
Information Flow, Distributed Systems,
and Refinement, by Example

Joshua D. Guttman

The MITRE Corporation and
Worcester Polytechnic Institute

1 Introduction

Non-interference is one of the foundational notions of security stretching back to
Goguen and Meseguer [3]. Roughly, a set of activities C is non-interfering with a
set D if any possible behavior at D is compatible with anything that could have
occurred at C. One also speaks of “no information flow” from C to D in this
case. Many hands further developed the idea and its variants (e.g. [15,12]), which
also flourished within the process calculus context [6,13,1,2]. A. W. Roscoe con-
tributed a characteristically distinctive idea to this discussion, in collaboration
with J. Woodcock and L. Wulf. The idea was that a system is secure for flow
from C to D when, after hiding behaviors at the source C, the destination D
experiences the system as deterministic [8,11]. In the CSP tradition, a process is
deterministic if, after engaging in a sequence t of events, it can refuse an event
a, then it always refuses the event a after engaging in t [9].

One advantage of this approach via determinism is that it disposed of the
so-called “refinement paradox” of non-interference (for which C. Morgan [7] cites
J. Jacob [6], who does not use the term). Namely, a system might display non-
interference, but refine to a system that caused impermissible information flows.
Refinement does not preserve ignorance, in Morgan’s words. However, if the
system is already deterministic to the destination, no refinement can provide
the destination with information about the behavior of the source.

Unfortunately, non-interference is too strong a property to be desirable except
rarely. One rarely would design a system that has the activities C,D when C
should not interfere with D in any way at all. One would instead like to design
systems in which there are at least clear limitations on how that interference
may occur. For instance, perhaps there is a responsible intermediary M such
that C may influence M and M may then decide what information to make
visible to the destination D. Thus, writing “may influence directly” as ;, we
have C ;M ; D, although C ­; D. In this case, the “may-influence” relation
is not transitive. One may view this intransitive non-interference as a kind of
declassification, one in which the permissible intermediaries are trusted to decide
what information may reach the destination. From this point of view, it is a kind
of “who” declassification, in which the policy identifies which domains M are
permitted to choose what information to allow to pass from C to D [14].

A second advantage of Roscoe’s determinism idea turned out to be its sur-
prising and attractive applicability to intransitive non-interference, developed

with M. Goldsmith [10]. Non-interference given an intransitive “may-influence”
relation meant that, hiding the behavior of the sensitive source C, and fixing the
behavior of the permissible intermediary M , the destination D again experiences
the system as deterministic.

However, suppose we have explicit specifications of what we would like to
permit D to learn about C? For instance, the buyer should be able to learn
what the president had for breakfast, so as to replenish the larder, but not who
she vetted for the court opening. This is called “what” declassification, since the
content determines what D may learn and what not. The determinism point of
view does not seem to provide an explanation of “what” declassification, which
would be attractive.

We think it also attractive to recast the notions in a context that makes the
graph structure of distributed systems explicit, and allows us to use the graph
structure as a guide to information flow properties [4]. In this paper, we aim
to explain, largely by example, three aspects of information flow in distributed
systems that are governed by “what” declassification policies:

1. How to define policies bounding “what” declassification, i.e. upper bounds
on information flow, and also functionality goals expressed as lower bounds
on information flow;

2. How to represent distributed systems as directed graphs in which the nodes
are processing elements and the arcs are message channels, in which these
policies are meaningful;

3. How to ensure that these conclusions are preserved when a system is refined
using a surprisingly simple but still useful principle.

Functionality goals as lower bounds on information flow are new in this paper,
as is the simple refinement principle.

2 An Example System

We will consider a system EpiDB with very simple, but nevertheless useful,
behavior. We do not focus on the realism of EpiDB, as we will use it simply
to stimulate intuition for the information flow considerations at hand. EpiDB
is suggested by a related unpublished demonstration system written by two
colleagues.

2.1 The EpiDB idea

EpiDB serves as a database for epidemiological information. Imagine that health-
care providers deposit two kinds of records into the system. First, we have a table
of disease records, that say of a particular person that they had a particular
disease during a period of time. Second, we have a table of personal encounter
records, that say of an unordered pair of people that they had an encounter on a
particular date, or that they encounter each other habitually, possibly because
they belong to the same family or school class.

2

EpiDB will be used by public health analysts who seek to understand the
propagation of diseases through this population. Thus, an analyst A asks a query
about a person p1, a disease d, and a time t0. If that query is permitted from A,
and p1 had the disease d at a time t1 near t0, then the system will return a set
of tuples pp2, e2, t2q such that p2 encountered p1 at time e2, and had disease d at
time t2, where e2 and t2 are near t0. For simplicity, we will choose a parameter
ε, and take “ε-near” to mean that |t1 ´ t| ă ε. Thus, the query takes a sort of
join on the two tables, containing the disease and personal encounter records,
restricted to times near t0.

If the query is permitted from A but p1 did not have the disease d near
t0, it returns a distinctive value unsick denying the diagnosis. If the query is
impermissible from A, it returns a distinctive value imperm denying permission.
Perhaps some analysts are responsible only for certain diseases, and if they start
querying for sexually transmitted diseases instead of influenza (e.g.), they are
letting their curiosity get the better of them. Alternatively, some analysts may
be authorized to ask about some patients but not others, or some time periods.
In this example system, we will assume that permission is independent of the
contents of the database, and does not change as it operates.

If the database’s state consists of the tables of disease records with con-
tents T d and personal encounter records with contents T e, then we will write
anspA, q, T d, T eq for the result when query q “ pp1, d, t0q is received on c, where:

anspc, q, T d, T eq “

$

’

’

’

’

’

&

’

’

’

’

’

%

unsick if not sick ε-near t0
imperm if not permitted

tpp2, e2, t2q : Dt1 . pp1, d, t1q P T
d, pp2, d, t2q P T

d,
ptp1, p2u, e2q P T

e,
and t1, t2, e2 are ε-near t0u

To simplify the statement of information flow upper and lower bounds, we
will assume one type of coordination between the analysts and the data provider.
Namely, we will assume that the data provider remains up-to-date, while the
analysts are not concerned with very recent events. Thus, we will assume that if
an analyst ever makes a query q about a time t, and a provider ever deposits a
record r concerning a related time t1 ă t ` 2ε, then in fact the system received
r before q. As a consequence, no query ever has a result that would have been
altered by records received subsequently. In particular, the analyst can never
detect the order of arrival of records by a sequence of queries.

2.2 Simplest EpiDB system

Thus, the simplest version of our system EpiDB takes the form shown in Fig. 1,
in which a provider PR delivers data into the database E itself, which can be
queried by an analyst A1. We assume that E starts empty, so that its contents
at any time is just what PR has delivered over channel 3.

We regard the whole graph as the system, rather than simply the node E,
partly because in subsequent steps there are additional nodes, but also because

3

Analyst DB Provider

A1

1
**
E

2

kk PR
3oo

Fig. 1. Schematic System EpiDB

the security and functionality goals of the system are about A1 and PR. In
particular, A1 is authorized to learn certain aspects of the behavior of PR. A1

can learn which records PR has submitted that are relevant to a permissible
query. If PR submits records that are not related to any permissible query of
A1, then EpiDB is obliged to ensure that they can have no effect on what A1

observes on channels 1, 2.
We do not need to specify the behavior of A1 and PR, since the goals should

hold regardless of their actions. Thus, we regard them as always willing to send
or receive any message on their outgoing or incoming channels.

By contrast, E has a specification. We can describe it as a state machine
where the state includes two sets of tuples, representing the tables T d, T e. An
additional state component records the not-yet-processed query pp1, d, t0q or else
K if every query has already received a response. A new record rd, re may be
deposited at any moment, even between receiving a query and answering it, so
this state component remembers any as-yet unanswered query. We do, however,
maintain the upper bound t of the times mentioned in all queries we have re-
ceived; we refuse to receive a new record whose time does not exceed t` 2ε. We
record this maximum query time in the state component m, and we require that
when a record r is received, its time is greater than m` 2ε. We write timepqq or
timeprq for the last component of q, r, which is its time component.

We give the labeled transition relation in Fig. 2. Notice that E does not
accept a new query until it has answered the previous one, and restored K to
the first state component. Also, channel 2 carries a set of records pp2, e2, t2q, or
else a symbol unsick , imperm.

2.3 The intended information flow

EpiDB is intended to limit information flow from the provider PR to the analyst
A1. In particular, the access control system is intended to limit flow to infor-
mation for which A1 is authorized. The remainder of the system is intended to
maximize flow subject to authorization, and relevance to the queries A1 asks.

For definiteness, we will assume that each analyst A has been assigned:

personspAq: A set of persons of interest for A;
diseasespAq: A set of diseases A is authorized to consider;
startpAq: an earliest time about which to query; and
finishpAq: a most recent time about which to query.

4

Pre-State Label (channel, message) Post-State

pK, T d, T e, mq p1, qq pq, T d, T e, m1
q

pq, T d, T e, mq p2, aq pK, T d, T e, mq

px, T d, T e, mq p3, rdq px, T d
Y trdu, T

e, mq

px, T d, T e, mq p3, req px, T d, T e
Y treu, mq

where a “ anspA1, q, T
d, T e

q, m1
“ maxpm, timepqqq

q is a non-K query, x is any value,
and rd, re are respectively a disease record and an encounter record,

with timeprdq, timepreq ą m` 2ε

Fig. 2. Labeled transition relation for E

Since A will be able to learn about disease records within ε of the time t0 in a
query, we will write IntpAq “ rstartpAq´ε, finishpAq`εs to define the the interval
of disease records A is authorized to learn about.

The analyst A who queries p, d, t will learn whether p had disease d at time
t1 near t, as long as p P personspAq, d P diseasespAq, and t1 P IntpAq. Or more
precisely, A learns whether PR has registered this fact in the relevant portion of
its run. The set of permissible queries creates a region R0 of the space of disease
records that A can learn about directly.

The relevant portion of PR’s run also contains a set of encounter records
of the form ptp, p1u, eq, and these records create an adjacency relation between
records rd P R0 and other disease records involving p1, d, and a nearby time t1.
We will refer to the set of disease records adjacent to R0 as R1.

Essentially, the authorization mechanism entails that A should learn nothing
about what disease records and encounter records PR has submitted, except
as they help to determine R0 and R1. In particular, PR messages that provide
encounter records not connected to R0 should be invisible to A. Moreover, given
a set of encounter records, PR messages that provide disease records not in R0

or R1 are also invisible.

In particular, A’s observations as a consequence of a single query must re-
main unchanged, regardless of variation in PR’s messages containing encounter
records unconnected to R0 and regardless of variation in disease records not in
R0 YR1. A query imposes no ordering requirement on PR’s messages.

By submitting a sequence of queries, A can learn conjunctions of the con-
clusions returned by the individual queries. But by the timing constraints, A
cannot exclude any particular order in which the records may have arrived. In
particular, a record can have been absent from an earlier response if it is found
in a later response.

Thus, the purpose of the EpiDB system is essentially a what-declassification,
where the regions R0, R1 for each permissible query q determine what aspects of
the sensitive PR runs should be “declassified” and made available to the analyst
A asking q.

5

LO, CH,DA,ST , EV

sndr : CHÑ LO rcpt : CHÑ LO
chan : EV Ñ CH msg : EV Ñ DA
lts : LO Ñ lts

Table 1. Signature of frames

Later (Section 5) we will refine the schematic version of EpiDB from Figs. 1–
2 into a more complex system with separate components that guide an efficient
and reliable implementation.

3 Information Flow in the Frame Model

In this section, we will summarize the key notions of [4]. Systems (or frames),
represented as directed graphs, have executions; the local portions of an execu-
tion are called local runs; and an observer who sees one local run is trying to
infer information at a source, by determining what local runs at that source are
compatible with the observations. An information flow specification, which we
call a blur, is a specific kind of closure condition on the set of compatible local
runs at the information source.

3.1 Frames and Executions

We formalize systems such as EpiDB by structures we call frames. A frame F
consists of a directed graph, the nodes (or locations) of which are processing
elements each defined by a labeled transition system, and the arcs of which
carry messages. An execution of a frame F is a partially ordered set of events,
where each event e has a channel chanpeq and a message msgpeq. The events
associated with a single node nmust be linearly ordered, and moreover must form
a possible trace of ltspnq. However, events on two channels that are not attached
to a common node may be unordered, unless some causal sequence of events
connects them. We will use the words “node” and “location” synonymously.

Definition 1. Let LO, CH,DA,ST , EV be domains that we will call locations,
channels, data, states, and events, resp.

1. A labeled transition relation is a ternary relation ;Ď ST ˆ EV ˆ ST . A
labeled transition system is a pair p;, s0q of a labeled transition relation
and an “initial state” s0 P ST . lts is the set of labeled transition systems.

2. When ` P LO, we define chansp`q “ tc P CH : sndrpcq “ ` or rcptpcq “ `u.
3. A frame is a structure F containing the domains and functions shown in

Table 1 satisfying the following properties:
(a) For all e1, e2 P EV, if chanpe1q “ chanpe2q and msgpe1q “ msgpe2q, then

for all ` P LO and s, s1 P ST , s
e1
;` s

1 iff s
e2
;` s

1.
(b) For all s, s1 P ST , e P EV, and ` P LO, s

e
;` s

1 implies chanpeq P
chansp`q.

where we let p;`, initialp`qq “ ltsp`q. {{{

6

The histories of an lts p;, s0q are all finite or infinite alternating sequences
h “ xs0, e0, s1, . . . , si, ei, si`1, . . .y starting with s0, such that psj , ej , sj`1q P

; whenever ej is well defined. In particular, sj`1 is well defined whenever ej
is, so that h does not end with an event ej . A trace of p;, s0q is a finite or
infinite sequence of events tr “ xe0, e1 . . .y such that there is a history h where
tr enumerates the events in h.

An execution is a partially ordered set of events that—when projected onto
chansp`q—always yields a trace for `.

Definition 2. A “ pE,ĺq is an execution for a frame F , written A P ExcpFq,
iff E Ď EV and ĺ is a well-founded partial ordering on E, and, for all ` P LO,
letting trAp`q be the set te P E : chanpeq P chansp`qu,

1. trAp`q is linearly ordered by ĺ; and
2. trAp`q ordered by ĺ is a trace of ltsp`q. {{{

When LO is finite, the “well-founded” condition is redundant. If A “ pE,ĺq
is an execution, and ĺ1 is a partial order that is stronger than ĺ, i.e. ĺĎĺ1,
then A1 “ pE,ĺ1q is also an execution. The weakest partial order is generated
from the sequential traces of the individual locations, and extended to events at
other locations when they share an event on some channel that connects them.
However, any strengthening of this order determines another execution based on
the same set E of events.

Our notion of execution ignores what states the locations ` reach after en-
gaging in the events trAp`q, and thus ignores the effects of nondeterminism. A
similar theory can be developed including the resulting states, which would let
us talk about refusals as well as traces, but we will postpone that opportunity
for now.

We have here a synchronous notion of communication; a message m passes
over channel c only if both endpoints can take a transition with label c,m. Thus,
the sender learns that the recipient is willing to accept m over c now. Information
flows over channels in both directions.

3.2 Local Runs and Compatibility

We can now define what an observer with access to a particular set of channels
sees, or what a source of information does. We will assume that the observer
or the source has access to a set of channels C Ď CH. Often C is of the form
C “ chansp`q for some ` P LO or C “

Ť

`PL chansp`q for some L Ď LO, but this
is not always the case.

A local run at C is just the result of restricting the events in some execution
to the channels C.

Definition 3. Let B “ pE,Rq be a partially ordered set of events, and C Ď CH.

1. The restriction B |̀ C is pB0, R0q, where
B0 “ te P E : chanpeq P Cu, and

7

R0 “ R X pB0 ˆB0q.
2. B is a C-run of F iff for some A P ExcpFq, B “ A |̀ C.
3. C-runspFq “ tB : B is a C-run of Fu.

We write C-runs when F is understood, and, when C is understood, we speak of
local runs.

B2 extends B1, when B1 “ pE1,ĺ1q and B2 “ pE2,ĺ2q are p.o. sets, iff
E1 Ď E2; ĺ1“ĺ2 XpE1 ˆ E1q; and te : De1 P E1 . e ĺ2 e1u Ď E1. {{{

Fix some frame F . What an observer at D knows is that some B P D-runspFq
occurred, since she observed some B. She wants to consider what local runs are
still possible at some source D Ď CH. These are the members of D-runspFq that
are restrictions of executions that also restrict to B.

Definition 4. Let C,D Ď CH and D P D-runs.

1. A local run B P C-runs is compatible with D iff, for some A P Exc, A |̀ C “ B
and A |̀ D “ D.

2. JCŸDpDq “ tB P C-runs : B is compatible with Du. {{{

We use the letter J to indicate that these B can occur jointly with D. The
subscripts indicate that information would flow from C to D if JCŸDpDq fails to
have suitable closure properties. The subscript D adjacent to the argument D
is meant to remind that D P D-runs, as a kind of type-annotation; the left-most
subscript C is a reminder of the type of the local runs in the result.

3.3 Blurs to Limit Information Flow

Generally speaking, when JCŸDpDq is “large” for all D P D-runs, then there is
little flow from C to D. The observations at D leave open many possibilities
for what could have happened at C. We can make precise what the observer
at D cannot learn by considering closure operators on sets of local C-runs. We
think of the observer’s vision as blurred insofar as she cannot distinguish a local
C-run from other members of a closed set. Thus, the relation of coarsening on
closure operators represents the observer’s loss of resolution as information flow
decreases.

Generally speaking, a closure operator obeys three properties. Each set in
included in its closure; closure is idempotent ; and closure is monotonic with re-
spect to the inclusion relation. We found that information flow respects the graph
structure of frames when we strengthen the montonicity property somewhat [4].
We call operators that satisfy these strengthened conditions blur operators.

Definition 5. A function φ on sets is a blur operator iff it satisfies:

Inclusion: For all sets S, S Ď φpSq;
Idempotence: φ is idempotent, i.e. for all sets S, φpφpSqq “ φpSq; and
Union: φ commutes with unions: If tSauaPI is a family indexed by I, then

φp
ď

aPI

Saq “
ď

aPI

φpSaq.

S is φ-blurred iff φ is a blur operator and S “ φpSq. {{{

8

Observe that
Ť

aPI φpSaq Ď φp
Ť

aPI Saq is equivalent to monotonicity, so that the
union property is effectively monotonicity plus a converse. The union property
ensures that φ is determined by its action on singletons. Since S “

Ť

aPStau,
φpSq “

Ť

aPS φptauq.
Blur operators form a lattice under pointwise inclusion, which provides a way

to compare the flow of information in different situations. Thus, φ allows at least
as much information flow as ψ if φpSq Ď ψpSq for every S.

The EpiDB blur. In the case of EpiDB, we are interested in a blur φ on the
local runs at channel 3, i.e. C “ t3u. Since, by the union property, we only need
to define φptBuq for singletons of a B P C-runs, we must say which local runs
B1 should be indistinguishable from B for the observer on channels 1, 2, i.e. A1.
However, Section 2.3 already makes clear which B1 this should be. Analyst A1

has permissions defined in terms of personspA1q, diseasespA1q, and IntpA1q.
Define R0pBq to be the set of disease records pp, d, tq delivered in B such that

p P personspA1q, d P diseasespA1q, and t P IntpA1q. Define R1pBq to be the set of
disease records pp1, d, t1q in B such that there is an encounter record ptp, p1u, eq
in B with t, e, t1 successively ε-near. Then

φptBuq “ tB1 : R0pBq “ R0pB1q and R1pBq “ R1pB1qu

We can also express this more operationally: φpSq is closed under

1. permutations;
2. adding:

(a) records submitted elsewhere in B;
(b) encounter records not connecting R0pBq to any disease record in B;
(c) disease records rd “ pp, d, tq such that

i. p R personspA1q, d R diseasespA1q, or t R IntpA1q, and
ii. rd is not connected to R0pBq by an encounter record;

3. omitting records of the same kinds.

Limited flow. The blur notion suggests a restricted information flow notion,
and moreover the latter respects the graph structure. Specifically, limiting what
information flows to a cut set in the graph guarantees the same limit applies to
observers beyond that cut set.

Definition 6. Let obs, src Ď CH and φ : Ppsrc-runsq Ñ Ppsrc-runsq.
F φ-limits src-to-obs flow iff φ is a blur operator, and, for every B P obs-runs

JsrcŸobspBq is φ-blurred.

This notion respects the graph structure of the frame F . First, since effectively
information can flow in either direction over a channel, we consider the undi-
rected graph ungrpFq “ pV,Eq where the vertices V are the locations, V “ LO,
and where an undirected edge p`1, `2q exists iff, for some c P CH, sndrpcq “ `1
and rcptpcq “ `2 or vice versa. Now, for C0, C1, C2 Ď CH, let us say that C1 is
a cut between C0 and C1 iff, for every path p through ungrpFq that starts at a
c0 P C0 and ends at a c2 P C2, p traverses some c1 P C1. Now:

9

Theorem 1 (Cut-Blur Principle, [4]). Let src, cut, obs Ď CH, where cut is a
cut between src and obs in F .

If F φ-limits src-to-cut flow, then F φ-limits src-to-obs flow.

There is also a two-frame version of the same idea. Here, F2 agrees with F1 on the
portion of the graph that lies from src to cut, and on the lts of those locations. As
long as F2 does not exercise possibilities at cut that F1 does not, then φ-limited
flow is preserved. We write CHi,LOi, C-runsi, etc. for the channels, locations,
local runs etc. of Fi.

Theorem 2 ([4]). Let src, cut Ď CH1 in F1.
Let F2 be a frame, with src, cut Ď CH2, and such that, if p is any path in

ungrpF1q starting at some c0 P src and traversing no arc in cut, and p reaches
c P CH1, then:

1. c P CH2, sndr1pcq P LO2, and rcpt1pcq P LO2;
2. sndr2pcq “ sndr1pcq, and rcpt2pcq “ rcpt1pcq;
3. lts1psndr1pcqq “ lts2psndr2pcqq and lts1prcpt1pcqq “ lts2prcpt2pcqq.

Let obs Ď CH2 be such that cut is a cut between src and obs in F2. If cut-runs2 Ď
cut-runs1, and F1 φ-limits src-to-cut flow, then F2 φ-limits src-to-obs flow.

In fact, the cut-blur principle is a corollary of this; when we equate F2 “ F1,
the assumptions necessarily hold.

This principle is useful for “localizing” the enforcement of φ-limiting to the
portion of the system lying between src and cut. It says that we can freely vary
the structure of the remainder of the system, just so long as we do not force cut
to engage in new local behaviors. For instance, if we consider cut “ t1, 2u and
src “ t3u in either Fig. 1 or Fig. 4, it says that we can freely expand the node A1

into multiple nodes and arcs, as long as cut remains a cut. The assumption that
cut-runs2 Ď cut-runs1 is immediate here, since we assume that A1 may attempt
any sequence of communications anyway.

4 Questions and Answers

We would now like a corresponding way to specify functionality goals, i.e. lower
bounds on information flow between a source and an observer. For instance, if
A1 is permitted to submit a query q “ pp, d, tq over channel 1, then A1 really
should be able to learn from the system what the answer is, as of the time of this
interaction. Thus, the system is guaranteeing that a local run over channels 1, 2
can always extend to one in which A1 submits query q and receives a symbol or
set S of records over channel 2. And this answer tells A1 whether PR has sub-
mitted a nearby disease record, and, in the stream of records PR has submitted
on channel 3, what other disease records are adjacent via encounter records.

Thus, the response is compatible with a set of local PR runs, and serves to
notify A1 that no other type of run remains possible. We will call a classification
like this a question about a set of channels such as the PR’s channel set t3u.

10

Definition 7. A family of sets Q is a question about a set of channels C Ď CH
in F iff

Ť

Q “ C-runspFq.

In our example, we can regard each permitted query q “ pp, d, tq as determining
a question Q about PR’s channel 3. Namely, two B,B1 P t3u-runs belong to the
same X P Q iff either:

– in both B and B1, p is not sick with d at t, or else
– in both p is sick, with the same sick acquaintances and the same timings.

We can regard an impermissible query as determining a question also, but it is
the trivial, singleton family tt3u-runsu. Thus, each query q determines a question
Qq about channel 3.

An observer at D may want to determine which member of this family Q
obtains. That is, the observer would like to extend the current local run so that
the system’s behavior will determine an A P Q that must have been found at
C. This may require D to engage in certain events that “ask about” Q, after
which the system’s behavior will lead to the information. Naturally, the events
that pose the question must be within the power of the observer at D.

Definition 8. F answers Q for D Ď CH iff (i) Q is a question about C in F ,
and (ii), for every D P D-runs, there is an extension D1 of D and a family R of
finite extensions of D1 such that:

1. For all A P Exc, if A |̀ C “ D, then there exists an extension A1 of A such
that A1 |̀ C “ D1;

2. for every E P R, there exists a X P Q such that JCŸDpEq Ď X; and
3. for every extension E of D1, there exists a E0 P R such that either E extends

E0 or E0 extends E.

The first of these clauses ensures that the observer can always request the system
to answer Q. The second ensures that an observation in R selects some answer
to the question, although there may be more than one right answer. The second
says that the observations that determine an answer bar the tree of all extensions
of D1, so that any sufficiently long extension will have selected an answer.

Evidently, EpiDB answers the question Qq for each q. The extension D1 to
a local A1-run D consists in waiting for an answer on channel 2 to a previous,
unanswered question (if any), and then submitting q on channel 1. The family
R is then the set of local runs in which D1 is extended by a symbol or set of
records.

Of course, if a frame φ-blurs flow from C, then an answerable question about
C can never be more informative than a φ-blurred question:

Lemma 1. Let Q be a question about C in F . Suppose that F answers Q for
D Ď CH, and that F φ-limits C-to-D flow.

Then there is a Q1 such that Q is a coarsening of Q1, F answers Q1 for D,
and for every X P Q1, X is φ-blurred.

Indeed, Q1 can be chosen so that a pair of D-runs that can receive the same
answer in Q can receive the same answer in Q1.

11

Proof. For each choice of D1 and R, collect the sets JCŸDpRq for R P R; let
Q1 be the resulting collection. Since F φ-limits C-to-D flow, each JCŸDpRq is
φ-blurred.

To preserve “can receive the same answer,” coarsen that Q1 by taking unions:
In particular say that R,R1 P R are Q-similar, which we will write R „Q R1,

if there is an X P Q such that JCŸDpRq Ď X and JCŸDpR
1q Ď X. Define

Q1R “ t
ď

R1„QR

JCŸDpR
1q : R P Ru.

The union property of blurs ensures that the resulting sets are φ-blurred.
Now let Q1 collect Q1R from each choice of D1 and R. [\

In our EpiDB example, the questions Qq are already φ-blurred.

5 Refining EpiDB

Although the simple presentation of EpiDB in Figs. 1–2 makes it clear why it will
meet its information flow goals—both upper bounds and lower bounds—they are
very far from a reasonable implementation. A reasonable implementation should
have a number of different properties:

– It should be implemented via a number of virtual machines, so that its
components can be responsive under high loads;

– It should separate an index from the actual archive that stores the data, to
allow fast retrieval despite large quantities of data;

– It should separate critical services such as authorization from more vulner-
able components that must service potentially malicious connections from
analysts and providers.

All of these considerations militate for breaking the component E in Fig. 1 into
a collection of cooperating components that interact via message channels. This
decomposition fits the frame model very naturally, since the connections among
these components are easy to define statically.

Step 1: Separating Authorization. A natural thing to do first is to identify
a distinct component that uses the credentials of A1 and the query q to make an
authorization decision. For instance, these credentials could be certificates used
in a bilateral TLS handshake. The authorization service can emit a cryptographic
token that will be consulted by components in later expansions. Fig. 3 shows
the resulting frame graph. Now the state of AR reflects whether authorization
has been requested by the current query, and if so, the value of the resulting
token. The behavior of the system on its channels 1, 2, 3 is actually unchanged:
In particular, given a local run D on channels 1, 2, the set of compatible local
runs on channel 3, Jt3uŸt1,2upDq is the same for the two systems.

Since the information flow of the system is defined solely in terms of J¨Ÿ¨p¨q,
any desired upper and lower bounds on flow are necessarily preserved.

12

A1

1 **
E

2

kk

4

PR
3oo

AU

5

JJ

Fig. 3. EpiDB with authorization service separated

A refined EpiDB architecture. After several stages of refinement, we ob-
tain a system of the form shown in Fig. 4. It breaks down the database into
components with specialized responsibilities:

QC is a query controller. It accepts queries from A1, passes requests to the index
controller IC, which extracts records from the archive controller AC that
are accumulated at QC. It returns the resulting sets to A1.

IC is an index controller. It maintains an association between keys pi naming
people and a list of disease record numbers for those people. It has a similar
association from people to encounter records. When given a person and a
table name, it passes a list of record numbers to AC for retrieval.

AC is an archive controller. It maintains a store of records for each table, orga-
nized by record number.

IG is an ingress controller. It maintains the maximum record number used so
far. It receives new records from the provider PR, assigns the next record
number, and sends the record and number to AC. It notifies IC of the new
association of this record number with the relevant pis.

AU is the authorization service. QC contacts AU for each new query, obtaining
a signed authorization token that accompanies QC’s messages to IC. These
tokens also appear in the system audit logs, if an audit subsystem is added.

The self-loop channels 8, 9 allow QC and AC to signal certain internal events.
The only other channel needing explanation is 6. At the beginning of processing
any query, QC uses channel 6 to request the current maximum record number
from AC, which maintains this. QC then limits all records retrieved to ones
below this maximum. Hence, even when new records are being deposited by PR
and IG concurrently, the query elicits consistent information reflecting the state
of the database at the time of that maximum record number. Channel 12 is used
only to propagate the maximum query time (shown as m in Fig. 2) to the ingress
controller.

Again, the functional correctness criterion for this system is just that the
same local runs should be possible on its two external interfaces, and with the
same compatibility relations Jt3uŸt1,2upDq.1 The practical requirement for the

1 By an interface, we just mean a set of channels, often but not necessarily near each
other in the graph.

13

A1

1 ++
QC

2

kk

4

8�� 6 ++

10
$$

AC
7

kk

9�� 12 ++
IG13kk

14{{

PR
3oo

AU

5

JJ

IC

11

OO

Fig. 4. Refined architecture for EpiDB

system designer to meet is that the index and archive controllers IC,AC should
cooperate to maintain the database accurately, which is well understood.

The interface-preserving refinement principle. This refinement strategy
is simple and easily formalized. When F1, F2 are frames, we write J i

CŸDp¨q for
the compatibility function in Fi.

Theorem 3. Suppose that F1 and F2 are two frames, and C,D Ď CH1 X CH2.
If D-runs1 “ D-runs2, and for all D P D-runsi, J

1
CŸDpDq “ J2

CŸDpDq, then:

1. F1 φ-limits C-to-D flow iff F1 φ-limits C-to-D flow;
2. F1 answers Q for D iff F2 answers Q for D.

This follows directly from the forms of the definitions.
However, it is useful. For instance, it immediately follows that the properties

of the system are preserved in case the system serves more than one analyst. In
Fig. 5, we present an augmented system containing multiple analysts. However,
since the behaviors on the interfaces 1, 2 and 3 are unaffected, Thm. 3 immedi-
ately entails that the augmented system continues to meet its goals for A1. By
symmetry, it meets the same goals for the other Ai.

As another example, the system we have described has no audit mechanism
built in. However, having designed the system and established its information
flow properties, we can add nodes and channels to perform audit without chang-
ing the local runs and compatibility functions for the interfaces 1, 2 and 3. This

A2

A3

vv

¨ ¨ ¨

A1

1 ++
QC

2

kk

JJ 66

4

6 ++

10
$$

AC
7

kk
12 ++

IG13kk

14{{

PR
3oo

AU

5

JJ

IC

11

OO

Fig. 5. EpiDB augmented with multiple analysts. Channels 8, 9 omitted as clutter

14

provides a clear argument for orthogonality of design that has sometimes eluded
secure systems methodology.

6 Conclusion

We have discussed the frame model, and illustrated how to use it to establish
what-declassification policies, or information flow upper bounds. The same ideas
lead to a natural approach for showing lower bounds, i.e. that a system really
answers questions which may be posed on one of these interfaces.

However, the frame model gives an abstraction of a possible system: How
can one determine that an actual system displays the structure and behavior of
a given frame as designed? In particular, two central items are needed. First,
the active components of the actual system should correlate with the nodes of
the frame. The behaviors of each component should conform to the lts of the
correlated node. Second, the message-passing activity of the system should occur
along channels identified in the frame. There should be no other interactions,
whether between components of the system or between components and the
external world.

Similarly, to build a real system using a frame as specification, one needs, first,
a way to build local programs that conform to an lts specification, and various
familiar ideas such as reactive programming and event-handling libraries appear
helpful. In any case, the programming here is purely sequential and independent
of any shared state interactions.

How then to establish, second, that the components interact with each other,
and only with each other, as specified in the graph? This requires cryptographic
support, both for secrecy to ensure that messages between components canot
leak to the external world, and for authenticity to ensure that a component
cannot receive a message off a channel unless its peer transmitted onto the
channel. A protocol is needed also to ensure that message passing approximates
the synchronous semantics the model uses.

Indeed, there is an additional role for cryptography, which is to provide at-
testation, i.e. digitally signed evidence that a node is genuine and under the
control of the expected code. The Trusted Platform Modules were intended as
an anchor for this sort of evidence, and user-level trusted execution environments
(TEEs) such as Intel’s Software Guard Extensions provide a simpler framework
for achieving attestations [5]. TEEs provide symmetric cryptographic support
to protect a thread and local memory, encrypting pages as they leave the pro-
cessor’s cache. Moreover, the processor provides digital signatures that attest to
the code in control of the TEE. These attestations allow components to validate
one another, to ensure that they are affiliated in the pattern stipulated in their
model. The attestations also allow an external party to decide to believe this
also, before making a decision as to whether to deliver data into the system, or
accept it from the system. Thus, in addition to hardware support, we need to
be able to use cryptographic protocols in the right way; another area in which
A. W. Roscoe has also made his contributions.

15

Acknowledgments. I am grateful to Paul D. Rowe and John D. Ramsdell, with
whom I discussed many of these ideas. In particular, John Ramsdell worked out
the successive frame versions summarized in the figures.

References

1. Riccardo Focardi and Roberto Gorrieri. The compositional security checker: A tool
for the verification of information flow security properties. IEEE Transactions on
Software Engineering, 23(9), September 1997.

2. Riccardo Focardi and Roberto Gorrieri. Classification of security properties. In
Foundations of Security Analysis and Design, pages 331–396. Springer, 2001.

3. Joseph A. Goguen and José Meseguer. Security policies and security models. In
IEEE Symposium on Security and Privacy, 1982.

4. Joshua D. Guttman and Paul D. Rowe. A cut principle for information flow. In
IEEE Computer Security Foundations. IEEE Computer Society Press, July 2015.

5. Intel. Intel Software Guard Extensions (Intel SGX). https://software.intel.

com/en-us/sgx, 2016.
6. Jeremy Jacob. Security specifications. In IEEE Symp. Security and Privacy, pages

14–23. IEEE Computer Society, 1988.
7. Carroll Morgan. The shadow knows: Refinement of ignorance in sequential pro-

grams. In Mathematics of program construction, pages 359–378. Springer, 2006.
8. A. W. Roscoe. CSP and determinism in security modelling. In IEEE Security and

Privacy, pages 114–127. IEEE, 1995.
9. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.

10. A. W. Roscoe and M. H. Goldsmith. What is intransitive noninterference? In 12th
IEEE Computer Security Foundations Workshop, pages 228–238. IEEE CS Press,
June 1999.

11. A.W. Roscoe, J.C.P. Woodcock, and L. Wulf. Non-interference through determin-
ism. Journal of Computer Security, pages 27–53, 1996.

12. John Rushby. Noninterference, transitivity, and channel-control security policies.
SRI International, Computer Science Laboratory, 1992.

13. P. Y. A. Ryan. A CSP formulation of noninterference and unwinding. In IEEE
CSFW 3, June 1990.

14. Andrei Sabelfeld and David Sands. Declassification: Dimensions and principles.
Journal of Computer Security, 17(5):517–548, 2009.

15. David Sutherland. A model of information. In 9th National Computer Security
Conference. National Institute of Standards and Technology, 1986.

16

https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx

	Information Flow, Distributed Systems, and Refinement, by Example

