
Propositional Deduction via Sequent Calculus

Joshua D. Guttman
Worcester Polytechnic Institute

April 5, 2010

Contents

1 Formulas and Sequents 2

2 Derivation rules 3

3 Soundness of These Rules 5

4 Use of the Rules; Their Limits 7

5 A Complete Classical Deduction System 9

6 Proof Search 11

7 Completeness Theorem 12

8 Predicate Logic 13

A deduction system is a collection of formal rules that give step-by-step
procedures for constructing proofs or derivations. At any stage of a deriva-
tion, there are finitely many premises or assumptions in force, and some
conclusion that follows from them. The set of assumptions (as well as the
conclusion) may change during the derivation: New assumptions may be
added for future deduction steps, or existing assumptions can be canceled
or consumed.

Suppose that a derivation has derived a formula φ as conclusion from
the assumptions ψ1, . . . , ψk. This derivation is a sound derivation iff, for
every model M such that M |= {ψ1, . . . , ψk}, M |= φ. That is, it is sound iff
{ψ1, . . . , ψk} φ.

1

A deduction system is sound if all of the derivations that can be built
using it are sound derivations. Soundness is the fundamental requirement
on a deduction system, and an unsound deduction system is useless.

A second desirable property for a deduction system is completeness. This
is a kind of converse to soundness. A deduction system is complete iff,
whenever {ψ1, . . . , ψk} φ, there is a derivation of φ from the premises
ψ1, . . . , ψk.

In this note, we will introduce a derivation system for propositional logic,
and prove that it is sound and complete. In the later part, we will introduce
some additional rules for the quantifiers ∀, ∃, to produce a sound and com-
plete system for predicate logic. Subsequently, we will also prove a kind of
syntactic soundness, called consistency, which says that there is no deriva-
tion of the false formula ⊥. The approach we take here follows Gerhard
Gentzen, a German mathematician of the 1930s and early 1940s.1

A Note on Greek Letters. We will use Greek letters2 such as φ, ψ, and
χ (pronounced “phi,” “psi,” and “chi”) to stand for individual formulas.
They may be atomic or compound. For specifically atomic formulas I will
continue to use Roman capital letters A,B,C, etc.

For finite sets of formulas, we will use capital Greek letters Γ and ∆
(pronounced “Gamma” and “Delta”). We write Γ, φ for the set Γ ∪ {φ},
i.e. the smallest set containing all members of Γ and containing φ. If φ ∈ Γ,
then Γ, φ = Γ. Σ (pronounced “Sigma”) will refer to an arbitrary sequent.

1 Formulas and Sequents

For this part of the course, we will use the following definition of formulas:

Definition 1 Let L be a set of values called atomic formulas, such that
⊥ 6∈ L. The formulas over L are defined recursively as the smallest set
containing:

1. each A ∈ L;

2. the value ⊥, called the constantly false formula;
1Gerhard Gentzen, “Investigations into Logical Deduction,” tr. Manfred Szabo, in

Complete Works of Gerhart Gentzen, North Holland, 1969. Originally published in Ger-
man, Mathematische Zeitschrift, 1934–1935.

2See the Table of Greek Letters at
http://web.cs.wpi.edu/~guttman/cs521_website/table_of_greek_letters.pdf.

2

http://web.cs.wpi.edu/~guttman/cs521_website/table_of_greek_letters.pdf

Γ, A ` A Γ,⊥ ` A

Figure 1: Sequent calculus axioms

3. each of φ ∧ ψ, φ ∨ ψ, and φ→ ψ, for any formulas φ, ψ over L.

The definition for M |= φ stays the same, except that we add the clause that
says (for all M), that it is not the case that M |= ⊥. That is, ⊥ is false in
every model M.

We have left out negation. We regard ¬φ as a shorthand for φ→ ⊥.
A sequent is a pair that packages together some assumptions and a con-

clusion. We write Γ ` φ for the sequent whose assumptions are the finite
set of formulas Γ and whose conclusion is the formula φ. We call Γ the
antecedent and φ the consequent of the sequent Γ ` φ.

A sequent is satisfied in a model M iff either M |= φ or for some ψ ∈ Γ,
M 6|= ψ. Later, we will consider sequents Γ ` ∆ where the consequent is
also a finite set, with the semantics that Γ ` ∆ is satisfied in a model M
iff either, for some φ ∈ ∆, M |= φ, or else, for some ψ ∈ Γ, M 6|= ψ. Thus, a
sequent says that if all of the formulas in its antecedent are true, then some
formula in its consequent is true. I.e. an and of the antecedent implies an
or of the consequent.

We write M |= Σ when sequent Σ is satisfied in model M.
Of course, if ⊥ ∈ Γ, then Γ ` φ is automatically satisfied in any model

M, since there is some ψ ∈ Γ such that M 6|= ψ.

2 Derivation rules

Derivations are built up as trees using inferences for the different logical
connectives, and axioms used as starting points. The axioms (Fig. 1) say
that if an atomic formula A is assumed, then A follows, and that if the false
formula ⊥ is assumed, then any atomic formula A follows. In this latter
case, we allow ⊥ also as an instance of A.

The rules for the individual connectives are structured in a very specific
way. There are either one or two rules for introducing the connective into
a formula in the antecedent, and also one or two rules for introducing the
connective into the consequent. The first rule in Fig. 2 says that—to prove
that φ ∧ ψ follows from Γ—it’s enough to prove that φ does, and ψ does
too. Using the axioms and these rules, we can already prove the (maybe
unexciting) fact that A ∧ B ` A ∧ B, as shown in Fig. 3. This derivation

3

Γ ` φ Γ ` ψ

Γ ` φ ∧ ψ
Γ, φ ` χ

Γ, φ ∧ ψ ` χ

Γ, ψ ` χ

Γ, φ ∧ ψ ` χ

Figure 2: Sequent calculus rules for conjunction

A ` A
A ∧B ` A

B ` B
A ∧B ` B

A ∧B ` A ∧B
Figure 3: Derivation of A ∧B ` A ∧B

also illustrates the fact that even though the axioms apply only to atomic
formulas, we will be able to build up proofs of φ ` φ for all compound φ
also. It also illustrates what a derivation is:

Definition 2 A derivation is a finite tree, written with its root at the bot-
tom, in which each node is labeled with a sequent, such that:

1. Each leaf is an instance of an axiom in Fig. 1, and

2. Each non-leaf is obtained from the one or two nodes above it by an
instance of a rule from Figs. 2, 4–5.

If d is a finite tree that satisfies Clause 2, then d is called a partial derivation.

Partial derivations are useful to represent the incomplete objects that we
build in the process of searching backward (from the result) for a derivation;
for now we will focus on derivations.

This definition gives us a way to prove conclusions about all derivations
by induction. A property Prop holds of all derivations d if:

• Prop holds of each d that is an instance of an axiom (Fig. 1); and

• Suppose that derivation d is built from d1 and d2 by an application
of one of the rules of Figs. 2, 4–5, and Prop holds of d1 and d2. Then
Prop continues to hold of d.

This is the fundamental principle for proving results about all deductions,
for instance that they all produce sound conclusions.

The rules for disjunction are dual to the rules for conjunction. There
are two premises for the one rule for introducing ∨ into a formula in the
antecedent, while there are two separate rules—each with one premise—to
introduce ∨ into the consequent. The rules for implication are slightly differ-
ent, because introducing an implication in the consequent actually eliminates

4

Γ ` φ

Γ ` φ ∨ ψ
Γ ` ψ

Γ ` φ ∨ ψ
Γ, φ ` χ Γ, ψ ` χ

Γ, φ ∨ ψ ` χ

Figure 4: Sequent calculus rules for disjunction

Γ, φ ` ψ

Γ ` φ→ ψ

Γ ` φ Γ, ψ ` χ

Γ, φ→ ψ ` χ

Figure 5: Sequent calculus rules for implication

an assumption from the antecedent, as shown in Fig. 5. This is the reason
why we keep track of the assumptions explicitly in each sequent. In the rule
for introducing → into the antecedent, we are saying that the assumption
φ→ ψ is strong enough for χ, assuming that ψ would be strong enough for
χ, and assuming that the other assumptions Γ are strong enough for the
hypothesis φ.

This rule is a bit weaker than one would like, but it is the strongest one
we can write, subject to the rules of the game as we are playing it currently.
These rules of the game are:

• Each rule adds a single occurrence of a connective to the conclusion;

• No rule involves any other connective besides the one it is introducing;

• Every variable appearing in a premise still appears in the conclusion;

• The consequent of each sequent consists of a single formula.

Later, we will examine some key rules of classical logic that this system
does not establish—including double negation elimination ¬(¬φ) → φ and
excluded middle φ∨¬φ—and strengthen it to a system that is complete for
classical logic by removing the last of these rules of the game.

3 Soundness of These Rules

In this section, we give an example of a proof by induction on the structure
of derivations.

Theorem 3 (Soundness of the rules.) If d is any derivation, with root
(i.e. conclusion) Γ ` φ, then Γ φ.

That is, any model M that satisfies all of the formulas in Γ also satisfies φ.

5

The Axioms. Any instance of an axiom is surely sound: If a model M
satisfies all of the formulas Γ, A, then it surely satisfies A. Moreover, no
model M satisfies ⊥, so the requirement for Γ,⊥ ` A is vacuously true.

The Rules. We will consider a few representative cases.

∧ in consequent. Suppose that d is constructed from d1 and d2 by com-
bining them using ∧ introduction in the consequent. Then if Γ ` φ
is the root of d1 and Γ ` ψ is the root of d2, then the conclusion of
d is Γ ` φ ∧ ψ. So assume M |= Γ; we need to show M |= φ ∧ ψ.

Our induction hypothesis is that for all M′, if M′ |= Γ, then M′ |= φ,
and if M′ |= Γ, then M′ |= ψ.

Applying the induction hypothesis to M, we infer that M |= φ and
M |= ψ. By the definition of |=, M |= φ ∧ ψ.

∧ in antecedent. Suppose that d is constructed from d1 by ∧ introduction
in the antecedent. Then if Γ, φ ` χ is the root of d1, then the
conclusion of d is of the form Γ, φ∧ ψ ` χ. So assume M |= Γ, φ∧ ψ;
we need to show M |= χ.

Our induction hypothesis is that for all M′, if M′ |= Γ, φ, then M′ |= χ.

Since M |= Γ, φ ∧ ψ, we know that M |= Γ, φ. Applying the induction
hypothesis to M, it follows that M |= χ.

→ in antecedent. Suppose that d is constructed from d1 and d2 by com-
bining them using → introduction in the antecedent. Then if Γ ` φ
is the root of d1 and Γ, ψ ` χ is the root of d2, then the conclusion
of d is Γ, φ → ψ ` χ. So assume M |= Γ, φ → ψ; we need to show
M |= χ.

Our induction hypothesis is that for all M′, if M′ |= Γ, then M′ |= φ,
and if M′ |= Γ, ψ, then M′ |= χ.

There are two cases if M |= Γ, φ→ ψ:

(i) M |= Γ,¬φ, and
(ii) M |= Γ, ψ.

In case (ii), the second part of the induction hypothesis yields the
conclusion M |= χ. Moreover, the first part of the induction hypothesis
implies that case (i) does not occur. �

Exercise 4 Check the remaining cases in the induction to complete the
proof of the soundness of the rules.

6

A ` A B ` B
A,A→ B ` B

A ` (A→ B)→ B B ` B

A, ((A→ B)→ B)→ B ` B

((A→ B)→ B)→ B ` A→ B

` (((A→ B)→ B)→ B)→ (A→ B)

Figure 6: Proof of triple negation elimination

A ` ⊥
` A→ ⊥ A ` A
(A→ ⊥)→ ⊥ ` A

` ((A→ ⊥)→ ⊥)→ A

Figure 7: Fragment attempting to justify double negation elimination

4 Use of the Rules; Their Limits

These rules are easy to use. We illustrate this by proving that ¬¬¬A→ ¬A.
I.e. when more than two negations are present, pairs of negations may be
discarded. Since ¬φ abbreviates φ→ ⊥, this goal formula is actually

(((A→ ⊥)→ ⊥)→ ⊥)→ (A→ ⊥).

The same derivation also works for the more general

(((A→ B)→ B)→ B)→ (A→ B),

so we actually prove the latter. We show the derivation in Fig. 6. However,
if we try to construct a similar proof of the (classically valid) formula for
double negation elimination, ((A → ⊥) → ⊥) → A, working our way up
from the bottom, we obtain the fragment shown in Fig. 7, which cannot
be completed to a derivation. Thus, this inference system is not complete,
relative to the classical (model-based) semantics.

Intuitionistic Logic and Constructive Reasoning. The deduction
system of this section is incomplete for classical logic, but it is correct for
intuitionistic logic.3 Intuitionism, initiated by the great Dutch topologist
L. E. J. Brouwer, was an important component of work in the foundations

3See e.g. Dirk van Dalen, “Intuitionistic Logic,” in The Blackwell Guide to Philosophical
Logic, ed. L. Gobble. Blackwell, Oxford. 2001, 224–257. Available at http://www.phil.

uu.nl/~dvdalen/articles/Blackwell(Dalen).pdf.

7

http://www.phil.uu.nl/~dvdalen/articles/Blackwell(Dalen).pdf
http://www.phil.uu.nl/~dvdalen/articles/Blackwell(Dalen).pdf

of mathematics from early in the 20th century, and it has played a major
role in theoretical computer science in the past twenty or thirty years.

The intuitionist (or more generally, “constructivist”) point of view is
that mathematics is not about abstract reasoning, but about mathematical
computations and other constructions. In geometry, we know what the
constructions are, and in arithmetic (e.g.) we know what the computations
are. When this idea is applied to logic, the relevant constructions are proofs,
and the meaning of a formula is given—not in terms of models as we are
doing in this course—but in terms of what is needed to construct a proof of
that formula.

From this point of view, to demonstrate a sequent Γ ` φ, we should
provide a recipe which, when supplied with proofs of the formulas in Γ, is
capable of transforming them into a proof of the consequent φ. The inference
system of Figs. 1–2, 4–5 is correct relative to this point of view. The rule
for conjunction in the consequent, for instance, provides a way to produce a
proof of φ∧ψ by piecing together the embedded proofs of φ and ψ furnished
in the premises. The rules for disjunction in the consequent provide a way
to prove φ ∨ ψ by identifying one of the disjuncts, and providing a proof of
that one, namely the proof furnished by the premise.

From this point of view, the most interesting rule is the one for implica-
tion in the antecedent. The intuitionist view is that a proof of an implication
φ→ ψ ought to be a function, which when supplied with a proof of the hy-
pothesis φ will provide a proof of the conclusion ψ. The rule

Γ ` φ Γ, ψ ` χ

Γ, φ→ ψ ` χ

provides a way to piece together recipes. Suppose we already have recipes (i)
to construct a proof of φ from proofs of the formulas Γ, and (ii) to construct
a proof of χ from proofs of the formulas Γ, ψ.

We want a recipe to construct a proof of χ, given proofs of Γ, φ → ψ.
The rule is correct, because we can act as follows:

• Use recipe (i) to construct a proof dφ of φ, using the proofs of Γ;

• The proof of φ→ ψ is a function f from proofs of φ to proofs of ψ, so
apply f to dφ to obtain a proof dψ of ψ;

• Apply recipe (ii) to dψ in combination with the given proofs of Γ,
thereby obtaining the desired proof of χ.

From this point of view, there is no reason why we should expect ((A →
⊥) → ⊥) → A. The formula ⊥ is the formula that can never be proved.

8

Thus, a proof of A→ ⊥ would be a function that—if it would ever be given
a proof of A—would have to return something that does not exist. Thus,
A → ⊥ says that there are no proofs of A. (A → ⊥) → ⊥ thus says that
there are no proofs that A has no proofs. How would we construct a function
f to transform a proof d that there are no proofs that A has no proofs into
a construction of A?

There presumably is no such transformation in general. Of course, if we
know a proof dA of A, then we could use the transformation that ignores
d and returns dA. There are other situations in which we could produce
transformations (sometimes less trivial ones), but the principle of double
negation elimination does not have an intuitionistic justification in general.

Similarly, there is no reason why we should have a proof of φ ∨ ¬φ
regardless of the content of φ. Such a proof d would have to identify one of
the disjuncts, either φ or ¬φ, and provide a proof of that disjunct. But of
course this requires d to “know which disjunct to prove,” which is impossible
in general.

Intuitionist logics are very natural for providing semantics of program-
ming languages and models of computation; see e.g. Benjamin C. Pierce,
Types and Programming Languages. Cambridge: MIT Press, 2002. We now
return you to your regularly scheduled program on classical logic.

5 A Complete Classical Deduction System

To obtain a classically complete deduction system, we take just one simple
step. We change the definition of sequent to allow a finite number of formulas
in the consequent. The interpretation is that if all of the formulas in the
antecedent are true, then at least one formula in the consequent is true.
That is, in a sequent Σ of the form Γ ` ∆, the conjunction of all formulas
in Γ implies the disjunction of all formulas in ∆. We write M |= Σ when
sequent Σ is satisfied in model M in this sense.

We then write the full deduction system in a form that allows formulas
∆ to be carried along in the consequent (see Fig. 8). These changes are
mechanical, but we present the full deduction system again, just so it is
clear how to write all the rules with multiple formulas in the consequent.
We refer to the sets Γ,∆ in these rules as the sideformulas, since they are
simply carried alongside the main action as the inference occurs.

One essential change is to the rule for implication introduction in the
antecedent. In effect, it allows us to strengthen the rule by carrying along χ
as we pass up the derivation on the left branch; we show here the old rule,

9

Γ, A ` A,∆ Γ,⊥ ` A,∆

Γ ` φ,∆ Γ ` ψ,∆
Γ ` φ ∧ ψ,∆

Γ, φ ` ∆
Γ, φ ∧ ψ ` ∆

Γ, ψ ` ∆
Γ, φ ∧ ψ ` ∆

Γ ` φ,∆
Γ ` φ ∨ ψ,∆

Γ ` ψ,∆
Γ ` φ ∨ ψ,∆

Γ, φ ` ∆ Γ, ψ ` ∆
Γ, φ ∨ ψ ` ∆

Γ, φ ` ψ,∆
Γ ` φ→ ψ,∆

Γ ` φ,∆ Γ, ψ ` ∆
Γ, φ→ ψ ` ∆

Figure 8: A System of Axioms and Rules for Classical Deduction

A ` ⊥, A
` A→ ⊥, A ⊥ ` A

(A→ ⊥)→ ⊥ ` A

` ((A→ ⊥)→ ⊥)→ A

A ` ⊥, A
` A→ ⊥, A

` A ∨ (A→ ⊥), A
` A ∨ (A→ ⊥)

Figure 9: Double negation elimination and excluded middle

and the new rule in the case in which ∆ is the single formula χ:

Γ ` φ Γ, ψ ` χ

Γ, φ→ ψ ` χ
7→ Γ ` φ, χ Γ, ψ ` χ

Γ, φ→ ψ ` χ

We can use this new version of the rule to construct proofs of double-negation
elimination and of the law of the excluded middle (Fig. 9). The proof of
excluded middle looks a little peculiar. The last two steps are both instances
of ∨-introduction in the consequent. The next-to-last step replaces A → ⊥
by A ∨ (A → ⊥), and its sideformulas ∆ are the singleton set ∆ = {A}.
The last step replaces A by A ∨ (A → ⊥), with ∆ = {A ∨ (A → ⊥)}.
The resulting sequent has A ∨ (A → ⊥) “twice,” so to speak, but since its
consequent is a set, that is the same as having it once.

This ability to use a disjunction twice allows us (from the bottom-up
perspective of proof construction) to extract both disjuncts. It suggests
that we can replace the two rules for ∨-introduction in the consequent by
the following distinctly classical rule. Symmetrically, we replace the two
rules for ∧-introduction in the antecedent by one rule:

Γ ` φ, ψ,∆
Γ ` φ ∨ ψ,∆

Γ, φ, ψ ` ∆
Γ, φ ∧ ψ ` ∆

These forms are particularly convenient for proof search. We write CSC
for the deduction system that contains these two rules, together with the

10

Γ, A ` A,∆ Γ,⊥ ` A,∆

Γ ` φ,∆ Γ ` ψ,∆
Γ ` φ ∧ ψ,∆

Γ, φ, ψ, ` ∆
Γ, φ ∧ ψ ` ∆

Γ ` φ, ψ,∆
Γ ` φ ∨ ψ,∆

Γ, φ ` ∆ Γ, ψ ` ∆
Γ, φ ∨ ψ ` ∆

Γ, φ ` ψ,∆
Γ ` φ→ ψ,∆

Γ ` φ,∆ Γ, ψ ` ∆
Γ, φ→ ψ ` ∆

Figure 10: The System CSC of Axioms and Rules for Classical Deduction

axioms and rules of Fig. 8 other than ∨-introduction in the consequent and
∧-introduction in the antecedent. The system CSC is summarized in Fig. 10.

6 Proof Search

Suppose we have a sequent Γ0 ` ∆0 that we would like to prove, if it
is valid. How can we systematically construct progressively larger partial
derivations, so that if there is a derivation of Γ0 ` ∆0, we will find it? This
is called the proof search problem, and it has a particularly simple answer
in our deduction system for propositional logic.

At any stage in a proof search, we have a partial derivation, which is
initially a tree containing only the root Γ0 ` ∆0. The process proceeds
according to the following rules:

• If every topmost node (leaf) is an instance of the axioms, then the
partial derivation is in fact a derivation, and the proof search has
terminated successfully.

• If some leaf contains no logical connectives, but is not an instance of
the axioms, then the search has failed, i.e. terminated unsuccessfully.

• If the search has not terminated, then there is some leaf Γ ` ∆
that is not an instance of an axiom, and contains a connective. A
search step may choose the main connective of any compound formula
of the antecedent or consequent. The choice—selecting antecedent
or consequent, and selecting one formula and its main connective—
determines one applicable rule from CSC.

11

This process must terminate, since every step introduces premises with one
fewer connective than the total number in the leaf chosen to operate on.
Thus, no branch can be of length greater than the total number of connec-
tives in the root Γ0 ` ∆0.

Proof search is non-deterministic, since—when a sequent contains sev-
eral compound formulas—one may choose any one of them to break down
immediately. However, we will prove that no choice can be a bad choice: If
any run of the proof search process leads to a successfully terminated result,
then all runs do. Of course, some runs could be much longer than others,
but the outcome will be the same.

7 Completeness Theorem

The essential fact about the rules of CSC is the preservation of models.

Lemma 5 1. If a sequent Γ ` ∆ is an instance of an axiom, then for
all models M, M |= Γ ` ∆.

2. If a sequent Γ ` ∆ is not an instance of an axiom, but Γ,∆ contain
only atomic formulas, then there is a model M such that M 6|= Γ ` ∆.

3. Suppose that

R1 = Σ1

Σ2
or R2 = Σ0 Σ1

Σ2

is an instance of any rule of CSC, and M is a model. For R1, M |= Σ2

iff M |= Σ1. For R2, M |= Σ2 iff both M |= Σ0 and M |= Σ1.

We already proved item 1 in the proof of Theorem 3. For item 2, let M
assign an atomic formula A to be true if it is a member of Γ and false if it
is a member of ∆. This is a consistent assignment because Γ ∩∆ = ∅, and
because ⊥ 6∈ Γ. By the definition, M 6|= Γ ` ∆.

As for item 3, first consider all of the rules together. If a model M 6|= Γ,
or if M |= ρ for any ρ ∈ ∆, then M satisfies the premises and also the
conclusion of all the rules.

Thus, in considering each rule, we consider only the case in which M |= Γ
and M 6|= ρ for each ρ ∈ ∆. We show here four cases.

∨ in antecedent. The conclusion is satisfied iff M |= φ∨ψ, and the premise
is satisfied iff M |= φ or M |= ψ, which is equivalent.

12

∧ in consequent. M |= φ ∧ ψ iff M |= φ and M |= ψ, as desired.

∧ in antecedent. Again, our equivalence requires that M |= φ∧ψ iff M |=
φ and M |= ψ, as desired.

→ in antecedent. The conclusion is satisfied iff M 6|= φ→ ψ, i.e. iff M |= φ
and M 6|= ψ. The first premise is satisfied iff M |= φ, and the second
premise is satisfied iff M 6|= ψ. Thus, both premises are satisfied iff the
conclusion is. �

Exercise 6 Check the remaining cases in the induction to complete the
proof of Lemma 5.

We can now prove:

Theorem 7 (Completeness of CSC) Let d be a (possibly) partial deriva-
tion, produced by a terminated proof search, with root Σ.

1. For every model M, M satisfies Σ iff for every leaf sequent Σ′ in d, M
satisfies Σ′.

2. Σ is a valid sequent iff every leaf sequent of d is an instance of an
axiom; equivalently, iff d is a derivation.

3. If d′ is also a (possibly) partial derivation, produced by a terminated
proof search, with the same root Σ, then d is a derivation iff d′ is a
derivation.

Proof. Clause 1 follows by induction, using Lemma 5, Clause 3. Clause 2
follows using Lemma 5, Clauses 1 and 2. Finally, applying Clause 2 twice,
d is a derivation iff Σ is valid, which holds iff d′ is a derivation. �

8 Predicate Logic

To extend the system CSC of rules for classical propositional logic to a system
of rules for predicate logic (shown in Fig. 11), we only need to add a pair
of rules for ∀ and a pair of rules for ∃. Each operator gets a pair of rules
with one rule adding it on each side of the sequent sign ` . Appealingly,
the duality we observed in ∧ and ∨ is equally visible in ∀ and ∃.

We use the convention that these rules can be applied with any variable
in the quantified position here marked by x. In these rules, we use the
notation φ[t/x], which means t inserted in place of all free occurrences of x,

13

Γ ` φ[t/x],∆
Γ ` ∃x . φ,∆

Γ, φ ` ∆
* Γ, ∃z . φ[z/x] ` ∆

Γ ` φ,∆
*Γ ` ∀z . φ[z/x],∆

Γ, φ[t/x] ` ∆
Γ,∀x . φ ` ∆

Figure 11: Rules for Quantifiers. Side condition (∗): x 6∈ fv(Γ,∆) and either
x is the same variable as z, or else z 6∈ fv(φ)

on the assumption that no variable free in t becomes bound as a consequence
of the substitution:

Definition 8 (Capture-avoiding substitution) Suppose that t is a term
and φ is a formula with 0 or more free occurrences of the variable x.

1. If a variable v ∈ fv(t) is bound at a location4 in φ at which x occurs
free, then we say that t is captured for x in φ at this location.

2. If t is not captured for x at any location in φ, then φ[t/x] is well-
defined, and is the result of replacing each free occurrence of x in φ by
the term t. Otherwise, φ[t/x] is not well-defined.

3. The capture-avoiding result of substituting t for x means φ[t/x] when
the latter is defined.

There is one additional complicating factor. Whether one can apply the
` ∀ rule or the ∃ ` rule depends on which variables occur free in the
remaining formulas. In particular, the variable of quantification (x here)
must not occur free in the remaining formulas Γ,∆. In the case of ` ∀, this
amounts to saying that ∀x . φ holds when φ is proved with a free variable x
about which nothing is assumed. The fact that x simply does not occur free
in Γ,∆ means that those formulas cannot possibly make any assumption or
place any constraint on its value.

For ∃ ` the concept is similar, except dual. That is, suppose we can
infer that some formula in ∆ holds, assuming Γ and that φ holds. If we have
assumed something about x, it may not be enough just to assume Γ, ∃x . φ.
We may need some specific kind of x to satisfy φ, not just any x. But if x
does not occur free in Γ,∆, then any x is as good as another, and ∆ will
hold assuming Γ,∃x . φ.

4This means that there is a quantifier ∀v or ∃v above this location, on the path leading
to the root of the formula (regarded as a tree).

14

For this reason, we use the side condition that x 6∈ fv(Γ,∆) to restrict
the application of ` ∀ and ∃ ` to the cases where x is really “syntactically
general” in Γ,∆.

15

	Formulas and Sequents
	Derivation rules
	Soundness of These Rules
	Use of the Rules; Their Limits
	A Complete Classical Deduction System
	Proof Search
	Completeness Theorem
	Predicate Logic

