
Notes on Project 5

December 8, 2012

About “recursively memoize oper,” and its type. In the prob-
lem about maximum nonadjacent subsequences, you will first construct a
“knowledge extension operator” called mnas_oper.

This operator depends on the sequence s that it is supposed to work
on, and it builds an operator f (meaning, a function f) that will extend
knowledge about the sums of maximum nonadjacent subsequences of s. The
result f is a function that takes an index i and a “current knowledge”
operator g. Then f(i, g) will return the maximum sum for a nonadjacent
subsequence of s that uses at must the first i positions of s. It should give
the right answers up to some maximum j assuming that g gives the right
answers up to maximum j − 1.

So f(i, g) extends the knowledge contained in g.
Notice that the “type” of g is Int → Int. That means, given an integer

argument i, g(i) is an integer, namely the sum of the maximum nonadjacent
subsequence of s that uses at most the first i entries from s. (Assume that
s is a sequence of integers, so that the sum is an integer too.) We can write
this:

g: Int→ Int

That means that the type of f will be:

f : Int× (Int→ Int)→ Int.

This says that if f is given an integer i and an argument g with type g: Int→
Int, then f(i, g) should be an integer.

So what is the type of mnas_oper? Well, it is a function that takes as
argument an integer array, and it returns f . Let us write the type of an
integer array as Int array. Since we already know the type of f , we can write
the type of mnas_oper as:

mnas_oper: Int array→ (Int× (Int→ Int)→ Int).

1



We are now ready to figure out the type of recursively_memoize_oper. It
can take as argument a function like f , which is called o in the max nonadj.lua
file. We know that f has type f : Int× (Int → Int) → Int. It returns a func-
tion fn which takes an argument that it gives as first argument to f , and fn

returns the same answer that f returned. That means that the argument
and return value of fn are the same as the first argument and the return
value of f . So fn: Int→ Int.

Since recursively_memoize_oper takes an argument of type f : Int ×
(Int→ Int)→ Int and returns a function of type Int→ Int, we have:

recursively_memoize_oper: (Int× (Int→ Int)→ Int)→ (Int→ Int).

We can use this to explain how mnas_max works. Its definition says:

function mnas_max(s)

return recursively_memoize_oper(mnas_oper(s))(#s)

end

It takes an argument s which is an integer array, i.e., s: Int array. Thus,

mnas_oper(s): Int× (Int→ Int)→ Int

since this is the type of value that mnas_oper returns. Thus:

recursively_memoize_oper(mnas_oper(s)): Int→ Int.

Now #s is an integer, namely the length of s. So:

recursively_memoize_oper(mnas_oper(s))(#s): Int.

This is exactly what we want: It means that mnas_max returns an integer,
given any sequence (array) of integers.

Curiously, recursively_memoize_oper can also be applied to argu-
ments of other types. This is the relevant story for our problem, however.

Knowledge extension operators and recurrences. The project write-
up and the starter code file both use the word “recurrence.” In both of
these, they mean what we have been calling a knowledge extension operator.
“Recurrence” is not a crazy thing to call a knowledge extension operator,
since it does some work but does “recur” to its function argument g as
needed.

However, I should emphasize that this has nothing to do with recur-
rences like the ones that the Master Theorem talks about, such as T (n) =
aT (n/b) + f(n).

2



Bellman-Ford and Finding the Shortest Paths. Suppose that you
write your Bellman-Ford implementation, and call it on a graph g and start-
ing node s. The code is supposed to give you back two tables. One is the
table d whose entry for node t is the length of the shortest path s →∗ t. If
the entry in d is nil, that means that there was no path from s to t1.

The other is the table π, i.e. pi. π[n] is the parent, i.e. predecessor, of
n along some shortest path from s. So some shortest path is of the form
s →∗ π[t] → t; its last arc takes us from π[t] to t. We can use π again to
find out the earlier part of this path, as in:

s→∗ π[π[t]]→ π[t]→ t.

You can keep using this idea backward to get the whole path between s and
t worked out.

1I’m using s →∗ t to mean that we’re allowed to use → zero or more times repeatedly
to get to t.

3


