Büchi Automata and Linear Temporal Logic

Joshua D. Guttman

Worcester Polytechnic Institute

18 February 2010

Guttman (WPI)

Büchi & LTL

18 Feb 10 1 / 10

(3)

Büchi Automata

A Büchi automaton is a (non-deterministic) finite automaton.

< ロ > < 同 > < 三 > < 三

Büchi Automata

A Büchi automaton is a (non-deterministic) finite automaton.

 $\mathcal{A} = \langle Q, \Sigma, \delta, Q_s, F \rangle \text{ where:}$ Q is a finite set called the states $\Sigma \text{ is a finite set called the alphabet}$ $\delta \subseteq Q \times \Sigma \times Q, \text{ is called the transition relation}$ $Q_s \subseteq Q \text{ is called the set of initial states}$ $F \subseteq Q \text{ is called the set of accepting states}$

< ∃ > < ∃

Büchi Automata: Runs, acceptance, language Let W be an infinite sequence $\langle w_0, w_1, \ldots \rangle$ with $w_i \in \Sigma$

- A run R of A for W: an infinite sequence $\langle r_0, r_1, \ldots \rangle$ with $r_i \in Q$ where
 - **1** $r_0 ∈ Q_s$ **2** $(r_i, w_i, r_{i+1}) ∈ δ$

< ∃ > < ∃

Büchi Automata: Runs, acceptance, language

Let W be an infinite sequence $\langle w_0, w_1, \ldots \rangle$ with $w_i \in \Sigma$

- A run R of A for W: an infinite sequence $\langle r_0, r_1, \ldots \rangle$ with $r_i \in Q$ where
 - **1** $r_0 ∈ Q_s$ **2** $(r_i, w_i, r_{i+1}) ∈ δ$
- A accepts W iff there is some run R for W where:

 $\{i: r_i \in F\}$ is infinite

Büchi Automata: Runs, acceptance, language

Let W be an infinite sequence $\langle \textit{w}_0,\textit{w}_1,\ldots\rangle$ with $\textit{w}_i\in\Sigma$

- A run R of A for W: an infinite sequence $\langle r_0, r_1, \ldots \rangle$ with $r_i \in Q$ where
 - **1** $r_0 ∈ Q_s$ **2** $(r_i, w_i, r_{i+1}) ∈ δ$
- \mathcal{A} accepts W iff there is some run R for W where:

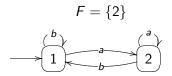
 $\{i: r_i \in F\}$ is infinite

• The language accepted by A, written lang(A), is

 $\{W: \mathcal{A} \text{ accepts } W\}$

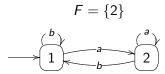
A B F A B F

Some Büchi Automata, 1 $\Sigma = \{a, b\}$



<ロト </p>

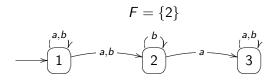
Some Büchi Automata, 1 $\Sigma = \{a, b\}$



Accepts W iff W has infinitely many as

3

Some Büchi Automata, 2 $\Sigma = \{a, b\}$



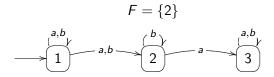
18 Feb 10 5 / 10

< 一型

< ∃ >

-

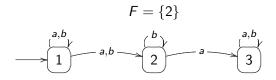
Some Büchi Automata, 2 $\Sigma = \{a, b\}$



Accepts W iff W has finitely many as Can transition to state 2 after last a received

18 Feb 10 5 / 10

Testing Non-Emptiness

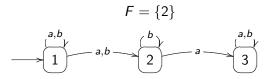


-

→

- ∢ ⊢⊒ →

Testing Non-Emptiness



There exists a $W \in \text{lang}(\mathcal{A})$ if there is a q with

- **(**) a path from a start state to q
- **2** a cycle $q \rightarrow^+ q$

.∃ >

Closure Conditions on Languages

Suppose given Büchi automata \mathcal{A}_1 , \mathcal{A}_2

there exist Büchi automata with languages:

 $egin{aligned} & \mathsf{lang}(\mathcal{A}_1) \cup \mathsf{lang}(\mathcal{A}_2) \ & \mathsf{lang}(\mathcal{A}_1) \cap \mathsf{lang}(\mathcal{A}_2) \ & \Sigma^\omega \setminus \mathsf{lang}(\mathcal{A}_1) \end{aligned}$

 φ contains atomic formulas $\mathcal L$

 $\Sigma {:}\ \mbox{Input letters are prop. logic models } \mathbb{M} \subseteq \mathcal{L}$

Q: Each subformula of φ is a state, plus \bot, \top, \ldots $\delta(\psi, \mathbb{M})$: depends on form of ψ :

> T, if ψ in prop. logic and $\mathbb{M} \models \psi$ \bot , if ψ in prop. logic and $\mathbb{M} \not\models \psi$

A B > A B >

 φ contains atomic formulas ${\cal L}$

 $\Sigma {:}\$ Input letters are prop. logic models $\mathbb{M} \subseteq \mathcal{L}$

> T, if ψ in prop. logic and $\mathbb{M} \models \psi$ \bot , if ψ in prop. logic and $\mathbb{M} \not\models \psi$ χ , if ψ is $X(\chi)$ and,

• • = • • = •

 φ contains atomic formulas ${\cal L}$

Σ: Input letters are prop. logic models $\mathbb{M} \subseteq \mathcal{L}$ *Q*: Each subformula of φ is a state, plus ⊥, ⊤, ... $\delta(\psi, \mathbb{M})$: depends on form of ψ :

> T, if ψ in prop. logic and $\mathbb{M} \models \psi$ \bot , if ψ in prop. logic and $\mathbb{M} \not\models \psi$ χ , if ψ is $X(\chi)$ and,

if ψ is $\alpha U\beta$,

 $\delta(\beta, \mathbb{M}) \vee (\delta(\alpha, \mathbb{M}) \wedge (\alpha U\beta))$

過 ト イヨ ト イヨト

 φ contains atomic formulas ${\cal L}$

$$\begin{split} \Sigma: \text{ Input letters are prop. logic models } \mathbb{M} \subseteq \mathcal{L} \\ Q: \text{ Each subformula of } \varphi \text{ is a state, plus } \bot, \top, \ldots \\ \delta(\psi, \mathbb{M}): \text{ depends on form of } \psi: \end{split}$$

T, if ψ in prop. logic and $\mathbb{M} \models \psi$ \bot , if ψ in prop. logic and $\mathbb{M} \not\models \psi$ χ , if ψ is $X(\chi)$ and,

if ψ is $\alpha U\beta$,

 $\delta(\beta, \mathbb{M}) \vee (\delta(\alpha, \mathbb{M}) \wedge (\alpha U\beta))$

$$F: \{ \psi \in Q \colon \psi = \neg(\alpha U\beta) \}$$

過 ト イヨ ト イヨト

Model Checking, 1: What?

Suppose we are given:

- A Kripke structure ${\cal K}$
 - Represents a system
- $\bullet\,$ An LTL formula φ
 - Represents a specification "correctness condition"

3 1 4

Model Checking, 1: What?

Suppose we are given:

- A Kripke structure ${\cal K}$
 - Represents a system
- An LTL formula arphi
 - Represents a specification "correctness condition"

Does every execution of ${\cal K}$ satisfy φ ?

3 1 4

Model Checking, 1: What?

Suppose we are given:

- A Kripke structure ${\cal K}$
 - Represents a system
- An LTL formula arphi
 - Represents a specification "correctness condition"

Does every execution of \mathcal{K} satisfy φ ?

For every π over graph \mathcal{K} , does $\pi \models \varphi$ hold?

< ∃ > < ∃

Model Checking, 2: How?

Let α be an LTL formula over atoms \mathcal{L} Let $\mathcal{K} = (S, I, T, L)$ be a finite Kripke structure with $L(s) \subseteq \mathcal{L}$

• $\neg \alpha$ determines an automaton ${\cal A}$

• = • •

Model Checking, 2: How?

Let α be an LTL formula over atoms \mathcal{L} Let $\mathcal{K} = (S, I, T, L)$ be a finite Kripke structure with $L(s) \subseteq \mathcal{L}$

- $\neg \alpha$ determines an automaton $\mathcal A$
- \mathcal{K} determines a Büchi automaton

$$\mathcal{B} = S', \Sigma, \delta, I, S$$

where $S' = S \cup \{ fail \} \Sigma = 2^{\mathcal{L}}$, and

$$\begin{array}{ll} \delta(s,\mathbb{M}) &=& \{s'\in \mathsf{T}(s)\colon \mathsf{L}(s)=\mathbb{M}\}\\ &\cup& \{\mathsf{fail}\colon s=\mathsf{fail} \text{ or } \mathsf{L}(s)\neq\mathbb{M}\} \end{array}$$

• = • •

Model Checking, 2: How?

Let α be an LTL formula over atoms \mathcal{L} Let $\mathcal{K} = (S, I, T, L)$ be a finite Kripke structure with $L(s) \subseteq \mathcal{L}$

- $\neg \alpha$ determines an automaton $\mathcal A$
- \mathcal{K} determines a Büchi automaton

$$\mathcal{B} = S', \Sigma, \delta, I, S$$

where $S' = S \cup \{ fail \} \Sigma = 2^{\mathcal{L}}$, and

$$\delta(s, \mathbb{M}) = \{ s' \in T(s) \colon L(s) = \mathbb{M} \}$$

 $\cup \{ \text{fail} \colon s = \text{fail or } L(s) \neq \mathbb{M} \}$

• $\emptyset \stackrel{?}{=} \operatorname{lang}(\mathcal{A}) \cap \operatorname{lang}(\mathcal{B})$