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About “recursively memoize oper,” and its type. In the prob-
lem about maximum nonadjacent subsequences, you will first construct a
“knowledge extension operator” called mnas_oper.

This operator depends on the sequence s that it is supposed to work
on, and it builds an operator f (meaning, a function f) that will extend
knowledge about the sums of maximum nonadjacent subsequences of s. The
result f is a function that takes an index ¢ and a “current knowledge”
operator g. Then f(i,g) will return the maximum sum for a nonadjacent
subsequence of s that uses at must the first ¢ positions of s. It should give
the right answers up to some maximum j assuming that g gives the right
answers up to maximum j — 1.

So f(i,g) extends the knowledge contained in g.

Notice that the “type” of g is Int — Int. That means, given an integer
argument 7, g(7) is an integer, namely the sum of the maximum nonadjacent
subsequence of s that uses at most the first ¢ entries from s. (Assume that
s is a sequence of integers, so that the sum is an integer too.) We can write
this:

g:Int — Int

That means that the type of f will be:
f:Int x (Int — Int) — Int.

This says that if f is given an integer ¢ and an argument g with type g: Int —
Int, then f(7,g) should be an integer.

So what is the type of mnas_oper? Well, it is a function that takes as
argument an integer array, and it returns f. Let us write the type of an
integer array as Int array. Since we already know the type of f, we can write
the type of mnas_oper as:

mnas_oper: Int array — (Int x (Int — Int) — Int).



We are now ready to figure out the type of recursively_memoize_oper. It
can take as argument a function like f, which is called o in the max_nonadj.lua
file. We know that f has type f:Int x (Int — Int) — Int. It returns a func-
tion fn which takes an argument that it gives as first argument to f, and fn
returns the same answer that f returned. That means that the argument
and return value of fn are the same as the first argument and the return
value of f. So fn:Int — Int.
Since recursively_memoize_oper takes an argument of type f:Int X

(Int — Int) — Int and returns a function of type Int — Int, we have:

recursively_memoize_oper: (Int X (Int — Int) — Int) — (Int — Int).
We can use this to explain how mnas_max works. Its definition says:

function mnas_max(s)
return recursively_memoize_oper (mnas_oper(s)) (#s)
end

It takes an argument s which is an integer array, i.e., s: Int array. Thus,
mnas_oper (s):Int x (Int — Int) — Int
since this is the type of value that mnas_oper returns. Thus:
recursively_memoize_oper (mnas_oper(s)):Int — Int.
Now #s is an integer, namely the length of s. So:
recursively_memoize_oper (mnas_oper(s)) (#s):Int.

This is exactly what we want: It means that mnas_max returns an integer,
given any sequence (array) of integers.

Curiously, recursively_memoize_oper can also be applied to argu-
ments of other types. This is the relevant story for our problem, however.

Knowledge extension operators and recurrences. The project write-
up and the starter code file both use the word “recurrence.” In both of
these, they mean what we have been calling a knowledge extension operator.
“Recurrence” is not a crazy thing to call a knowledge extension operator,
since it does some work but does “recur” to its function argument g as
needed.

However, I should emphasize that this has nothing to do with recur-
rences like the ones that the Master Theorem talks about, such as T'(n) =

aT(n/b) + f(n).



Bellman-Ford and Finding the Shortest Paths. Suppose that you
write your Bellman-Ford implementation, and call it on a graph g and start-
ing node s. The code is supposed to give you back two tables. One is the
table d whose entry for node ¢ is the length of the shortest path s —* ¢t. If
the entry in d is nil, that means that there was no path from s to ¢!.

The other is the table m, i.e. pi. m[n| is the parent, i.e. predecessor, of
n along some shortest path from s. So some shortest path is of the form
s —* 7w[t] — t; its last arc takes us from w[t] to t. We can use m again to
find out the earlier part of this path, as in:

s =" w[n[t]] — «[t] — t.

You can keep using this idea backward to get the whole path between s and
t worked out.

'm using s —* t to mean that we’re allowed to use — zero or more times repeatedly
to get to t.



