
Understanding Attestation:
Analyzing Protocols that use Quotes

Joshua D. Guttman and John D. Ramsdell

The MITRE Corporation

Abstract. Attestation protocols use digital signatures and other cryp-
tographic values to convey evidence of hardware state, program code,
and associated keys. They require hardware support such as Trusted Ex-
ecution Environments or Trusted Platform Modules. Conclusions about
attestations thus require reasoning about protocols, relevant hardware
services, and possible behaviors of programs jointly.

This paper presents a mechanized approach to modeling these proper-
ties. Cryptographic Protocol Shapes Analyzer cpsa now combines pro-
tocol analysis with axioms or rules, allowing formalizing hardware and
software conclusions.

We use cpsa to model aspects of Intel’s SGX mechanism. We model
underlying manufacturer-provided protocols, and build modular layers of
attestation above this basis. User-level protocols can make trust decisions
based on the results of attestation.

1 Introduction

Cryptographic protocols are often designed for use with particular software and
hardware. How can we craft the mechanisms so that they jointly achieve certain
overall security goals? In achieving their goals, the protocols may rely on specific
assumptions about the remaining components’ behaviors. These assumptions or
axioms yield security-relevant specifications for the remaining components. They
focus the design and validation processes for the components, and allow us to
decide whether to use existing components.

This codesign process for protocols and other mechanisms requires protocol
analysis to explore the executions that satisfy the axioms for the other com-
ponents’ expected behaviors. In this paper, we use the cpsa protocol analysis
tool [38], which the developers have enriched with the ability to apply axioms
or, as they are also called, rules [37]. The axioms it allows are implications,
or more specifically universally quantified implications. They formalize the be-
havioral assumptions on the software and hardware context. cpsa then infers
consequences about what can happen in different scenarios; these consequences
are instances of axiom conclusions for which the hypotheses are satisfied.

cpsa implements enrich-by-need protocol analysis. The analyst selects a sce-
nario of interest—perhaps, that one participant has had a successful local run, a
couple of keys are uncompromised, and a nonce has been successfully chosen to



be fresh—after which cpsa displays all of the minimal, essentially different exe-
cutions compatible with it [24,33]. cpsa can also “read off” a strongest security
goal (e.g. authentication or confidentiality) that holds for that scenario [40].

The cpsa authors enriched cpsa to apply axioms in addition to the protocol-
driven steps of the old cpsa, which we will call old cpsa. cpsa with axioms
checks if a protocol is using its context correctly. The analysis codifies what
matters about this context, focusing attention on whether the components satisfy
the axioms for further formal or empirical investigations.

Other rigorous protocol analysis tools (e.g. Tamarin [42,34] and ProVerif [6,7])
can doubtless support variants of our method, which seems to us to increase its
value. Adapting the method requires expressing the axioms so that the new tool
can incorporate their protocol-relevant consequences into its reasoning.

Attesting to Trusted Execution Environments. We illustrate how to
design protocols in system context by examining attestation for trusted execution
environments or tees. A trusted execution environment is a software entity—
either a thread with some memory or a virtual machine—that the processor
promises to protect. Specifically, the processor will encrypt the tee’s memory
before evicting it, and decrypt it only to return it to the same tee.

An attestation for a tee is a digital signature or Message Authentication
Code that asserts that a tee E is under the control of particular code C, and
may associate other data D with E and C. Attestations, also called quotes,
require support from the processor that must guarantee the tee.

As we use tees, the other data D always includes a public key K, either a
signature verification key or a public encryption key. The corresponding signing
key or private decryption key K−1 should be under the control of the tee,
which inserts K into D. Thus, any remote entity that obtains an attestation
for E,C,K, . . . can use K to create secure channels to E. Messages over these
channels are entrusted to the code C. It may then follow that E uses K only in
accordance with a protocol, if it is faithfully implemented in the code C.

tees are available as threads with protected memory within user-level pro-
cesses on recent Intel processors. These so-called enclaves use the instruction
set extension Software Guard Extensions (SGX) [28]. tees, as virtual machines,
are available on AMD processors (Secure Encrypted Virtualization [30]). Other
manufacturers may offer tees; academic work such as Sancus [36], for embed-
ded systems, also provides tees. Our methods are applicable well beyond SGX,
which currently has weaknesses [12,10,46].

Case study. Our case study illustrates building substantial mechanisms in
layers that use protocol analysis and assumptions about hardware and software.

At the lowest level, we represent the mechanisms for SGX attestation, in
which Intel has imposed some obstacles, such as online interaction with an Intel
attestation server.1 We identify three axioms that jointly characterize what the

1 Intel has recently released an alternative to the attestation server infrastructure [29].
We will examine it with our methods subsequently.
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hardware is intended to ensure, and how the provisioning of a signature key to
the processor provides a supply-chain guarantee.

On top of the lowest layer, we identify a protocol and axioms that allow
an enterprise to root subsequent attestations in its own key management archi-
tecture, after benefiting from a first supply-chain confirmation from Intel. Two
axioms characterize the trust requirements on the key management architecture.
Two others specify behavioral requirements on enclave code that implements this
protocol, which we call the crowbar.

Finally, we illustrate how to use the attestations from the crowbar layer to
draw conclusions about a user-layer protocol.

Contributions. We demonstrate how to combine axiomatic specifications
and protocol analysis to design protocols targeted to hardware and software
contexts. A benefit of the method is that it provides simple descriptions of what
the protocol requires from these contexts.

The axioms we use fall into simple patterns that appear to be reusable for
many attestation mechanisms.

Hardware axioms codify the relevant behavioral consequences of the manu-
facturer’s claims about the processor.

Trust axioms formalize the decisions and practices of an organization about
creating certificates and using the keys certified in them.

Attestation axioms apply only when a tee is executing known code C; they
express a behavioral specification for that code C, such as how it will handle
its private keys. Static analysis and empirical testing, such as for side chan-
nels, can justify these axioms, or refute them [35]. A benefit of our approach
is that it furnishes precise goals to prove or refute in these ways.

While other sorts of axioms also fit our formalism, these three types were central
in applying the formalism to attestation and tees. They mechanize some of the
reasoning in previous work on attestation for secure systems design, e.g. [15].

The axiomatic inferences fit smoothly into cpsa’s existing structure. Indeed,
cpsa is an excellent interactive tool for determining the relevant axioms. We
derived the ones in this paper by observing what cpsa could not establish. We
then introduced successive axioms that would provide it with information it
needs, respecting the apparent intentions of the hardware and system designers.

Our work is a descendent of authentication logics [31,1], which were special-
purpose logics for system designers to determine trust relations. Subsequent
work showed how to use standard logics (Datalog in the case of [32]), and how
to connect them with protocols [47,27,26,22]. We add a clear axiomatic structure
for the combined analysis.

A non-contribution of this paper is any evidence that the axioms are true.
Instead, we identify simple, relevant axioms that—if true—suffice to ensure
that the application will meet its goals. To determine whether they are true in
a particular instantiation calls for other—largely independent—methods, tuned
to the claims of the hardware, trust, and attestation axioms. Our job is to focus
attention on strong enough goals for the different components.
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Structure of this paper. Section 2 presents our model of the SGX protocols
for local (MAC-based) quotes, remote quotes using the EPID signature scheme,
and online validation. Section 3 presents our crowbar for attestations based on
standard digital signatures. Section A shows how an application level protocol
can use SGX and the crowbar reliably.

More specifically, Sections 2.1, 3.1, and A.1 describe the protocol actions at
the SGX, crowbar, and application protocol levels. Sections 2.2, 3.2, and A.2
enumerate the axioms at each successive level. A summary of cpsa appears in
Section 2.3. Sections 2.4, 3.3, and A.3 present the analysis at successive layers,
determining what the protocols can do subject to the axioms.

Overall patterns in these axioms are discussed in Section 4, with related work
and conclusions in Sections 5–5.

The new cpsa is available [37]. Input and output files for our work are
available at URL https://web.cs.wpi.edu/~guttman/pubs/understanding_

attestation_example/.

Notation. We write:

#(m) for the result of a hash function applied to m; and
mac(m,K ) for a keyed hash or Message Authentication Code in which K is
the key and m is the value being authenticated;

pmk for the MAC key on a processor, regarding pmk as naming the processor.
{|m|}K for an encryption of m with K, either a symmetric or an asymmetric
encryption, depending on the type of K.

[[m ]]K is a digital signature prepared using K;
[[m ]]eK is a digital signature using Intel’s EPID algorithm.
tag m0 is the contents m tagged with the distinctive bitstring tag.
(K,K−1) is a keypair for an asymmetric algorithm, with (K−1)−1 = K.
sk(A) is the principal A’s private signing key, and
vk(A) is the public verification key other principals use to check them.
pk(A) is a public encryption key to prepare messages for A, and
dk(A) is the corresponding private decryption key.

Thus, sk(A)−1 = vk(A) and dk(A)−1 = pk(A).

Non-compromised keys. We do not build into our notation that K = sk(A)
or dk(A) is really uncompromised, which we instead express by writing Non(K).

The content of Non(K) has two parts. The first is that no entity other than
the intended one(s) possesses and can use the key K. This requires hardware
and software to cooperate so a malicious adversary does not obtain its value.

The second part is that the intended entity uses it only in the ways that the
protocol dictates. It is not used to sign/MAC/decrypt messages in any other
situation. Thus, when the intended entity is an enclave E under the control of
code C, then Non(K) induces a software requirement, namely to ensure that the
code C uses the key only to prepare messages that the protocol dictates should
be sent, and only subject to the control flow the protocol dictates.

This second aspect of Non justifies protocol analysis in taking cases based on
the protocol definition when a key is known or assumed to be non-compromised.
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A brief introduction to strands. A strand is a finite sequence of message
transmission and reception events, which we call nodes. Some strands, called
regular strands, represent the compliant behavior of a single principal in a single
local protocol session. Other strands represent actions of an adversary, who may
control the network and may carry out cryptographic operations using keys that
are public or have become compromised. An execution (or bundle) involves any
number of regular strands and adversary strands, with the proviso that any
message that is received must previously have been sent.

A protocol Π is a finite set of strands called the roles of the protocol, to-
gether with additional assumptions we discuss later. The roles ρ ∈ Π contain
parameters, and the instances of ρ are the strands that result from ρ by plugging
in values for the parameters. The sort of a parameter restricts the values that
may be inserted in place of it. This set of instances—obtained from Π’s roles by
plugging in values for parameters—defines the regular strands of Π.

Figures 1, 3, and 5 show examples of roles. We write roles and other strands
either vertically or horizontally with double arrows • ⇒ • connecting successive
nodes. Single arrows • → m and • ← m indicate that message m is being
transmitted or received at the node (resp.).

In an execution, some strands might contain only an initial segment of the
nodes of a role. For instance, at a particular time, the reception in a local run
of the local-quote role (Fig. 1) may have occurred, but with as yet no response.
Then we say that this strand has height 1, rather than the height 2 it would
have if the next step had occurred. For more information on strands as a basis
for protocol analysis, see [24].

2 Attestation in SGX

Intel’s SGX attestation mechanism involves four elements.
First, a local quote about a subject enclave σ can be verified by a target

enclave τ resident on the same processor. The local quote is a Message Au-
thentication Code (MAC) prepared with a secret f(pmk , τ) depending on τ plus
a unique secret pmk permanently protected within each processor (the Master
Derivation Key, in SGX-speak). This MAC covers the Enclave Record (ER) for
the subject enclave σ on this processor. The ER includes a hash of some code
controlling the enclave’s behavior together with other components. The subject
enclave σ creates a local quote by the ereport instruction.

The target enclave τ checks a local quote using the instruction egetkey
to obtain the MAC key f(pmk , τ), after which it recomputes the MAC value
itself. The target enclave τ must be resident on the same processor, because
pmk is an argument in computing the key f(pmk , τ). Since τ is an argument, a
misbehaving τ cannot use this to forge local quotes targeted at a compliant τ ′.
The enclave τ ′ will always be given a key f(pmk , τ ′), which with overwhelming
probability will not validate a forged MAC made with f(pmk , τ).

Second, to obtain attestations for entities on other devices, a remote quote is
required. Remote quotes are created by a particular enclave, the quoting enclave

5



local-quote epid-quote attest-client attest-server

•

��

eroo •

��

er,m // •
��

{|N,er, [[ rq er ]]eek|}pk(AS)// •

��

•
��

{|N,er,m|}pk(AS)//

•

τ,er,mac(er,#(pmk,τ))mmmmmmmm

66mmmmmmmm

•
er, [[ rq er ]]eek // • •Noo

Fig. 1. SGX core roles

τq. It receives a claimed ER and a local quote. It checks the local quote against
the claimed ER, using egetkey. On success, it generates a digital signature on
ER using the group signature scheme EPID [11].

Third, Intel’s attestation server validates remote quotes. A client connects
via TLS, provides a claimed digital signature and ER, and receives an answer
within the TLS connection. The attestation server vouches that some signing
key provisioned by Intel created the digital signature on ER. The EPID group
signature scheme prevents Intel from knowing which processor it was; the quoting
enclaves they provision generates valid, but indistinguishable, EPID signatures.

Fourth, the attestation client queries the server over TLS.

We eliminate TLS’s complexities, replacing it with a simple confirmation via
public key encryption. This does not affect anything that matters to attestation.
Any version of TLS that ensures integrity will lead to the same conclusions.

2.1 The Core SGX Protocol

The four roles of the manufacturer’s mechanisms are shown in Fig. 1. The local-
quote role does not run on every value er, but only on values that are in fact the
enclave record of some enclave executing on the processor with secret pmk . In
the EPID-quote role, the quoting enclave makes sure that its initial input has the
form shown by executing egetkey on pmk . In the attestation-server role, the
server receives a message encrypted with its public encryption key. Inside that
message is a nonce N , which it will release just in case the remaining components
er, [[ rq er ]]eek form a valid digital signature on er, formed using an EPID key ek
generated in a protocol with the manufacturer as processors are prepared [11].
It thus provides a supply chain guarantee that the processor is genuine.

The attestation client’s role corresponds, except that the client cannot di-
rectly determine that its input is of the form er, [[ rq er ]]eek; it needs the attes-
tation server precisely for this. Since the client cannot verify an EPID quote
[[ rq er ]]eek, the client may possibly submit any message m. If the strand suc-
cessfully receives N , then in fact m = [[ rq er ]]eek for some EPID key ek. The
attestation client chooses N randomly.
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2.2 Rules for the SGX Protocol: Attestation and Trust

The analysis of the manufacturer’s protocol relies on three rules. Each one cod-
ifies what follows when a role in Fig. 1 occurs. To express our rules, we need
predicates that say when a strand is an instance of these rules, and to at least
what height (number of steps). When a strand z engages in at least the first i
transmissions and receptions of a role ρ, we write:

LocQt(z, i) if ρ is the local-quote role;
EpidQt(z, i) if ρ is the epid-quote role; and
AttServ(z, i) if ρ is the attestation server role;

To refer to the values selected for role parameters, we write:

LocQtER(z, er) if er is the enclave record value for local-quote instance z;
LocQtPr(z, pmk) if pmk is the processor secret;
EpidQtKey(z,Kepid) if Kepid is the signing EPID key of epid-quote instance z;
EpidQtProc(z, pmk) if z runs on the processor with secret pmk ; and
ASQtKey(z,Kepid) if attestation server run z validates a quote signed with Kepid.

We use the special-purpose predicates EnclCodeKey(. . .) and ManMadeEpid(. . .).
Although we give English-language descriptions for them, they are (formally)
uninterpreted predicate symbols. Their significance comes from how the rules
allow us to infer them, or infer further consequences from them.

Content of the rules. Starting with the local-quote role, when it executes
on a valid SGX processor, what we can infer is that there is an SGX-protected
enclave with the given enclave record. We will regard an enclave record as a
sequence that starts with the enclave id number, the hash of its controlling
code, and a public key, and may contain other entries subsequently. Writing ::
for the list-construction operation, we thus have

er = eid :: ch :: k :: rest.

We refer to a processor by its processor secret pmk ; even though no one knows
this value, we can reason about whether pmk = pmk ′, etc. Thus, a run of the
local-quote role on a processor with non-compromised pmk implies that that
there is an enclave characterized by the parameters eid, ch, k, pmk , which we
will write EnclCodeKey(eid, ch, k, pmk). Thus:

Rule 1 Quote guarantees enclave

∀z : strd, eid, ch, rest : mesg, k : akey, pmk : skey . LocQt(z, 2) ∧
LocQtER(z, eid :: ch ::k :: rest) ∧ LocQtPr(z, pmk) ∧ Non(pmk)
=⇒ EnclCodeKey(eid, ch, k, pmk).

This straightforwardly states what a compliant processor’s local quoting is sup-
posed to tell us: It accurately reports an enclave running on that processor.

Second, when the Attestation Server completes a run, what must hold? It
has ascertained that the purported EPID signature was in fact genuine, and
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was produced using a key Kepid generated interactively with the manufacturer’s
EPID master secret. It can also vouch that the enclave mechanism can preserve
the secrecy of Kepid within the EPID quoting enclave.2 Hence:

Rule 2 AS says EPID key is manufacturer-made and non-compromised

∀z : strd, Kepid : akey . AttServ(z, 2) ∧ ASQtKey(z,Kepid)
=⇒ ManMadeEpid(Kepid) ∧ Non(Kepid).

The conclusion Non(Kepid) feeds back into the protocol analysis, since a non-
compromised key often requires compliant local sessions to have occurred. The
conclusion ManMadeEpid(Kepid) will also be used as a premise in the next rule.

The third rule offers us a conclusion when the epid-quote role executes a
complete strand z with a valid EPID key. This is a supply chain property. It
ensures that the processor is in fact an Intel-manufactured processor, which
also generated an uncompromised processor secret pmk . Moreover, the processor
is capable of preserving the secrecy of pmk and ensuring that it is used only
in accordance with the roles shown in Fig. 1. Thus, the conclusion is simply
Non(pmk), stating that pmk is non-compromised, which again enables further
protocol analysis conclusions.

Rule 3 Manufacturer-made EPID on non-compromised processor

∀z : strd, Kepid : akey, pmk : skey . EpidQt(z, 2) ∧
EpidQtKey(z,Kepid) ∧ EpidQtProc(z, pmk) ∧ ManMadeEpid(Kepid)
=⇒ Non(pmk).

The manufacturer-made EPID key can be found only on a genuine processor,
hence with a non-compromised processor secret (modulo [10,12,46]).

2.3 Protocol analysis with CPSA

Suppose that an attestation client has a run, following its role defined in the
lower right of Fig. 1. We assume that it queries an attestation server AS with
Non(dk(AS)), and uses a fresh, unguessable nonce N . We also assume the pur-
ported enclave record to be of the form er = eid :: ch :: k :: rest. What else must
then have happened, given the protocol of Fig. 1?

What CPSA does. A cpsa analysis starts with a scenario, such as we have
just mentioned, in which some protocol activity is assumed to have occurred,
which in this case is a regular attestation client strand. Moreover, additional
facts may be included, which in our example are Non(dk(AS)) and Unique(N).
The latter asserts that N was freshly generated and unguessable (“uniquely
originating”).

cpsa’s job is then to find all minimal, essentially different executions that
enrich the initial scenario; see [24] for much more detail. To find them, cpsa

2 Since an out-of-order execution attack falsifies this claim [12], the current SGX does
not satisfy our axioms. Cf. [10,46].

8



takes a succession of steps, exploring progressively more detailed scenarios—
often with additional regular strands—until it finds some that are sufficiently
rich. “Sufficiently rich” means:

1. Whenever a regular strand receives a message, the adversary can supply that
message, possibly using messages transmitted previously by regular strands.
The adversary has the usual, Dolev-Yao derivations [19], starting with initial
values not ruled out by assumptions such as Non(dk(AS)) and Unique(N).

2. R is a rule, and η instantiates its variables to values, making the hypothesis
of R true. Then η yields a true instantiation of the conclusion of R.

The original old cpsa uses the authentication test idea [18] to find a small set of
possible enrichments that are relevant in any case when a message reception does
not satisfy Clause 1. To explain these receptions, old cpsa considers how to add
new regular strands, and how to add new hypotheses about compromised keys.
There may be different possible explanations to consider, causing branching in
our search. We have left this functionality unchanged.

When Clause 2 is not satisfied for an R and an instantiation η, we want to add
information to make that instance of the conclusion true. When the conclusion
is an equation s = t, this means identifying the values associated with η(s) and
η(t). When the conclusion is a conjunction of facts Pi(t1, . . . , tk), then we will
add their corresponding instances Pi(η(t1), . . . , η(tk)) to our scenario.

Although these are the only conclusions we use in this paper, the approach
accommodates additional types. For existentially quantified conclusions ∃x . φ,
we consider both the existing values as well as a new value as the witness for the
quantified variable x. When the conclusion is a disjunction (i.e. a logical or), we
consider each branch separately in our search.

The hypothesis of each rule R is always an atomic formula or conjunction
of atomic formulas. The resulting rules are thus geometric sequents, i.e. univer-
sally quantified implications in which the hypotheses are conjunctions of atomic
formulas, and the conclusions are built from atomic formulas by conjunction, dis-
junction, and existential quantification, ∧, ∨, ∃. These are precisely the syntactic
forms of formulas that are preserved by all homomorphisms [25].

Correctness for this procedure means that it must yield, on termination, sce-
narios that cover all possible executions that enrich the initial scenario. For the
original old cpsa, see [24]; for enrichment with geometric sequents, see [41,20,37].

CPSA’s input and output. For a given protocol and rules, cpsa’s input
is a scenario consisting of some assumed strands of regular participants, to-
gether with some assumptions such as Non(dk(AS)) and Unique(N) or other
facts (closed atomic formulas). The starting scenario and similar structures are
called skeletons. cpsa performs its search by fixing counterexamples to clauses 1–
2 above, or in the case of old cpsa, just clause 1.

If its search terminates, cpsa returns a set of skeletons representing all mini-
mal, essentially different executions that enrich the initial skeleton. This may be
the empty set, when the initial skeleton cannot occur; e.g. it hypothesizes some
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Facts: ManMadeEpid(Kepid), EnclCodeKey(eid, ch, k, pmk)
Non keys: Non(pmk), Non(Kepid), Non(dk(AS))

Fig. 2. Consequences of an attestation client success

security disclosure that cpsa shows cannot occur. Very often, this set is very
small, containing only one or a few possibilities.

cpsa presents its results by diagrams, such as those in Figs. 2, 4, etc. Each
diagram shows some strands, presented as vertical columns of transmissions and
receptions, together with arrows summarizing ordering information among the
events. Each skeleton also shows the parameter values of the different strands,
and the other facts that hold in this skeleton.

2.4 Applying CPSA to the SGX protocols

In our case study, an attestation client has a run, following its role defined in
Fig. 1. We assume it queries an attestation server AS such that Non(dk(AS)),
and uses a fresh, unguessable nonce N . We also assume the purported enclave
record to have the form er = eid :: ch :: k :: rest. What else must have happened,
given the remainder of the protocol contained in Fig. 1?

We ask cpsa this question, subject to Rules 1–3. cpsa answers by computing
the result shown in Fig. 2. The assumed attestation client run is shown as the
leftmost column in Fig. 2. The keys Kepid and pmk are new, implicitly existen-
tially quantified values. The client does not find out what they are, but knows
they exist. cpsa computes this in three steps.

1. The first step introduces the attestation server run shown immediately to
the right. cpsa infers this as a consequence of the protocol definition. Only an
attestation server run can extract the nonce N from the encryption inside which
the client transmits it. Rule 2 now applies to the new strand, introducing the
facts ManMadeEpid(Kepid) and Non(Kepid).

2. Since cpsa now knows that the client run started by receiving a valid EPID-
signed remote quote, cpsa explains it by a matching run of the epid-quote role.
Its pmk parameter was previously unknown. By Rule 3, we infer Non(pmk).

3. How was the local quote mac(er,#(pmk , τ)) generated? cpsa infers it can
come only from a run of the local-quote role with matching parameters. Applying
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Rule 1, it adds the fact that the enclave record describes an enclave running on
pmk . This fact is expressed by EnclCodeKey(eid, ch, k, pmk).

The analysis is now complete.

Omitting rules. Omitting Rule 1 does not change the diagram, but the fact
EnclCodeKey(eid, ch, k, pmk) is lost. We no longer know that there is an enclave
controlled by the code with hash ch and public key k running on processor pmk .

Omitting Rule 3 omits this fact, as well as the (rightmost) local-quote strand.
The key pmk is no longer known to be Non. Finally, omitting Rule 2 means that
only the attest-server strand is available. Thus, each rule has a definite and
predictable effect on how much of the analysis goes through.

Attestation consequence. We have now identified the exact consequences
that follow from a successful attestation client run in favorable circumstances:
A processor with confirmed supply chain generated a local quote for the enclave
record er. On that same processor, a remote quote was created from the local
quote. Finally, on that processor there is an enclave under control of the known
code ch with associated key k.

By favorable circumstances, we mean first that N was freshly chosen, and
that dk(AS) is used only in accordance with the protocol. More important,
the favorable circumstances depend on the rules: The SGX hardware should
ensure that a local quote on a processor with non-compromised pmk ensures
a corresponding enclave (Rule 1); the attestation server succeeds only when
the remote quote was generated with a properly provisioned, non-compromised
EPID key (Rule 2); and the EPID key provisioning should ensure that a processor
with an acceptable EPID key can keep its pmk non-compromised (Rule 3).

Making the three rules hold requires challenging—not yet fully achieved—
processor engineering and cryptographic design and implementation [10,12,46].
However, the rules summarize the intended consequences of those tasks suc-
cinctly, transparently, and usefully for mechanized analysis.

3 Mechanical Advantage for Trust

We now show how to build a new attestation protocol on top of the mechanisms
that the manufacturer provided. Partly, we do so to show how our analysis for
the lowest layer of the composite protocol extends smoothly upward.

The other reason is practical. The manufacturer’s protocol (Fig. 1) binds the
processor at the end of a supply chain back to a device that generated an EPID
key at the manufacturer’s facility at the start of the supply chain. However,
it verifies remote attestations via a public network, forcing disclosure to the
manufacturer that an attestation is occurring.

This is often unacceptable. Devices may need to verify a remote attestation
before connecting to a network, e.g. to determine if the network servers are trust-
worthy. Private networks may be shielded from the public internet, for instance
at banks, and in industrial control systems and critical infrastructure. Other
privacy and availability concerns may also apply.
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Fig. 3. The fulcrum, crowbar, and CA roles

3.1 The Fulcrum and the Crowbar

In Fig. 3 we offer a protocol to provide “mechanical advantage for trust.” It allows
attestations to be generated and verified privately, after a supply chain guarantee
rooted in a single interaction with the manufacturer’s attestation server.

The fulcrum is public and online, and interacts with the attestation server once
per processor. It digitally signs an attestation about a long-term crowbar enclave.

The fulcrum F ’s signing key sk(F ) uses a standard signature algorithm,
e.g. the Eliptic Curve Digital Signature Algorithm (ECDSA). An organization
standing up a fulcrum F also provides a certificate for its verification key vk(F ),
stating that signatures verified with vk(F ) came from a valid fulcrum operated
by this organization. F may be implemented within an SGX enclave to protect
sk(F ), but our protocols do not use attestations about this enclave.

When F receives a message m and an enclave record er, it queries an attes-
tation server with {|N, er, m|}pk(AS). Receiving N signals an affirmative result,
validating m = [[ rq er ]]esk(b) for some b. It then issues a tagged fulcrum report

[[ fm er ]]sk(F ), where “fm” distinguishes fulcrum reports from other signatures.
A valid fulcrum F is trusted to choose a peer AS whose private decryption

key matching pk(AS) is uncompromised and used only for the attestation server
role. It is also trusted to choose fresh challenge nonces N .

The crowbar runs on a processor pmk that may be inaccessible from the public
internet. It will digitally signing remote quotes for numerous enclaves running
on pmk . Like the fulcrum, the crowbar uses a standard digital signature, which
can be verified without further interaction.We call these crowbar reports.

When given a purported local quote targeted to it, a crowbar enclave uses
egetkey to check it is a MAC generated using pmk . If so, it generates the
crowbar report [[ cb er ]]sk(C) tagged with cb as attestation.

When a processor pmk is set up, the fulcrum receives a remote quote about
the crowbar—generated by the manufacturer’s EPID quoting enclave on pmk—
perhaps via carrier pigeon. If the fulcrum confirms this remote quote, it issues a
fulcrum report, which will return to the private network in a similar way.

An application level client can use this fulcrum report and a crowbar report
to justify a trust decision about the targets of the crowbar report. The client
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also relies on a digital certificate from its organization’s Certifying Authority to
confirm a signing key for the fulcrum.

A certifying authority CA provides digital certificates for any trustworthy ful-
crums. The organization’s certificate for K = vk(F ) is intended to assert that the
organization believes that the matching signature key sk(F ) is uncompromised,
and will be used only for the fulcrum role.

3.2 Rules for the crowbar

The trust and attestation assumptions that govern the fulcrum and crowbar
consist of four rules.

Rule 4 states that the CA behaves like a standard trust anchor, and vouches
that its target’s private key will be used only as permitted by the protocol.

Rule 5 asserts that a fulcrum run chooses a non-compromised attestation server
(run by the manufacturer) as its peer. It also asserts that the fulcrum chooses
its challenge nonce freshly.

Rule 6 asserts that any crowbar that runs acceptable code in an enclave suc-
cessfully protects a non-compromised signing key.

Rule 7 states that the crowbar never migrates its signing key, i.e. that if there
was ever an enclave such that EnclCodeKey(eid, ch, k, pmk) with acceptable
crowbar code ch, then there is never a run of the crowbar role using the same
signing key on any different processor pmk ′ 6= pmk .

To express them, we will use predicates stating that a strand is an instance
of a new role, with at least a given height, and that a strand has a particular
instance for a parameter. When a strand z engages in the first i transmissions
and receptions of a role ρ, we write:

Fulc(z, i) if ρ is the fulcrum role;
CrBar(z, i) if ρ is the crowbar role; and
Certifier(z, i) if ρ is the CA role.

To refer to the values selected for role parameters, we write:

CertID(z, f) if f is the name of the fulcrum certified in strand z, and
CertKey(z,K) if K is the target fulcrum verification key;
FulcPeer(z, as) if as is the peer attestation server chosen in strand z, and
FulcNonce(z, n) if n is the challenge nonce;
CrBarPubK(z, k) if K is the signing key used in crowbar strand z, and
CrBarPr(z, pmk) if pmk is the processor executing z.

We will use a formally uninterpreted predicate CbCode(ch). Informally, we use
this to express the idea that the code C with hash ch is acceptable crowbar
code, and uses signing key K only in accordance with the crowbar role. We
write Unique(v) for the assertion that the message value v is freshly chosen
(“uniquely originating”). In particular, v is chosen only once by a compliant

13



principal, and will not be guessed by an adversary. cpsa interprets this in its
protocol analysis.

Trust rules. Rules 4–5 are trust rules: One who accepts them does so out of
trust that the organization behaves correctly. It should have audited the fulcrum
code to ensure that it will protect its private signature key (Rule 4) and that it
uses the PKI and random number generator correctly (Rule 5). This is merely
procedural, as the party deciding to extend its trust receives no evidence through
our protocols.

First, we regard the trust anchor as asserting that a signing key is non-
compromised if it matches a certified verification key.

Rule 4 (CA trust anchor) ∀z : strd, f : name, K : akey .

Certifier(z, 1) ∧ CertID(z, f) ∧ CertKey(z,K) ∧K = vk(f)
=⇒ Non(K−1).

The hypothesis K = vk(f) restricts the applicability of the rule slightly. cpsa
uses the notation vk(A), pk(A) to associate the name A with its public signature
verification and public encryption keys. K = vk(f) asserts that this notational
convention is compatible with the CA’s actions. In effect, we draw a conclusion
about vk(A) only when the CA has actually issues a certificate for it.

This is a trust rule. Any principal that accepts the certificate is transferring
some of its trust in the trust anchor CA to the certified fulcrum f .

The second rule requires a fulcrum to select a compliant attestation server.
This means in effect selecting an attestation server with a non-compromised
private decryption key dk(as). The fulcrum must also select a fresh nonce to
send as a challenge. These two conditions are required to make the fulcrum
useful; together, they assure that the analysis will discover a run of a compliant
authentication server responding to the fulcrum’s query.

Rule 5 (Fulcrum finds attestation server) ∀z : strd, as : name, n : text .

Fulc(z, 4) ∧ FulcPeer(z, as) ∧ FulcNonce(z, n)
=⇒ Non(dk(as)) ∧ Unique(n)

Before the CA certifies f and its key vk(f), someone needs to inspect the code
in control of sk(f), to ensure that it is using the manufacturer’s PKI properly
to ensure that it reaches a valid as using pk(as). This rule expresses the trust
that the organization has done so successfully.

The Unique(n) conclusion says that the nonce n is chosen freshly, or uniquely
originating. Again, someone must ascertain this before the certificate is issued,
by examining the fulcrum code. They want to ascertain that it generates n with
good randomness. Our assertion that n is uniquely originating may idealize a
claim that holds with overwhelming probability.

Attestation rules. By contrast, the next two rules are attestation rules. The
party making a trust decision obtains evidence about the code controlling the
enclave it is evaluating. This evidence always derives ultimately from a run of the
local-quote role. Thus, if a rule draws some conclusion, the deciding party can
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always inspect the evidence—and the code that yields the hash ch—to determine
whether this code will act only in accordance with our protocols.

In rule 6, the conclusion is that the crowbar’s signing key is non-compromised.
If a deciding party wants to check this, that party should consider whether it
belongs to a keypair that is generated within the crowbar enclave, and whether
the private signing part ever contributes to transmitted data except by being
used for signature via a sound algorithm.

If C is code with #(C) = ch, a static analysis of C may be able to ascertain
this. Accepting the premise CbCode(ch) summarizes the conclusion of examin-
ing C. Although we do not model any aspect of this appraisal, we codify the
consequences of the decision.

Rule 6 (Crowbar attestation) ∀eid, ch : mesg, k ∈ akey, pmk : skey .

EnclCodeKey(eid, ch, k, pmk) ∧ CbCode(ch)
=⇒ Non(k−1)

The last rule states that the processor doesn’t change. This says more than
the private key being non-compromised. It would still be non-compromised if
the original enclave transferred it, through a secure channel, to another enclave
that would still use it only for crowbar functionality. One may determine, by
inspecting code, that it will not engage in that behavior. Thus, an attestation
can also give evidence that the processor on which the crowbar key is used will
not change.

Rule 7 (Crowbar immobile)

∀z : strd, eid, ch : mesg, k : akey, pmk , pmk ′ : skey
EnclCodeKey(eid, ch, k, pmk) ∧ CbCode(ch)∧
CrBar(z, 2) ∧ CrBarPubK(z, k) ∧ CrBarPr(z, pmk ′)

=⇒ pmk = pmk ′

The rules—specifically, Rules 6–7—use CbCode(. . .) only as a hypothesis, and
never in a conclusion, so the effect of deciding to assume instances of CbCode(. . .)
is very clear: It determines which in which cases Rules 6–7 may apply. These
two rules codify the significance of CbCode(. . .).

3.3 Protocol analysis: Crowbar level

Suppose that an application-level protocol acquires, for some CA with Non(sk(CA)):

certificate [[ cert fm F, vk(F ) ]]sk(CA);
fulcrum report [[ fm eid :: ch :: k :: rest ]]sk(F ) for the same F ; and
crowbar report [[ cb er′ ]]k−1 prepared with the matching signing key k−1.

What then follows? If er′ takes the form eid′ :: ch′ :: k′ :: rest′, we would like to
infer that the crowbar has attested a subject enclave eid′, controlled by code
ch′, and controlling the key k′. The subject enclave should be guaranteed by
the occurrence of a local-quote with this er′, targeted to the crowbar enclave
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Facts: ManMadeEpid(Kepid), EnclCodeKey(eid, ch, k, pmk),
EnclCodeKey(eid′, ch′, k′, pmk).

Fig. 4. Shape for a certificate, fulcrum report, and crowbar report

eid. The crowbar itself is the subject enclave of a local-quote on the same pmk ,
converted to a remote quote by an epid-quote strand.

One would expect this conclusion to hold only if CbCode(ch), which is needed
in Rule 6 to infer Non(k−1). With the additional assumption that er′ 6= er, cpsa
derives the desired conclusion.

If er′ = er, the local-quote strands may be identical. If er 6= eid ::ch ::k ::rest,
they are certainly distinct. In the latter case, one local-quote attests to the
enclave executing the crowbar, and its local quote is converted into an EPID
quote by the EPID quoting enclave. The other local-quote is converted into a
standard digital signature by a run of the crowbar role, as shown in Fig. 4.

The dotted arrows in Fig. 4 indicate a flow of information in which the
value received is distinct from the value sent. In this case, the tuple of the three
incoming values is received. cpsa reasons about inequality using the logical rule

Rule 8 ∀m : mesg . Neq(m,m) =⇒ Falsehood.

The crowbar may now be used for application-level attestation. If properties
of the target code ch′ are known, these can be formulated in rules about enclaves
running this target code. We show how to do this in Section A.

Omitting rules. Removing any of Rules 4–6 cause parts of the conclusion in
Fig. 4 to be lost.

Omitting Rule 7 is more interesting. cpsa infers the presence of all but the
rightmost strand of Fig. 4, the second instance of local-quote. Moreover, the
instance of the crowbar has as its processor parameter pmk ′, some processor
possibly 6= pmk , i.e. possibly distinct from the processor on which the epid-
quote and its local-quote occurred. Hence, we do not know whether Non(pmk ′)
holds, and we cannot infer integrity for the MAC mac(er′,#(pmk ′, τ)). Possibly
the adversary produced it, rather than a local-quote strand.

Without Rule 7, the key k may have migrated from the enclave eid to another
processor. The process receiving k may not be an enclave, and the new processor
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may not even be SGX-equipped. Hence the signature may have been applied to
an enclave record er purportedly guaranteed by a compromised pmk ′.

Including Rule 7 thus imposes a behavioral requirement on the crowbar: It
must never migrate its key to another enclave or any remote process. Inspecting
the code ch may confirm that it will never do so.

Using the crowbar from an application. Suppose that we have a protocol
Π and two roles ρ1, ρ2 ∈ Π. A principal A executing role ρ1 would like to
authenticate a peer B executing role ρ2. Suppose also that an analysis of Π
shows that this holds assuming that a private key KB is non-compromised.

We can then always use the crowbar to discharge this assumption:

1. We will embed the code C executing ρ2 (apart from actual I/O) in an enclave.
We introduce a predicate PeerCode(ch) true of ch = #(C) only when C
protects KB and uses it only in accordance with ρ2.

2. We codify this in an axiom

Rule 9 (ρ2 Attestation) ∀eid, ch : mesg, k ∈ akey, pmk : skey .

EnclCodeKey(eid, ch, k−1B , pmk) ∧ PeerCode(ch) =⇒ Non(kB)

3. We prepend a step before ρ1 to collect a certificate, fulcrum report, and
crowbar report.

In strands where the crowbar report’s subject enclave satisfies PeerCode(ch), A
can infer Non(kB) and safely complete the run. In Appendix A, we illustrate this
in detail in the case of a particular application level protocol.

4 Types of rules

We first categorize Rules 1–3 from Section 2. We then divide the rules we have
used into three types: hardware rules, trust rules, and attestation rules.

Hardware rules. Rule 1 stipulates a hardware property, namely when the
processor generates a local quote on er, there is an enclave with record er. Rule 3
is also, at least partly, a hardware requirement: a processor with a manufacturer-
made EPID key protects pmk , and uses it only to generate and check local quotes.
There is also a trust aspect: the manufacturer should not install a manufacturer-
made key Kepid unless the processor can protect its secret pmk .

These rules define the hardware requirements. Naturally, the hardware’s en-
clave support must also justify the code analysis leading to the attestation rules.

Trust rules. Rules 2, 4, and 5 are trust rules. Rule 2 expresses our trust
that the manufacturer will operate a reliable Attestation Server, and it defines
what we need from the AS, namely confirmation of the origin of Kepid and of its
protection from compromise. However, there is no attestation here, since there
is no evidence that particular code is in control of the AS. Hence there is no
direct evidence the code will ensure the conclusions we care about.
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Rule 4 expresses trust in our organization’s CA. Specifically, CA must emit
this type of certificate only when the private key sk(f) will be protected from dis-
closure and used only by code playing the role of fulcrum. Rule 5 expresses trust
in our organization’s fulcrum code, specifically its ability to use the PKI correctly
to find the manufacturer’s AS. Trust in the manufacturer is also needed, namely
to protect dk(as) and allow only the proper AS code to use this key. Again, there
is no attestation here, since no quote provides evidence that particular code is
in control and will behave correctly.

Attestation rules. Rules 6, 7, and 9 are attestation rules. Each of them has
a premise EnclCodeKey(eid, ch, k, pmk), so they apply only when other consid-
erations have already established an enclave with code (hashing to) ch.

A rational process governs proposed enclave rules. One can analyze the be-
haviors of the known code. Does it randomly generate the keypair (k, k−1) and
installing k in the enclave record? Does it protect the private k−1, using it only
in secure cryptographic algorithms? What holds (empirically or by code analy-
sis) about side channels? Does the code use its keys only for transmissions and
receptions following the specific roles in which this key is expected to engage?

In attestation rules, we always know what code is in control, and we know
that it executes within an enclave. Thus, we can use well-understood methods
to ascertain whether the conclusion follows.

Uses of the rules. The rules are valuable. First, they provide simple spec-
ifications of the relevant components. The hardware rules make clear what we
need from SGX. The trust rules provide guidelines for organizations’ CAs, ful-
crums, and—in the case of the manufacturer—the public attestation server. The
attestation rules specify what behavior to permit from the attested code ch.

Hence, the rules provide guidance to an implementer about how to build the
components correctly. If components already exist, they should provide advice
to a formal analyst who would like to prove that these components will live up
to their purpose within the mechanism.

They also help the red team that would like to find out how the mechanism
can fail. It says which misbehaviors in the pieces would lead to failure of the
mechanism. Also, testing gets improved focus from these succinct, intuitive rules.

Developing the rules. cpsa is an excellent assistant for developing rules. It
gives quick interactive feedback when rules are too weak. This allows a designer
to balance out the security goals she expects the system to achieve against
the requirements she is willing to impose on the remaining components. cpsa’s
graphic output makes the effects of particular choices very clear. Its speed is
very helpful; no individual run in the development of this paper took more than
a second on a standard laptop.

Broader types of rules. Our rules have only a few forms. Some conclusions
assert that a key K is non-compromised, i.e. Non(K). Rule 7 asserts an equality,
pmk = pmk ′. A few others assert facts EnclCodeKey(. . .), ManMadeEpid(. . .),
and Unique(n).
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They are particularly simple because our protocols are well-structured. We
have used tags—i.e. the constants rq, fm, cb, and cert fm—to make them syn-
tactically unmistakable. Thus, principals cannot misinterpret the purpose of a
message [2]. This is good practice whenever the designer has control over the
message formats. However, sometimes the formats have already been defined.

We also studied a variant of the SGX and crowbar protocols omitting all
tags rq, fm, cb, and cert fm. Initially, cpsa reported many possible confusions
among roles. Some of these may be eliminated by distinguishing cryptographic
primitives. For instance, an EPID signature is generated by the EPID quote role,
but will never be generated by the fulcrum role, and the attestation server will
validate only an EPID signature. Additional rules can capture these ideas.

Moreover, the trust anchor key sk(CA) will never be used as a fulcrum key
or a crowbar key, eliminating some instances of these roles.

An enclave with code for one of the roles will never engage in a different
role. For instance, the code that implements the crowbar can never act in the
fulcrum role. It lacks the logic to contact an Attestation Server with a properly
formatted query, as a fulcrum does. This justifies a rule:

∀z : strd, f : name, K : akey . EnclCodeKey(eid, ch, vk(f), pmk) ∧
CbCode(ch) ∧ Fulc(z, 4) ∧ FulcSelf(z, f)

=⇒ Falsehood.

This is a natural requirement on the software implementing the crowbar.
We reproduces the same analysis we showed in Section 3 without tags, using

a total of 21 rules. We consider the division of labor between protocol structure
and rules that we presented in Sections 2–3 to be cleaner and more convincing
than this version with twice as many rules. However, when protocol structure
cannot be changed, rules of these broader kinds are quite usable.

5 Related work and Conclusion

We will highlight three areas of related work.

Security protocol analysis is a very well-developed field, with numerous
sophisticated tools for trace properties (e.g. [6,17,21,34,38]), and some for deter-
mining indistinguishability properties also (e.g. [8,9,13,14]). In many cases, our
work is compatible with other approaches rather than in competition with it.
For instance, tamarin [34] has a notion of restriction used to restrict the traces of
interest. It may also be possible to build similar conditions into ProVerif’s resolu-
tion back end [6]. This increases the value of using rules to formalize the context
in which protocols run: Multiple tools can shed light on the consequences.

Enrich-by-need is specific to cpsa, however. This is very useful in develop-
ment, as cpsa provides a complete overview of the minimal, essentially different
possibilities. This shows which (true) rules should be added to the specifications,
or what strengthenings of the protocol are needed so that true rules can suffice.

Connecting security protocols to context has been less studied than
one would expect. There are many cases where the protocol should inform the
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application it serves of security-relevant events. For instance, the renegotiation
attacks on TLS [39] arose because the protocol could not signal to the application
level when the authenticated identity of the peer changed. As a consequence, an
adversary can benefit by prepending an unauthenticated flow of data before
an authenticated flow from a legitimate party; the receiving application may
misinterpret both parts as a single stream with a single responsible peer.

Some papers a decade ago generated application-specific protocols for specific
tasks, expressed in a session notation, and implementations for them [5,16,4],
improving on a compiler for application-specific protocols [26]. More recently, a
study of protocols and the goals they meet showed how application-level goals
may be expressed in an extension of a language for protocol goals [40].

Rigorous reasoning about the behavior of tees is recognized need [43].
Sihna et al.’s Moat proved confidentiality properties of the code in an enclave [45].
[44] provided a much easier way to prove a much narrower property: Separate
the code of an enclave into a fixed library and user code. The user code can be
subjected to an automated control flow check, so it does not abuse the library.
The library responsible for encrypted I/O and memory management is subjected
to a one-time code verification. Thus, many enclaves can be proved to interact
with the external world only through properly encrypted I/O.

Gollamudi and Chong [23] produce code for enclaves that respect information
flow properties, although at the cost of a larger trusted computing base. Their
compiler lays out multiple enclaves for different parts of a program, depending
on security type annotations.

Barbosa et al. [3] develop cryptographic-style definitions for core functional-
ities within tees including key exchange, attested and outsourced computation.
They prove that specific schemes, in standard crypto-style pseudocode, achieve
these functionalities. Their fine-grained results come at the cost of mechanized
support and clean construction of protocols and rules.

Much of the recent work complements ours, which provides proof goals for
enclave code. If the local code meets these derived goals, our analysis shows that
protocols and code will cooperate to achieve our overall application goals.

Conclusion. In this paper, we have illustrated, by means of an example and
some variants, how to combine reasoning about protocols with reasoning about
their context of execution. All of our reasoning is mechanized, and we provide a
complete visualization of the executions that are possible for a given scenario.

We have argued that, for attestation protocols, the rules may be divided into
hardware rules, trust rules, and attestation rules. This provides an objective set
of requirements for the supporting mechanisms, based in hardware for attestation
or in trust anchors or trust between organizations. We believe that the modular
layers we found provides a repeatable way to ensure user-level protocols are
crafted to their trust and attestation context.
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Bart Preneel, Ingrid Verbauwhede, Johannes Götzfried, Tilo Müller, and Felix
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A Using the Crowbar

In this appendix, we provide—for the curiosity of referees—full details and cpsa
runs for an example. They show the correctness of the recipe for application-
level protocols given at the end of Section 3 in this case. They also show how
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Where Repts take the forms: [[ cert fm f, vk(f) ]]sk(CA),
[[ fm eidC :: chC :: kC :: restC ]]sk(f), [[ cb er ]]
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C
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Fig. 5. The Yes-or-No protocol

to build in additional properties such as a requirement for a fresh attestation
rather than a “canned” one. Figures 6–7 are screenshots of actual cpsa output,
which is quite close to the more print-ready figures in the body.

Again, input and output files have been placed on the web, and may be
retrieved by referees with the help of the PC chairs.

The analysis in Section 3.3 tells us just how to use the crowbar and ful-
crum. Before executing the main protocol, a role must collect the certificate
[[ cert fm f, vk(f) ]]sk(CA), the fulcrum report [[ fm eid :: ch ::k :: rest ]]sk(f), and the
crowbar report [[ cb er ]]k−1 .

Moreover, P needs a trust anchor CA, i.e. a vk(CA) such that sk(CA) will
be used only in accordance with the protocol, meaning Non(sk(CA)). Second,
Rule 4 requires that the certificate for a principal f ensures that Non(sk(f)), and
Rule 5 requires that the code in control of sk(f), by using the PKI correctly,
will connect only to correct attestation servers, and will use freshly generated
challenge values. Finally, P must know suitable values ch such that CbCode(ch),
where the latter ensures that an enclave controlled by ch will protect its private
key k−1 (Rule 6) and will not migrate k−1 (Rule 7).

A.1 The Yes-or-No protocol

As an example application level protocol, consider the Yes-or-No protocol, as
shown in Fig. 5. In this protocol, the client P (a.k.a. the poser) uses the certifi-
cate, fulcrum report, and crowbar report—written jointly as Repts—to ensure
that its intended peer A is compliant. It then transmits a yes/no question Q
together with two nonces Y and N encrypted with pk(A). The job of the com-
pliant answerer A is to release either the first nonce Y in case the answer is yes
or else the second nonce N in case the answer is no. If P completes the branch
receiving Y , P learns one answer, and P learns the other answer by completing
the other branch.
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The secrecy goal of this protocol is to ensure that even an adversary that can
guess what question Q will be asked cannot determine what the answer is. The
adversary cannot distinguish

Run 1 in which the answer was yes; v0 was chosen as the value of the parameter
Y ; and v1 was chosen as the value of the parameter N ; from

Run 2 in which the answer was no; v1 was chosen as the value of the parameter
Y ; and v0 was chosen as the value of the parameter N .

Distinguishing these two runs would require distinguishing {|Q, v0, v1|}pk(A) from
{|Q, v1, v0|}pk(A). With a semantically secure encryption, this is intractable.

Our cpsa analysis concentrates on the authentication property, which is that
when P completes along either branch, the answerer must in fact have executed
the corresponding branch. If the poser thinks the answer was yes, then the
answerer really committed to yes; and likewise for no.

A.2 Rules for the client protocol

Suppose that P obtains the Repts, where in the crowbar report [[ cb er ]]k−1 we
have er = eidA :: chA :: kA :: restA, i.e. the value er has the right structure for
an enclave record.

The analysis of Section 3.3 tells us that the behavior summarized in Fig. 4
must be present, and moreover two enclaves are present, one running the crowbar
itself, and the other, which the crowbar has attested, running code chA. Thus,
for some pmk :

EnclCodeKey(eidC , chC , kC , pmk) and EnclCodeKey(eidA, chA, kA, pmk).

We only need one additional attestation rule for this protocol to be useful.
This rule gives the consequences for an enclave running the code chA we expect
for the answerer. The rule is an attestation rule, as it is entirely analogous to
Rule 6.

Rule 10 (Answerer attestation) ∀ eid, ch : mesg .

EnclCodeKey(eid, ch, k, pmk) ∧ AnsCode(ch)
=⇒ Non(k−1).

That is, code whose hash satisfies AnsCode will, if running in an enclave, generate
a fresh keypair (k, k−1) and successfully protect k−1, using it only in accordance
with the protocol.

A.3 Protocol analysis: Application level

Consider now a scenario in which a poser runs the yes branch to completion;
in particular, it contains code hash chc in the fulcrum report and cha in the
crowbar report. Moreover, we assume:
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Fig. 6. cpsa output for client protocol.

Facts: CbCode(chC), AnsCode(chA), Neq(chC , chA);
Keys: Non(sk(CA)).

Now cpsa constructs the diagram shown in Fig. 6. The leftmost strand starts by
receiving the certificate, the fulcrum report, and the crowbar report. The middle
reconstructs the consequences in Fig. 4. Using EnclCodeKey(eidA, chA, kA, pmk),
which we infer, together with the assumption AnsCode(chA), we apply Rule 10,
inferring Non(k−1A ), i.e. Non(dk).

Hence, only an answerer strand can extract Y from {|Q,Y,N |}pk(A); the ad-
versary does not have the decryption key. Thus, cpsa infers the rightmost strand.

The analysis in the client-no case corresponds exactly.

Omitting rules. Omitting Rule 10 has the expected effect: Without it, cpsa
has no ground to infer Non(k−1A ). If the key k−1A is compromised, perhaps the
adversary has used it to decrypt {|Q,Y,N |}k, and the adversary can transmit Y
back to the poser P . Thus, the rightmost strand in Fig. 6, the ans-yes strand,
will not be added. The poser has no evidence of the authenticity of the answer.

A.4 Recency for the crowbar report

Fig. 6 indicates reason to think that either run of the local-quote role was recent
at the time when the client-yes role occurred. The quotes may have occurred
long before P poses the question Q. This is what we expect for the quote that
attests to the crowbar’s status, which is checked by the fulcrum. We said that
this should occur once when the processor is received, to confirm the supply
chain from manufacturer to purchaser.

However, possibly the crowbar should have run recently, obtaining a new
attestation for the answerer enclave after the poser started his strand.
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Fig. 7. cpsa output for client protocol with recency.

To obtain this functionality, no change is needed to the machinery in Sec-
tions 2 and 3. We simply make a small change to the application level protocol
described in this section. We prepend a transmission to the beginning of the
poser roles. It sends a fresh nonce a that the poser checks is contained as an
additional field in the crowbar record attestation to the answerer. This enclave
record has the form er = eidA :: chA :: kA :: restA, where the poser now checks
that restA = a :: rest′ in fact contains the nonce.

In the implementation, additional functionality in the answerer enclave is
needed to receive a and insert it into the enclave record so that the quote will
have this form. However, our formalization is not sensitive to how this is done:
any way to accomplish this is acceptable, as long as it preserves Rule 10, and the
key remains non-compromised, to be used only in accordance with the protocol.

With this change to the poser protocol, cpsa produces the form shown in
Fig. 7. The dashed arrow at the top records the conclusion that the poser’s first
transmission precedes the local-quote attesting to the answerer. This illustrates
the flexibility of our fulcrum/crowbar machinery.
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