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The famous coffee machine example
- |

@ @ O

We will discuss the observations one can make about such

Lsystems.

Bisimuaton, Games & Hennessy Miner logc ~p.33

Trace preorder
ﬁGiven a state p of an LTS £, the word o = ajasy...a; € A*is
atrace of p when 3 transitions
[e3] [e%) (o7 /
pP—pP1— ...Dk—1 — P
We will use p % p’ as shorthand.

Suppose that £; and £, are LTSs. The trace preorder
<4 C S1 x Sy is defined as follows:

p<nq & VYoeA.pSp=3.q¢54q

Observation 1. <, is reflexive and transitive.

L

Classical language theory
—

Is concerned primarily with languages, eg. T
» finite automata <> regular languages;

» pushdown automata «» context-free languages;

# turing machines < recursively enumerable languages;
This is fine when we think of an automaton/TM as a

sequential process which has no interactions  with the
outside world during its computation.

However, automata which accept the same languages can
behave very differently to an outside observer.

L |

Labelled transition systems
-

A labelled transition system (LTs) L is a triple (S, A, T)
where:

® Sis asetof states ;

® Ais asetof actions ;

® T C S x Ax Sisthe transition relation
We will normally write p % /' for (p,a,p’) € T.

Labelled transition systems generalise both automata and
trees. They are a central abstraction of concurrency theory.

L |
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Trace equivalence

-

Trace equivalence is defined ~;,=<; N >, ie

N

def
P ¢ EPp<enq A Q0D

It is immediate that when £, = L9, ~;, is an equivalence

relation on the states of an LTS

But traces are not enough: trace equivalence is very
coarse, since the coffee machines have the same traces.




Simulation

Suppose that £, and £, are LTSs. Arelation R C Sg, x Sg,
is called a simulation whenever:

» if pRgand p & p' then there exists ¢ such that ¢ % ¢
and p'Rq'.

Observation 2. The empty relation is a simulation and arbitrary unions
of simulations are simulations.

Similarity <,C S; x S, is defined as the largest simulation.
Equivalently, p <; q iff there exists a simulation R such that
(p.q) € R.

Observation 3. Similarity is reflexive and transitive.

. . . . def
LObservatlon 4. Simulation equivalence ~ g < <sN >
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Simulation example 1

Simulation is more sensitive to branching (ie
non-determinism) than traces:

@
s ﬁ s 4

2 (@)
@ ® @ ®
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Simulation example 2
—

But it is not entirely satisfactory.
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Bisimulation
Suppose that £, and £, are LTss. A relation R C S, x Sg,
is called a bisimulation whenever:

(i) if pRg and p % p’ then there exists ¢’ such that ¢ % ¢
and p'Rq¢’;

(i) if gRp and ¢ % ¢ then there exists p’ such that p % p/
and p'Rq'.

Lemma5. R is a bisimulation iff R and R°P are simulations.

L |
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Properties of bisimulations
L

Proof. Vacously true. _

emma 6. J is a bisimulation.

Lemma 7. If {R;};cr are a family of bisimulations then | J;c; R; is a
bisimulation.

Proof. LetR = Uiel R;. Suppose pRg then there exists & such that
pRyq. In particular, ¢ R;.p and so gRp, thus R is symmetric.

It p & 7/ then there exists ¢ such that ¢ % ¢/ and ' Ry.q. But p' Ry.q’
implies p'R¢’. |
Corollary 8. There exists a largest bisimulation ~. It is called
bisimilarity.

If £1 = Lo then bisimilarity is an equivalence relation.

L
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Examples of bisimulations, 1
[ N

@

BB

B

Lemma?9. p ~ q1.

proof. R ={(p,q) | © € N} is abisimulation. m]

L |
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Examples of bisimulations, 2
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Reasoning about bisimilarity

[ N

»# To show that states p, q are bisimilar it suffices to find a
bisimulaion R which relates p and ¢;
# |Itis less clear how to show that p and ¢ are not
bisimilar, one can:
» enumerate all the relations which contain (p, ¢) and
show that none of them are bisimulations;

» enumerate all the bisimulation and show that none of
them contain (p, q);

» borrow some techiniques from game theory...

L |
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Bisimulation game, 1
- .

We are given two LTSs L1, L. The configuration is a pair of
states (p, ¢), p € L1, ¢ € L2. The bisimulation game has two
players: &2 and Z. A round of the game proceeds as
follows:

(i) % chooses either p or g;

(i) assuming it chose p, it next chooses a transition p = p/;

(iii) 22 must choose a transition with the same label in the
other LTS, ie assuming # chose p, it must find a

transition ¢ % ¢/;
(iv) the round is repeated, replacing (p, q) with (p',¢').

L

Bismaton, Games & Hennessy Miner logic - p 1573

Bisimulation game, 2
—

Rules: An infinite game is a win for 2. # wins iff the game
gets into a round where &7 cannot respond with a transition
in step (iii).

N

Observation 10.  For each configuration (p, ¢), either &7 or Z has a
winning strategy.
Theorem 11. p ~ q iff £ has a winning strategy. (p ~ q iff Z has a
winning strategy.)

L |
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2 has a winning strategy= p ~ ¢

Let GE * [ (p,q) | 2 has a winning strategy }.

Suppose that (p,q) € GE and p % /. Suppose that there
does not exist a transition ¢ < ¢ such that (¢/,¢) € GE.
Then Z can choose the transition p = p’ and 2 cannot re-
spond in a way which keeps him in a winnable position. But
this contradicts the fact that that 22 has a winning strategy

for the game starting with (p, ¢). Thus GE is a bisimulation.

L
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p ~ q¢ = & has a winning strategy
—

Bisimulations are winning strategies: T
If p ~ ¢ then there exists a bisimulation R such that (p, q) € R.
Whatever move % makes, &2 can always make a move such
that the result is in R. Clearly, this is a winning strategy for

P.

L |
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Examples of non bisimilar states
—

Bisimilarity is branching-sensitive.

? A
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Recap: equivalences
-

Bisimilarity is the finest (=equates less) equivalence we
have considered.

Claim 13. Bisimilarity is the finest “reasonable” equivalence, where
“reasonable” means that we can observe only the behaviour and not the
state-space.

~ C v C vy

We will give a language, the so-called Hennessy Milner
logic, which describes observations/experiments on LTSs.

L

Similarity and bisimilarity
-

Theorem 12. ~C< N > and in general the inclusion is strict.

N

Proof. Any bisimulation and its opposite are clearly simulations. On the
other hand, the following example shows that bisimilarity is finer than
simulation equivalence.
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Hennessy Milner logic
—

Suppose that A4 is a set of actions. Let

L= [aL|(a)L|-~L|LVL|LAL|T|L
Given an LTs we define the semantics by structural
induction over the formula :
® qF [Apifforall ¢ suchthat ¢ % ¢’ we have ¢ F ¢;
® gk (A)ypif there exists ¢ such that ¢ % ¢ and ¢ = ¢;
q E —p if it is not the case that ¢ & ¢;
qF o1V paif gk prorgk e
aFp1Ap2ifqF ppand gF o)
q F T always;
g F L never; J

o o o o b
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HM logic example formulas
-

® (a)T —can perform a transition labelled with a;
# [a]L — cannot perform a transition labelled with «;

® (a)[b]L — can perform a transition labelled with a to a
state from which there are no b labelled transitions.

® (a)(DlLA()T)=7
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Basic properties of HM logic

yiLemma 14 (“De Morgan” laws for HM logic).
» (o] = (o)
® (a) = [a]~;
® AN="(=V);
o V=2(=A");
o T =1
o | =-T.

In particular, to get the full logic it suffices to consider just the
subsets {(a), Vv, L,=} or {[a], A, T, =} or {{a), [a],V,A, T, L}.

L |
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Distinguishing formulas
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Hennessy Milner & Bisimulation

yiDeﬁnition 18. AnLTSis said to have finite image when from any state,
the number of states reachable is finite.

Theorem 19 (Hennessy Milner). Let £ be an LTS with finite image.
Then ~p=~.

To prove this, we need to show:

# Soundness (~;C~): If two states satisfy the same
formulas then they are bisimilar.

» Completeness (~C~p): If two states are bisimilar then
they satisfy the same formulas.

Remark 20. Completeness holds in general. The finite image
Lassumption is needed only for soundness.
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Logical equivalence
N

efinition 15. The logical preorder <7, is a relation on the states of an
LTs defined as follows:
p<rq iff Vo.pFo = qF¢p
Itis clearly reflexive and transitive.
- . . . def .
Definition 16. Logical equivalence is NL(é <rN2>p.ltisan
equivalence relation.

Observation 17. Actually, for HM, <y=~y=>7. Thisis a
consequence of having negation.

Proof. Suppose p <, gand ¢ E ¢. If p ¥ ¢ then p E —¢, hence
q F —p hence ¢ ¥ ¢, a contradiction. Hence p F . i}
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-

Soundness
N

~1,C~ (Soundness)

It suffices to show that ~ is a bisimulation. We will rely on
image finiteness.

Suppose that p ~;, ¢ and p % p/. Then p E (a)T and so
q E (a)T —thus there is at least one ¢’ such that ¢ % ¢. The
set of all such ¢ is also finite by the extra assumption — let
this set be {q1,...,q;}. Suppose that for all ¢; we have that
p' =1 gi. Then 3y; such that p’ = ¢; and ¢; ¥ ;. Thus while
p E (a) Ai<y pi We must have ¢ # (a) A, -, @i, @ contradiction.

|
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Hence there exists ¢; such that ¢ % ¢; and p’ ~, ¢;.

Completeness 1

~C~ (Completeness)

We will show this p <, ¢ by structural induction on formulas.
Base: pkE Tthengk T. Also, pkE LthenqgE L.

Induction:

» Modalities ((a) and [a]):

s Ifpk (a)pthen p S ' and p' E . By assumption,
there exists ¢ such that ¢ % ¢ and p’ ~ ¢’. By
inductive hypothesis ¢’ F ¢ and so ¢ F (a)¢p.

s If p E [a]e then whenever p % p then p' E . First,
notice that p ~ ¢ implies that if ¢ < ¢ then there
exists p’ such that p % p/ with p/ ~ ¢. Since p' E ¢,

L also ¢' E ¢. Hence q F [a]e.
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-
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Completeness 2

® Propositional connectives (v and A): T
s ifpE 1 VpathenpE g or p E po. Ifitis the first then
by the inductive hypothesis ¢ E 1, if the second then
qF o thus g F o1 V pa.
s ifpFE pa Ao is similar.

Note that completeness does not need the finite image as-
sumption — thus bisimilar states always satisfy the same for-
mulas. In the proof, we used the fact that {{a), [a], V,A, T, L}
is enough for all of HM logic.
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Image finiteness
- .

The theorem breaks down without this assumption:

Q. s

k times k times
(5” la
Q

Easy to check, using the bisimulation game, that p; ~ ps.
Solution: Introduce infinite conjunction to the logic.

L
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Sublogics of HM
[ N

Ly w= (a)Lyy | T

Theorem 21. Logical preorder on Ly, coincides with the trace preorder.

Ls = {a)Ls | Ls N\Ls | T

Theorem 22. Logical preorder on L conicides with the simulation
preorder.

L |
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