- Preserve confidentiality or control access

MITRE

Today's Goals

- Focus on one class of protocols, one type of flaw
- Structural rather than cryptographic
- Explain how to prove correctness
- Illustrate how same ideas provide a protocol design method

MITRE

Example: Needham-Schroeder

$K_{A}, K_{B} \quad$ Public keys of A, B
N_{a}, N_{b} Nonces, one-time random bitstrings
$\{t \mid\}_{K} \quad$ Encryption of t with K
$N_{a} \oplus N_{b}$ New shared secret

MITRE

Why are Crypto Protocols Hard?

- Attacker chooses pattern of communication
- Attacker may also be a player
- May hold keys
- Will misuse them freely
- Attacker manipulates honest players
- They play by the rules
- Forced to serve as oracles
- Protocol creates "unintended services"

MITRE

Needham-Schroeder Failure

Due to Gavin Lowe, 1995

MITRE

Diagnosis of a Failure

- Who was duped?
- Not A : Meant to share N_{a}, N_{b} with P
- B : Thinks he shares N_{a}, N_{b} only with A
- Secrecy failed: P knows N_{a}, N_{b}
- Authentication failed:
- A had no run with B
- B thinks A did

MITRE

Regular strands

$\operatorname{NSInit}\left[A, B, N_{a}, N_{b}\right]$

NSResp $\left[A, B, N_{a}, N_{b}\right]$

MITRE

NS Attack: Penetrator Activity

MITRE

Protocol Executions are Bundles

- Send, receive events on strands called "nodes"
- Positive for send
- Negative for receive
- Bundle B: Finite graph of nodes and edges representing causally well-founded execution; Edges are arrows \rightarrow, \Rightarrow
- For every reception $-t$ in \mathcal{B}, there's a unique transmission $+t$ where $+t \rightarrow-t$
- When nodes $n_{i} \Rightarrow n_{i+1}$ on same strand, if n_{i+1} in \mathcal{B}, then n_{i} in \mathcal{B}
$-\mathcal{B}$ is acyclic

MITRE

A Bundle

MITRE

Precedence within a Bundle

- Bundle precedence ordering $\preceq \mathcal{B}^{\mathcal{B}}$
$n \preceq_{\mathcal{B}} n^{\prime} \quad$ means sequence of 0 or more arrows \rightarrow, \Rightarrow lead from n to m
$\preceq_{\mathcal{B}}$ is a partial order by acyclicity
$\preceq_{\mathcal{B}}$ is well-founded by finiteness
- Bundle induction: Every non-empty subset of \mathcal{B} has $\preceq_{\mathcal{B}}$-minimal members
- Reasoning about protocols combines
- Bundle induction
- Induction on message structure

MITRE

Messages

- Terms freely generated from
- Names, texts
- Nonces
- Keys
using the operators:
- Concatenation t_{0}, t_{1}
- Encryption with a key $\left\{\left|t_{0}\right|\right\}_{K}$
- Other algebras also interesting but today we'll use the free one

MITRE

Subterms and Origination

- Subterm relation \sqsubset
least transitive, reflexive relation with

$$
\begin{aligned}
& g \sqsubset g, \quad h \\
& h \sqsubset g, \quad h \\
& h \sqsubset\{|h|\}_{K}
\end{aligned}
$$

N.B. $K \sqsubset\{|h|\}_{K}$ implies $K \sqsubset h$

- Represents contents of message, not how it's constructed
- t originates at n_{1} means

$$
\begin{aligned}
& n_{1} \text { is a transmission }(+) \\
& t \sqsubset \operatorname{term}\left(n_{1}\right) \\
& \text { if } n_{0} \Rightarrow \cdots \Rightarrow n_{1} \text {, then } t \not \subset \operatorname{term}\left(n_{0}\right)
\end{aligned}
$$

- Unique origination, non-origination formalize a probabilistic assumption

MITRE

Guessing a Nonce

Guessing a private key (e.g. K_{A}^{-1})
similarly improbable

MITRE

An Authentication Goal

- Suppose:
- Bundle \mathcal{B} contains a strand $\operatorname{Resp}\left[A, B, N_{a}, N_{b}\right]$
- K_{A}^{-1} non-originating
- $\quad N_{b}$ originates uniquely in \mathcal{B}
- Then:
- There is a strand $\operatorname{Init}\left[A, B, N_{a}, N_{b}\right]$ in \mathcal{B}

Authentication: correspondence assertions (of form $\forall \exists$) This is false for NS

MITRE

A Secrecy Goal

- Suppose:
- Bundle \mathcal{B} contains a strand $\operatorname{Resp}\left[A, B, N_{a}, N_{b}\right]$
- K_{A}^{-1}, K_{B}^{-1} non-originating
- N_{b} originates uniquely in \mathcal{B}
- Then:
- There is no node $n \in \mathcal{B}$ with term $(n)=N_{b}$

Form: \forall
This also is false for NS

MITRE

Why NS Fails

$\operatorname{NSInit}\left[A, X, N_{a}, N_{b}\right]$
$\operatorname{NSResp}\left[A, B, N_{a}, N_{b}\right]$

MITRE

Lowe's Fix

NSInit $\left[A, B, N_{a}, N_{b}\right]$
NSResp $\left[A, B, N_{a}, N_{b}\right]$

MITRE

Outgoing Authentication Test

Assume $\quad\{|h|\}_{K} \not \subset$ term $\left(m_{1}\right)$
a originates uniquely at m_{0}, a contained only in $\{|h|\}_{K}$
Conclude nodes n_{0}, n_{1} exist in \mathcal{B} and are regular $\{\mid h\}_{K} \not \subset t^{\prime}$ $m_{0} \prec n_{0} \prec n_{1} \prec m_{1}$

MITRE

NSL: Responder's Outgoing Test

This is an outgoing test
What regular strand can transform $\left\{\left|N_{1}, \quad N_{2}, B\right|\right\}_{K_{A}}$?

MITRE

Outgoing Test Conclusion

$\mathrm{NSLInit}\left[A, B, N_{1}, N_{2}\right.$]

MITRE

Incoming Tests

Assume $\quad a$ originates uniquely at m_{0}

$$
\{|\ldots a \ldots|\}_{K} \not \subset \operatorname{term}\left(m_{0}\right)
$$

Conclude nodes n_{0}, n_{1} exist in \mathcal{B} and are regular $m_{0} \prec n_{0} \prec n_{1} \prec m_{1}$

MITRE

Another Protocol (ISO reject)

Mere authentication, using incoming tests

MITRE

The Incoming Tests

MITRE

The Transforming Edges

-

Produce same term
(just rename free variables)

MITRE

Counterexample to One Security Goal

MITRE

ISO Reject: Corrected Version

MITRE

The Transforming Edges

Each test now requires a single, explicit transforming edge

MITRE

SSSL, a Simplified SSL

MITRE

Protocol Design

- Largely a matter of
- selecting incoming, outgoing tests
- inserting a single, explicit transforming edge for each
- Choosing an example: comparison with SSL
- Provides good secrecy and authentication
- Requires customer to trust merchant
- Frequently undesirable
- Better: three-party protocol for customer, merchant, and bank
- Credit card number goes to bank only
- Item purchased shared with merchant only
- All three must agree on price

MITRE

Secure Electronic Transaction

- SET protocol:
- Visa, MasterCard, bank alliance
- Protocol complete in 1997
- In use nowhere
- Spectacularly complex
- Hard to analyze
- Hard to implement
- Creates risk
- Our goal:
simple, correct by design alternative

MITRE

Protocol Goals

Participants: Customer C, Merchant M, Bank B

Confidentiality All data to remain secret
Data for a pair not to be disclosed to third participant

Authentication, I Each P receives guarantee:
Q received and accepted P 's data

Non-Repudiation $\quad P$ can prove its Authentication, I guarantee to a third party

Authentication, II Each Q receives guarantee:
data purportedly from P originated with P, in a recent run

MITRE

Assumptions

- Uncompromised public/private keypairs:
- Private signature key (Public part for verification)
- Private decryption key
(Public part for encryption)
We write $\llbracket h \rrbracket_{P}, \quad\{\mid h\}_{P}$
- Good hash function h

MITRE

Two Party Subprotocols

- Goals are essentially pair-wise (except confidentiality for shared data)
- Hence, design set of six two-party subprotocols
- C.M, C.B, M.B, etc.
- Each P.Q achieves goals for role P
- Piece them together, later

Confidentiality Send data as $\left\{\left|\ldots, \sec _{P . Q}, \quad \operatorname{shared}_{P}\right|\right\}_{Q}$

MITRE

Authentication, I

Each P receives guarantee: Q received and accepted P 's data

- Use incoming test:

MITRE

Non-Repudiation

P can prove its Authentication, I guarantee to a third party

- No additional protocol contents needed
- P discloses $N_{P . Q}, \ldots, \sec _{P . Q}$, shared $_{P}$
- Third party verifies signature

$$
\llbracket \ldots, \quad N_{P . Q}, \quad h\left(\sec _{P . Q}, \quad \operatorname{shared}_{P}\right) \rrbracket_{Q}
$$

MITRE

Authentication, II

Each Q receives guarantee:
data purportedly from P originated with P, in a recent run

- Again, use incoming test (right-to-left)

MITRE

Preventing Confusion among Subprotocols

- Multiple protocols on same network lead to failures
- New transforming edges
- Undermine authentication tests
- We have just designed six protocols
- Are they still right if executed together?
- Safer to tag each message with protocol name $C . M, C . B, M . B$, etc
- General theorem:
disjoint encryption guarantees protocol independence (CSFW 2000)

MITRE

Final Two-Party Protocol

MITRE

Piecing together the Three Party Protocol

MITRE

Coordinating the subprotocols

- When to start:
- C starts when ready
- M starts on receipt of C.M messages
- $\quad B$ starts on receipt of $C . B$ messages
- When to emit new messages
- On receipt of a $P . Q$ message P or Q follows the subprotocol
- When to forward message
- On receipt of a $P . Q$ message forward it if neither P nor Q

MITRE

Protocol Design via Authentication Tests

- Designed new electronic commerce protocol
- Trust relations in electronic transactions
- Uniform, correct-by-design protocol
- Authentication tests:
- Strong protocol proof method
- Strong heuristic for design
- But:
- Purely structural
- Assume crypto perfect
- Additional issues if crypto imperfect
- Cryptographic protocols: trust infrastructure for distributed systems

MITRE

