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Abstract—Domain-specific distances preferred by analysts for
exploring similarities among time series tend to be “point-to-
point” distances. Unfortunately, this point-wise nature limits their
ability to perform meaningful comparisons between sequences
of different lengths and with temporal mis-alignments. Analysts
instead need “elastic” alignment tools such as Dynamic Time
Warping (DTW) to perform such flexible comparisons. However,
the existing alignment tools are limited in that they do not
incorporate diverse distances. To address this shortcoming, our
work introduces the first conceptual framework called Gen-
eralized Dynamic Time Warping (GDTW) that supports now
alignment (warping) of a large array of domain-specific distances
in a uniform manner. While the classic DTW and its prior
extensions focus on the Euclidean Distance, our GDTW is the first
method that generalizes the ubiquitous DTW and “extends” its
warping capabilities to a rich diversity of point-to-point distances.
Based on our GDTW paradigm that preserves the efficiency
of the dynamic programming paradigm of DTW, we design an
abstraction that implemented by our GDTW Design Tool enables
analysts to “warp” new distances with little programming effort.
Through extensive evaluation studies on 85 real public domain
benchmark datasets, we show that our newly warped distances
offer higher classification accuracy than the previously available
distances for the majority of these datasets. Further, our case
study on heart arrhythmia data illustrates the utility of the new
distances enabled by our GDTW warping methodology.

I. INTRODUCTION

A. Motivation and Background
In our current era time series are produced at an unprece-

dented rate in many application domains in the form of stock
fluctuations, electrocardiograms, and many others. Mining of
these time series data sets relies on finding relationships
based on distances between subsequences both within and
across time series. Clearly, there is a broad range of impor-
tant problems from retrieval, classification, and clustering to
outlier detection that require such distance-based comparison
capabilities. Yet, the selection of a distance1 deployed for these
data mining tasks strongly impacts the results. This can lead

1From the mathematical point of view, the smaller the similarity distance
(i.e. Euclidean) between two time series, the more similar they are. In contrast,
the higher the value of the similarity measure (i.e Cosine) the more similar
they are considered to be [1]. Similarity measures can be expressed in terms
of distances. In this paper for simplicity, we will not distinguish between these
two categories and refer to them simply as “distances”.

to poor or even erroneous results because the efficacy of a
distance depends on the semantics and how relevant they are
for the specific application.

In this vein, it has been well established that one cannot
rely on one single distance; but instead application domains
need a variety of distances to solve their specific problems [1].
For example, compound classification in chemistry selects the
most relevant chemical descriptors using Minkowski distance
[2], motion detection applications indexing d-dimensional
trajectories prefer Chebyshev polynomials [3], while image
retrieval reflecting human visual perception tends to utilize
Manhattan [4], [5] and Mahalanobis distances [6].

Unfortunately, all distances mentioned above are only
“point-to-point distances”. That is, they cannot be used for
comparing sequences of different lengths or that are not
aligned in time. Yet in many real-life scenarios, sequences tend
to be of different lengths. For example, while some patients
may be in the intensive care unit for just one afternoon, others
may stay there hooked up to instruments generating medical
signals for days or weeks.

Similarly, misalignment of sequences often occurs, meaning
that certain patterns (shapes) may be stretched or compressed
into distinct time periods in two time series. For example, the
stock fluctuation of sales volumes by two competitors such as
Google and Apple may never arise at the same time point (i.e.,
within the first year of their respective public offering). Or,
they may not be stretched over the same time period (while a
peak might be reached by Apple more rapidly with the release
of a new device, a similar high might have been experienced
by Google - but just distorted slower in time). Or a doctor
might want to explore if certain shapes found in the ECG of
a patient during a medical episode are also found in signals
previously recorded for other patients with the same condition
because this can help diagnosis.

Performing time series mining relies on using a chosen
distance to compare sequences with misalignments, different
lengths, or both. To address this requirement of more powerful
matching, the notion of “elastic” distances has been introduced
[7], [8], [9], [10]. For example, the peaks of the ECG shapes
in Fig. 1 are misaligned in time. Elastic alignment tools are



needed for meaningful comparisons between these sequences.
Such ECGs could help doctors diagnose arrhythmia related
issues, referring to changes of the normal sequence of electri-
cal impulses which may cause the heart to beat too fast, too
slowly, or erratically. When the heart does not pump blood
effectively, the lungs, brain and other organs cannot work
properly and may shut down or be damaged. The red (solid)
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Fig. 1: ECG best match retrieved by doctor is different than
the one retrieved by the classic DTW.

line in Fig. 1 displays the ECG of a target patient. Finding
the best match for such sample sequence can help doctors
identify specific heart conditions. In this scenario, based on
her expertise, the cardiologist selected the purple (line-dash)
sequence as best match to this target patient from the ECG
collection. The black (dot-dash) sequence was retrieved as
the best match to the sample by using the well-known DTW.
As the figure shows, the doctor retrieved a different sequence
than the one retrieved by DTW. Thus, in this scenario, DTW,
despite its popularity, is not the most suitable distance for
similarity search.

In fact, it has been shown that DTW [8] can be rigid due
to incorporating the Euclidean as base distance [11], leading
to unintuitive and even erroneous results at times. Because
of the temporal misalignments the best match sequence could
not have been retrieved by using a point-wise distance either.
We postulate that this sequence could be retrieved by using a
different robust alignment tool, one that does not incorporate
the Euclidean as base distance. This hypothesis is confirmed
by our arrhythmia related study (Sec. VII) where the sequence
marked in black matching the choice of the cardiologist is
indeed retrieved by a newly warped distance designed using
our GDTW methodology.

As we describe below, no methodology exists that enables
analysts to work with the point-to-point distance most appro-
priate for their domain, yet empower this targeted distance to
support robust time-warped matching. Application developers
thus face the dilemma of having to choose between the most
appropriate distance to tackle their problem or a distance
supporting flexible sequence matching. There is thus a need to
enable analysts to use the distance best suited for their specific
domain without limiting them to only compare sequences of
the same length or without any local shifting. In this work
we now provide the first solution to this open problem, that

is we design a method that uniformly extends warping to a
wide diversity of distances, regardless of their mathematical
expressions.

B. State-of-the-Art and Its Limitations

Elastic distances including Dynamic Time Warping [7],
[8], Longest Common Subsequence (LCSS) [9], and Edit
Distance with Real Penalty (EDR) [10] enable elastic sequence
matching. Particularly, Dynamic Time Warping (DTW) [8],
popular for time series data mining, allows sequences to be
stretched or compressed along the time axis, i.e., a point of
one sequence can be matched to one or more points of another
sequence. DTW has become increasingly popular due to its
expressiveness – being applied to RNA expression data in
bioinformatics [12], ECG pattern matching in medicine [13],
and aligning biometric data in surveillance systems [14].

Despite its popularity, DTW has been shown to not always
be the most appropriate distance for exploring time series be-
cause it can produce pathological results through non-intuitive
alignments [11]. One reason for this shortcoming stems from
the fact that DTW is restricted to using the Euclidean distance
as its base distance [8]. This limits its utility for applications
that require other distances as we further describe.

As we show in Sec. VIII, countless modifications of the
classic DTW have been proposed to either (1) optimize its
performance by indexing, caching, and other system opti-
mizations [9], [15], [7], [16], [17] or (2) improve the quality
of alignments between time series [11], [18], [19]. Closer
to our work is [20], which uses sum-based distances in the
dynamic programming strategy. However, this method [20]
only incorporates simple metrics based on sums such as
Euclidean or Manhattan – falling short in handling many of
the point-to-point distances motivated above.

In short, none of the state-of-art DTW warping methods
supports any of the popular distances, such as Minkowski,
Chebyshev, Sorensen, Cosine, Pearson, Jaccard, etc. These dis-
tances are based on combinations of mathematical operations
such as fractions, products, min, and max. We illustrate in this
paper that such distances can now all be successfully “warped”
using our proposed framework.

C. Our Proposed GDTW Framework

In this work, we overcome the problem of extending warp-
ing abilities to diverse point-wise distances by designing a
universal alignment tool, called Generalized Dynamic Time
Warping. GDTW is flexible enough to use different point-to-
point distances in computing the warping path, yet powerful
enough to enable time warping. Defining such generalized
distance is not enough, it must be complemented by efficient
strategies for being computed over large time series datasets.

Our work fundamentally changes the classic DTW, while
keeping its main purpose of robustness to local misalignments
in time. We propose a step-by-step methodology that enables a
large number of point-wise distances to perform warping and
do so efficiently. Our new GDTW framework now enables the
community to develop new warped distances with ease. The



resulting GDTW-empowered time-alignment tools can then be
leveraged for a broad range of problems from classification,
clustering, to best match retrieval.
Contributions.
• We introduce the first conceptual framework, called

GDTW, whose core mathematical foundation enables
analysts to transform a diversity of point-wise distances
into elastic distances by extending warping properties
using a uniform approach (Sec. III-A and III-B).

• We devise a multi-step methodology that empowers an-
alysts to “warp” their desired point-wise distance and
efficiently compute the generalized warping path using
a general dynamic programming strategy (Sec. III-C and
III-D).

• To realize the formal GDTW framework, we model the
key principles of GDTW-based warped distance specifi-
cations by three core abstractions that allow analysts to
define new distances, construct their recursive expressions
and incorporate them into the DP strategy. The resulting
API implemented by the template-based GDTW Design
Tool enables analysts to “warp” new distances without
much programming effort (Sec. IV).

• We validate our GDTW framework theoretically and
practically by applying it to popular point-wise distances
with diverse mathematical characteristics [1], including
distances that could not work under the classic DTW
algorithm, e.g., Minkowski and Sorensen. This results in
a repository of warped distances – a valuable resource
for the community (Sec. V).

• Our extensive experimental study on the 85 datasets from
diverse application domains from the benchmark UCR
Archive [21] shows the effectiveness of our newly warped
distances for a variety of data mining tasks compared to
the state-of-the-art DTW (Sec. VI-B, VI-C,VI-D).

• Our study of Arrhythmia data guided by domain experts
shows the utility of GDTW distances for better interpret-
ing ECG similarity in the medical domain (Sec. VII).

II. CLASSIC DYNAMIC TIME WARPING

Suppose we have two time series X = (x1, x2, ..., xn) and
Y = (y1, y2, ..., ym). To align these sequences using DTW,
an n×m matrix M(X,Y ) is constructed, where the (i, j)th

element of the matrix is the Euclidean Distance between xi
and yj , i.e., wi,j = ED(xi, yj). Then a warping path P is a
set of elements that forms a path in the matrix from (1, 1) to
(n,m). The tth element of P denoted as pt = (it, jt) refers
to the indices it, jt of (xit , yjt) of this matrix element in the
path. Thus a path P is P = (p1, p2, . . . , pt, . . . , pT ), where
n ≤ T ≤ 2n− 1, p1 = (1, 1) and pT = (n,m).

Definition 1: Warping Path Weight: Given two time series
X = (x1, ..., xn) and Y = (y1, ..., ym), the weight of the
warping path P is defined as:

w(P ) =

√√√√ T∑
t=1

w2
it,jt

. (1)

The DTW distance then is defined to be the weight of the path
with the minimum weight (minP (w(P ))).

A warping path is subject to the following constraints:
1. Boundary condition. p1 = (1, 1) and pT = (n,m) or the
path has to start and end on the opposite corners of the matrix.
2. Continuity condition. The steps in the warping path are
restricted to adjacent cells, including diagonally adjacent cells.
Using simplified notations [11], for pi = (u, v) we have
pi−1 = (u′, v′), where u− u′ ≤ 1 and v − v′ ≤ 1.
3. Monotonicity condition. The elements on the path must
monotonically progress in one direction, namely u − u′ ≥ 0
and v − v′ ≥ 0 and (u, v) 6= (u′, v′).
Since there is an exponential number of warping paths satis-
fying these conditions, finding the minimum weight warping
path is prohibitively expensive. Fortunately, the warping path
can be efficiently calculated by using dynamic programming
[20]. Conceptually, given the matrix M containing pairwise
Euclidean distances of all elements in the sequences X and
Y, we construct a dynamic programming matrix Γ by fill-
ing in the values using the following recursive expression.
γ(i, j) = ED2(xi, yj)+
min(γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1))
The current distance γ(i, j) in the cell (i,j) is computed as
the sum of the square of the distance currently found in the
cell in the same position in the original matrix M and the
minimum of the cumulative distances found in the adjacent
cells (diagonal, left and down) in the dynamic programming
matrix Γ. Then DTW 2(X,Y ) = γ(n,m). Further details can
be found in [22] and [17].

Fig. 2 illustrates an example of computing the classic DTW
warping path for two sequences X and Y as depicted with
values in bold font. The leftmost matrix M from the classic
DTW algorithm contains the pairwise square ED between the
elements of the sequences. The middle matrix Γ showcases
the dynamic programming strategy used for computing the
path. For example, as indicated on the red dotted arrow, the
element 0 in matrix M is summed with the minimum of the
three elements (left, down and diagonally-down) in Γ leading
to the value 0 in Γ. The gray values indicate that values are
calculated “as needed” to find the path efficiently. Lastly, the
matrix on the right highlights the resulting path in blue.

0		1		1		9			9				1			0
1		0		0		4			4				0			1
1		4		4		16	16		4			1
1		0		0		4			4				0			1
1		4		4		16	16		4			1
1		0		0		4			4				0			1	
0		1		1		9			9				1			0	

4
3
5
3
5
3
4

4		3		3		1			1			3			4

0=	0	+	min	(1,0,1)

Pairwise	ED	matrix	(M) Dyn.	Prog.	matrix	(Γ) Warping	Path	in	Γ

5		5		5	13		17	13		12
5		4		4		8			12	12		12
4		6		6		18	22	14		11
3		2		2		6			10	10		10
2		4		4		16	20	12			9
1		0 0		4				8				8			9	
0		1		2		11	20		21	21	

5		5		5	13		17	13		12
5		4 4 8 12 12 12
4 6		6		18	22	14		11
3 2 2		6			10	10		10
2 4 4		16	20	12			9
1 0 0		4				8				8				9	
0 1 2		11	20		21	21

X

Y

Fig. 2: Computing the warping path with classic DTW



III. GENERALIZED TIME WARPING

A. Towards a Generalized Distance
We design the GDTW framework to preserve all advantages

of DTW, while also supporting the transformation of a wide
array of popular point-to-point distances d into their warped
counterparts GDTWd. Better yet, unlike previous work, our
GDTW approach “empowers” analysts to warp existing point-
to-point distances d of their choice. We offer efficient strategies
for computing these warping paths for distances meeting
the recursive and symmetry properties described below. Our
approach fundamentally changes the algorithm for comput-
ing the weight of the warping path by generalizing it to
allow the embedding of alternate distances, regardless of their
mathematical expressions. This overcomes the limitations of
previous approaches which at best can only “warp” distances
based on simple sums.

While our generalized DTW can be applied conceptually
to any point-to-point distance, it is important in practice to
compute it efficiently. Thus, we change the DP strategy from
the classical DTW algorithm and adapt it to work in our
generalized context.

B. Fundamentals of GDTW Warping Path
We define the concept of a general warping path and explain

how to incorporate new functions in computing it. Given two
sequences X = (x1, x2, ..., xn) and Y = (y1, y2, ..., ym), with
n ≥ m, we construct an n×m grid graph G, as a generalization
of the matrix Γ from the classic DTW. As shown in Fig. 3, we
define a warping path P as a sequence of elements that forms
a contiguous path from (1, 1) to (n,m). By “decoding” this
general warping path and extracting the values for xik and yjk
at every position on the path, we conceptually construct the
following two equal-length vectors: XP = (xi1 , xi2 , ..., xiT )
and YP = (yj1 , yj2 , ..., yjT ), where some of the xik and yjk are
repeated while advancing on the path. Considering an arbitrary
distance d, the weight of the warping path P is then defined
as the distance between XP and YP , which is computed using
d. That is, we have w(P ) = d(XP , YP ).

Fig. 3: General Warping Path

Definition 2: The Generalized Dynamic Time Warping
Distance corresponding to a distance d, denoted by GDTWd,
is the weight of the path P with the minimum weight, namely:

GDTWd(X,Y ) = min
P

(d(XP , YP )).

Theoretically the generalized dynamic time warping distance,
as in Def. 2, can incorporate any distance, not just based on

sums, but on maximum, minimum, fractions of sums, products,
etc. However, as written, it requires us to find all warping paths
first, then determine their weight, and lastly pick the one path
with the minimum weight. This is not feasible in practice.

Thus, the key idea is that we must be able to construct the
distance function recursively by indicating how to incorporate
the nth coordinates in the distance measure based on the
previous n-1 coordinates. For this, we introduce a key recursive
property that must first be identified and then utilized to define
and compute the weight of the warping paths.

Definition 3: The distance measure d in Def. 2 must sat-
isfy the recursive condition below. There exists a 3-variable
function fd : R+ ×R ×R → R+ where R denotes the set
of real numbers and R+ denotes the set of non-negative real
numbers with respect to a distance d such that for vectors
XP = (x1, x2, ..., xn) and YP = (y1, y2, ..., yn) (n ≥ 2), we
have:

d(XP , YP ) = d((x1, . . . , xn), (y1, . . . , yn)) =

= fd (d((x1, . . . , xn−1), (y1, . . . , yn−1)), xn, yn) . (2)

The fd function tells us, given the distance measure on the first
n− 1 coordinates (x1, ...xn−1, y1...yn−1), how to incorporate
the nth coordinates (xn, yn). This expression assumes that the
distance measure is symmetric in the coordinates. This means
swapping the order of any two coordinates (xi, xj) and (yi, yj)
in both their respective sequences does not change the distance
between these sequences.

As we show in Sec. V-A, with some mathematical effort all
distances in [1] are good candidates for being warped using
our methodology because they follow the two requirements
for a distance d to be efficiently warped, as follows:
1. The distance measure d is symmetric in the coordinates.
This means swapping the order of any two coordinates (xi, xj)
and (yi, yj) in both their respective sequences does not change
the distance between these sequences.
2. The distance d can be written in a recursive manner as per
the recursive condition defined above.

To illustrate the GDTW with a concrete example, we now
re-examine the well-known Euclidean Distance (ED) [23],
previously applied in the classic DTW, in our new context.
That is, we give the recurrence for ED as per Def. 3.
Euclidean Distance Example: Given the Euclidean distance
(ED) between two sequences X and Y defined as

dED(X,Y ) =

√√√√ n∑
i=1

(xi − yi)2. (3)

The recursive expression of ED according to Def. 3 is:

fdED
(a, xn, yn) =

√
a2 + |xn − yn|2, (4)

where a is the value of the function dED for the first n-1
coordinates.



C. Efficient Strategy for Computing the GDTW Warping Path

Let us assume that we have a distance measure d satisfying
Eqn (2). Then we propose to change the DP strategy designed
for the classical DTW (see Sec. II) and adapt it to work with
any distance, regardless of its mathematical expression. The
classic DP strategy always computes the SUM between the
previous value and the min of the three cumulative values
of the base distance advancing on the path, therefor it can
only work if the base distance is a sum. The new DP strategy
instead computes the MIN of the three values calculated as
the base distance between the previous value and each of the
cumulative values respectively. This new strategy incorporates
the core mathematical operation of each base distance, i.e.
max for Minkowski or Chebyshev, fraction for Sorensen, etc.,
while the classic strategy was simply based on sum.

Definition 4: The dynamic programming general recursive
expression for warping a distance d is:

γ(i, j) = min

 fd(γ(i− 1, j − 1), xi, yj),
fd(γ(i− 1, j), xi, yj),
fd(γ(i, j − 1), xi, yj).

(5)

with γ(1, 1) = d(x1, y1).
Definition 5: Using Eqn (5), the “warped” version of a

distance d returns a general dynamic warping distance
defined as:

GDTWd(X,Y ) = γ(n,m) (6)

Given a distance d, we first design the function fd in Eqn (2).
Thereafter, we plug the former into Eqn (5) to derive a DP
solution that computes the warped version of distance d.

To illustrate, we apply the above process to our running
example of Euclidean distance. Namely, by replacing fdED

from Eqn (4) in Eqn (5), we derive the following dynamic
programming recurrence for warping the Euclidean distance:

γ(i, j) = min


(
γ(i− 1, j − 1)2 + |xi − yj |2

) 1
2 ,(

γ(i− 1, j)2 + |xi − yj |2
) 1

2 ,(
γ(i, j − 1)2 + |xi − yj |2

) 1
2 .

We note that the DP recursive expressions derived from (5),
when applied to ED, are identical to those in the classic DTW.

D. Proposed GDTW Methodology

In brief, the formal steps of our GDTW methodology for
creating a corresponding warping distance GDTWd for a
given distance d are:

1) Select a desired distance d as the potential warping can-
didate. If the distance d satisfies the recursive condition
(Sec. III-B), then the following steps provide the strategy
to efficiently compute the warping path2

2) Design the function fd for the recursive expression in
Def. 2 to serve as the weight of the corresponding
GDTW warping path (Sec. III-B). This step is crucial to
efficiently computing the warping path.

2If the distance d is not already in our repository and it does not satisfy
this condition, other strategies can be devised to compute the warping path.

3) Find the recursive dynamic programming expression by
plugging fd into Eqn (5) to efficiently compute the
weight of the path (Sec. III-C).

IV. GDTW DESIGN TOOL FOR NEW DISTANCES

Once the appropriate expressions have been designed fol-
lowing the specifications in Sec. III-D we built an API to
support the incorporation of new warped distances by analysts
with minimal programming effort. The use of templates to
abstract the distance formulas provides a flexible interface,
while avoiding the overhead of dynamic dispatch that would
be incurred by polymorphic operations.

As first step, auxiliary variables are defined to serve as
containers to store intermediate values in the calculation of
a distance. The auxiliary variables effectively hold the accu-
mulated values required by the distance recursive function, i.e.
the fd((x1..xn−1), (y1...yn−1)) in Def. 3. For simple distances
there is only one such variable. For example for ED this
variable accumulates the squared difference of pairs of data
points. More complex distances may require more than one
auxiliary variable to remain incrementally computable. As we
show later (Sec. V), the Sorensen distance needs two variables:
one to accumulate the absolute difference and the other the
absolute sum of two data points. Lastly, we calculate the final
value of the Sorensen distance by dividing the first variable
by the second one. A simple auxiliary variable can be set as a
floating-point variable. Multiple variables can be collectively
defined as C++ structures or simply elements in an array.

We define our new distance as a class with the following
set of methods (with A being the type of auxiliary variables):

• A init() initializes the auxiliary variables.
• A reduce(A prev, data_t Xi, data_t Yi)

combines the auxiliary variables in prev and the data
points Xi and Yi from the two time series (data_t
represents the data type of each point) according to the
the recursive expression of fd in Def. 3.

• data_t finalize(A raw_final, TS X, TS Y)
calculates the final numeric value from the auxiliary
variables.

We note that although the distance classes do not extend
any common base class, the existence and signature of these
methods are enforced by the compiler via the structure of the
template. Therefore, we benefit from error detection during
compile time. Given the newly defined distance metric class
and the type of auxiliary variables, the compiler generates
a point-wise distance function and a warped distance func-
tion, both embedded within the init(),reduce(), and
finalize() methods in the specific distance metric. The
structures of function variants are uniform across distances.

The key point is that we offer a user-friendly API to define
new warped distances with ease, yet without sacrificing execu-
tion performance costs. That is, our generalized system does
not impose any significant overhead in the similarity matching
time. This is achieved due to our well-engineered templated
solution using meta-programming with C++ templates.



V. COMMUNITY RESOURCE OF WARPED DISTANCES

A. Designing Warped Distances Using GDTW Methodology

We now show how our proposed GDTW framework can be
used to warp diverse distances using our GDTW methodology
(Sec. III-D). We focus on distances collected in the highly
cited survey paper [1] due to its large coverage of popular
point-to-point distances. In particular, we showcase well-
known distances such as Manhattan, Minkowski and Sorensen,
popular in studying similarity of time series. Minkowski (same
mathematical expression as Chebyshev) is based on max and
thus the classic DTW algorithm valid only for sum-based
distances would fail. Similarly, based on a fraction of sums,
Sorensen could not work using the classic DTW either.

Our study achieves three objectives:
(1) It demonstrates the utility of the GDTW methodology for
warping in a consistent manner a rich diversity of distances
composed of complex expressions including division, square
root, max, min, fractions and products.
(2) Our work constructs a valuable “start-up” repository of off-
the-shelf warped important distances ready to use by anyone.
(3) The availability of these examples will help designers of
distances in the future find the needed recurrence expressions.
Lp-distances in general, for p=1 and p=2, leading to Man-
hattan and respectively Euclidean distances: Given the Lp

distance between two time series X and Y defined as:

dLp
(X,Y ) =

(
n∑

i=1

|xi − yi|p
) 1

p

, (7)

the recursive expression of the Lp distance is stated as:

fdLp
(a, xn, yn) = (ap + |xn − yn|p)

1
p ,

where a is the total value of the distance measured for the first
n-1 coordinates. The p in the Lp can be plugged in accordingly
to model specific Lp norms, as mentioned above. The dynamic
programming recurrence for warping Lp distances is:

γ(i, j) = min


(γ(i− 1, j − 1)p + |xi − yj |p)

1
p ,

(γ(i− 1, j)p + |xi − yj |p)
1
p ,

(γ(i, j − 1)p + |xi − yj |p)
1
p .

Euclidean Distance was reviewed earlier in Sec. III-B (and
thus not repeated here), so we show now Manhattan distance.

Manhattan Distance: Given the Manhattan distance dMD

between two time series X and Y, defined as:

dMD(X,Y ) =

n∑
i=1

|xi − yi|, (8)

its recursive expression is:

fdMD
(a, xn, yn) = (a+ |xn − yn|) (9)

where a is the value of fdMD
for the first n-1 coordinates. The

recursive dynamic programming is:

γ(i, j) = min

 (γ(i− 1, j − 1) + |xi − yj |) ,
(γ(i− 1, j) + |xi − yj |) ,
(γ(i, j − 1) + |xi − yj |) .

Similarly to Fig. 2, we give an example for computing the
warping path for the same pair of sequences using GDTWMD

in Fig. 4. We note here that the resulting path differs from the
path found by the classic DTW.
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Fig. 4: Computing the warping path with GDTWMD.

Minkowski Distance: Given the Minkowski distance dMink

between two time series X and Y defined as:

dMink(X,Y ) =
n

max
i=1
|xi − yi|, (10)

its recursive expression is:

fdMink
(a, xn, yn) = max(a, |xn − yn|). (11)

where a is the value of fdMink
for the first n-1 coordinates.

The dynamic programming recursive expression is:

γ(i, j) = min

 max(γ(i− 1, j − 1), |xi − yj |),
max(γ(i− 1, j), |xi − yj |),
max(γ(i, j − 1), |xi − yj |).

Similarly to Fig. 2, we give an example for computing
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Fig. 5: Computing the warping path with GDTWMink.

the warping path for the same pair of sequences using
GDTWMink in Fig. 5. We note two differences: the resulting
path is different than all previous paths, and there is no
sum in the new DP strategy. Unlike DTW, this DP uses a
completely different expression based on max not sum. The
warped Minkwoski distance could not work using the DP
expression of the classic DTW.

Sorensen Distance: Sorensen, used in ecology [24], is
another example that could not be accommodated by the
classic DTW because of its complex form (a fraction of sums).
Given Sorensen distance dsor between X and Y as:

dSor(X,Y ) =

n∑
i=1

|xi − yi|

n∑
i=1

|xi + yi|
(12)



Its recursive expression is:

fdSor
(
a

b
, xn, yn) =

a+ |xn − yn|
b+ |xn + yn|

=
a′

b′
. (13)

where a and b denote the total value of the differences and
respectively the sums of the first n-1 coordinates.
The dynamic programming recursive expression is:

γ(i, j) = min


a1+|xi−yj |
b1+|xi+yj | ,
a2+|xi−yj |
b2+|xi+yj | ,
a3+|xi−yj |
b3+|xi+yj | ,

where γ(i−1, j−1) = a1

b1
, γ(i−1, j) = a2

b2
, γ(i, j−1) = a3

b3
.

Warping Other Distances. Above illustrates that our new
DP strategy is general enough to work with all distances in [1].
The key to warping these distances is to formulate a recursive
expression to fit Def. 3 and then embed that into Eqn (5).
Due to space constraints, we offer other examples, namely
warping the Cosine distance in our extended repository of
warped distances [25]. The Cosine distance, which measures
the angles between two vectors, corresponds to the normalized
Inner Product and also has a complex form that could not work
with the DP of the classic DTW. Many other popular distances
such as Jaccard, Dice and Pearson, based on similar arithmetic
expressions can be warped with using our methodology.

Discussion of GDTW complexity. The complexity of DTW
has been shown to be O(mn)[8], where m and n are the
lengths of the compared sequences. Although the recursive
formulation for GDTW is different, it leads to the same com-
plexity as DTW because it maintains the DP traversal strategy.
The construction of the computation matrix dominates the
complexity of GDTW. Each cell of the matrix is computed
by comparing three values of the previous cells at every
step, a constant cost as the three previous cells are already
computed. The complexity of GDTW does not change with
the base distance because of the simple point-wise nature of
the distances computed at each step. Thus the traversal of the
mn cells leads to an overall complexity of O(mn).

B. Incorporating New Distances Using GDTW Design Tool

Next, we explain the integration of our API with our pre-
vious examples of “theoretically” warping these distances. In
particular, we show the use of our Design Tool on two exam-
ples: warped Minkowski (GDTWMink) and warped Sorensen
(GDTWSor). Classic DTW and GDTWMD both use sum.
Thus their implementation is very similar to GDTWMink and
can be safely omitted here.

Implementing GDTWMink. Given that only one cumula-
tive value, namely a,is used in the recursive expression of
the distance in Eqn (11), we only need one auxiliary variable.
This variable a is expressed as prev in the reduce method.
class Minkowski {

data_t init() { return 0; }
data_t reduce(data_t prev, data_t xi,

data_t yi) {
return max(prev,|xi-yi|);}

data_t finalize(data_t raw_final, TS X,
TS Y) {

return raw_final;}}
Implementing GDTWSor. The Sorensen distance defined

in Eqn (12) requires the use of two auxiliary variables. That
is, the right side of Eqn (12) contains a fraction of two
separate values, namely cumulative sum of the differences in
coordinates denoted as prev[0] and cumulative sum of sums of
coordinates denoted as prev[1] corresponding to the values a
and b respectively in Eqn (13). The reduce method computes
the warped distance according to the recursive expression in
Eqn (13) by dividing the two values as shown below.
class Sorensen {
data_t* init() { return new data_t[2]; }
data_t* reduce(data_t* prev, data_t xi,

data_t yi) {
return {prev[0] + |xi-yi|,

prev[1] + |xi+yi|};}
data_t finalize(data_t raw_final, TS X,

TS Y) {
return raw_final[0]/raw_final[1];}}

To summarize, using our tool, we construct the warping variant
GDTWd of the point-wise distance d by using the init(),
reduce(),and finalize() methods. Our DP expression
remains the same for all distances - regardless of their respec-
tive mathematical expressions, as shown above. The analyst
simply has to design fd to define reduce(),while the
remaining work for “warping” d is done automatically by the
system. We note that the recursive expressions for different
distances will lead to differences in the empirical response
times as we show in Sec. VI-C and VI-D. This is due to minor
differences in the definitions of the distance, e.g., the cost for
squaring is slightly different than the cost of performing an
absolute value, etc.

VI. EXPERIMENTAL EVALUATION

A. Experimental Methodology

Our GDTW framework can be utilized to warp a plethora of
distances as demonstrated by our study above. While it is well
accepted in the literature (Sec. I-C) that different distances are
preferred depending on the application domain, data set and
mining task, GDTW, by now providing additional distances
to analysts, would enrich their repertoire and with it their
opportunity to find additional insights missed by current dis-
tances. In this light, we conduct a few studies to demonstrate
that in some cases even simple new GDTW distances can
already consistently beat the classic DTW. For this, we focus
on a select subset of GDTW variants, namely, GDTWMink

(warped Minkowski or Chebyshev), GDTWED (DTW), and
GDTWMD (warped Manhattan). The reason for choosing
these is three-fold: (1) they are well known to the research
community, (2) we documented in the introduction that their
point-wise versions are valuable in diverse domains, yet cannot
perform flexible sequence matchings, (3) GDTWMink was
chosen specifically because it is based on max and it cannot
work using the classic algorithm for DTW, but it now works



under our GDTW framework. Additional experimental results
and detailed instructions to reproduce our experiments are
found at [25].

Data Sets. We use the largest public collection focused on
time-series datasets that we are aware of, the UCR Archive
[21] containing 85 benchmark datasets from various domains.

Three Classes of Evaluation:
Experiment 1: Time Series Classification. We evaluate

the effectiveness of our newly warped distances for time
series classification. For this we apply each distance over the
training and test sets of the 85 datasets in the UCR archive,
using them as (parameter-free) 1-NN classifiers. We compute
the classification accuracy, i.e., number of correctly classified
instances over all instances, and the error rate in performing 1-
NN classification. Because the 1-NN classifier is deterministic,
we only perform this computation once.

Experiment 2: Best Match Retrieval and Clustering. We
find the best match (or nearest neighbor) for a given sample
query sequence first by using a “point-to-point” distance and
then by its “warped” counterpart. We then compare these
matches. Our experiment aims to show that: (1) the warped
distances tend to return different results compared to their
point-wise versions, as expected when the sequences are not
aligned in time, and (2) diverse warped distances each may
provide different insights (results) that would be missed by
the other warped distances. In addition, we demonstrate the
impact of using these new distances on an average linkage
hierarchical clustering problem.

Experiment 3: Evaluation of Warping Characteristics.
Similarly to the well-known Derivative Dynamic Time Warp-
ing method [11], which studies the “over-warping” produced
by the classic DTW, we compute the amount of warpings
produced by our GDTW variants for pairs of sequences as:

W = (l − average(m,n))/average(m,n) (14)
where 0 ≤ W ≤ 1 and m, n are the lengths of the compared
sequences. W=0 if the algorithm does not find a warping
between two sequences. W increases to a maximum value
of 1 as the warping “discovered” by the algorithm increases.
Analysts interested in finding similar sequences with fewer
warpings can utilize these findings. Similarly to [11], we
also measure the sensitivity of our warped distances to local
distortion by introducing distortions in a controlled fashion
into pairs of synthetic sequences.

B. Classification Using 85 Diverse Time Series Benchmarks

Time series classification [10][26][27] frequently uses
a distance as a subroutine in the K-Nearest Neighbor (K-
NN) algorithm. This simple algorithm has been shown to be
surprisingly competitive, by consistently outperforming rival
methods such as decision trees, neural networks, Bayesian
networks, and Hidden Markov Models [27], [28]. Moreover,
time series classification has thus far been one of the few
tasks to resist significant progress from “deep learning” [29].
Given this, the choice of “which” distance to use is important.
Literally dozens of distances have been proposed (see [9],
[29] and the references therein). However, an extensive recent

empirical comparison (performing 36 million experiments) has
confirmed the excellent performance of classic DTW-based
1-NN (in our case GDTWED), which is only beaten by
Ensemble Classifiers [29].

We now evaluate if other warped distances such as
GDTWMD or GDTWMink are even more effective for
classifying time series. To test this research question, we
performed classification experiments on all 85 datasets from
the UCR Archive. The train/test splits were identical. We fixed
the warping window to 100% for all experiments. Thus any
differences can be attributed solely to the effect of changing
the base distance. The raw results and the details of the
experiments including pairwise comparisons using error-rate
binary plots are archived at [25].

For brevity, we present here a compact visual summary
displaying a comparison between the results obtained us-
ing the classic DTW (our GDTWED), GDTWMD and
GDTWMink. Pairwise comparisons of distance measures are
often presented as 2D-scatter-plots [26]. We compare three
algorithms and present the results as a trivariate plot (or
ternary) plot [30] in Fig. 6. In this plot, the locations of
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Fig. 6: A trivariate plot comparing GDTWED, GDTWMD,
and GDTWMink. For points close to the center of the figure,
all 3 methods produce similar error rates. For points away
from the center, at least one method performs poorly.
the points do not correspond to the actual error rate, but
are proportional to them. This ternary plot shows the error
rate distribution for the three distances and marks the areas
where each individual distance performs better than the others.
The red dots in the light purple area (bottom) indicate the
wins for GDTWMD (in 56 cases), while the ones in the
pink area (right) show where GDTWED is better (in 44
cases) and the ones in the green area (left) correspond to
GDTWMink performing better (in 15 cases). The results are
surprisingly diverse, with 44 “wins” for GDTWED, 56 “wins”
for GDTWMD, and 15 “wins” for GDTWMink. There are
fewer dots in the green area, indicating that GDTWMink



generally performed poorer than the other two distances. The
error rates for GDTWMD and GDTWED are fairly close, as
shown by the high concentration of points in the center.

In conclusion we succeeded at improving on the stan-
dard benchmark of 1-NN DTW, simply by switching to
GDTWMD. This suggests that using our framework to forge
new time-warping distances has the potential to lead to other
substantial improvements on state-of-the-art time series clas-
sification, upon which we elaborate in [25].

C. Best Match Retrieval and Clustering Experiments

For each dataset in a subset from the UCR archive, we
randomly select a subsequence and “promote” it to be a
query, similarly to [31]. Then we find the best match for
this query sample by using three point-wise distances (ED,
MD, Mink) and their warped counterparts (GDTWED,
GDTWMD, GDTWMink). We repeat this experiment for 10
random sample sequences. Due to the space constraints we
show additional experimental results in [25], while here we
offer only a summary analysis in Table I. The results vary

TABLE I: Percentage scenarios where pairs of GDTW variants
return the same best match for a specific sample sequence in the
ECG dataset

Pair of distances Percent scenarios
ED and DTW 20
MD and GDTWMD 20
Mink and GDTWMink 0
DTW and GDTWMink 10
GDTWMD and GDTWMink 20
DTW and GDTWMD 50

significantly when using different point-to-point distances and
their warped versions, as expected. The point-wise distances
can be at most as good as their warped versions, but only
for sequences that are aligned in time. The GDTW variants
often return different results, each providing best matches that
would otherwise be missed. Only in 10% of the scenarios did
all three variants return the same best match.
In Fig. 7 we show a visual example of the best match in

ECG retrieved by the point-wise and their respective warped
counterpart distances. In this specific case, two of the point-
wise distances returned the same best match (ED and Mink),
while MD and each respective warped distance returned dif-
ferent matches. If our new distances would have all returned
the same result or even the same result as their point-wise
counterparts, then they would not be useful. It is the diversity
of the results that proves the usefulness of these distances.

Lastly, we conduct an experiment that reveals new insights
uncovered by our newly warped distances using hierarchical
clustering. We select five sequences from the ECG dataset.
Two of them are randomly chosen samples from class 1
(red/bold), while the other three are randomly selected from
class -1 (blue/none-bold). We cluster these sequences using
our three GDTW variants. We repeat the experiment five
times. As the dendogram in Fig. 8 shows, GDTWMD clusters
together sequences from the same class (red) from start,
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Fig. 7: Example of best match in ECG retrieved by point-wise
distances (a) and their warped counterparts (b)

while GDTWED and GDTWMink do not, reaffirming that
GDTWMD has a higher accuracy than DTW.

In short, our newly warped distances can reveal best matches
missed by classic DTW and improve clustering quality.

Fig. 8: Average linkage hierarchical clustering

D. Evaluating Warping Characteristics
Evaluating Cardinality of Warpings. We randomly select

20 pairs of sequences 10 pairs of the same and 10 pairs of
different lengths. We find the matching elements of the se-
quences by using GDTWED, GDTWMD, and GDTWMink.

We compute the average amount of warpings for each
GDTW variant for various datasets (See Table II). Generally,
GDTWMink and GDTWMD discover fewer warpings than
the ones created by GDTWED. This indicates that these
warped distances avoid singularities or “over-warping” in-
curred by classic DTW.



TABLE II: Average warpings for sequences of diverse lengths

Dataset DTW GDTWMD GDTWMink

ItalyPower 0.4 0.3 0.23
ECG 0.43 0.34 0.17
Wafer 0.49 0.38 0.33
Face 0.32 0.28 0.11

Summarizing our findings (full details and additional visual
displays are available) [25], we offer a visual example of
warping characteristics for a pair of sequences from the
ItalyPower dataset in Fig. 9. Warpings indicate points of a
sequence that are either matching or are being matched to
more than one point of the other sequence. Points that are
matched one-to-one are referred to as matchings. The warpings
created by GDTWMD and GDTWMink are fewer and more
intuitive than the ones created by GDTWED, which is a
similar conclusion with that of the experiments of [11]. This
shows that indeed the classic DTW can “over-warp”, mainly
due to the fact that it incorporates the ED as base distance.
This knowledge can be useful to analysts who might choose
to use distances that produce fewer warpings.

Evaluating Sensitivity to Local Distortions. We test the
ability to find the correct warpings by using different GDTW
variants for pairs of sequences for which the ”warping” is
known. Similarly to [11], we distort the y-axis by adding or
subtracting a distortion (Gaussian bump) on randomly chosen
anchor points of the sequences. As shown in Fig. 11, each
distance leads to a warping path different than the other two
distances. DTW “over-warps” the distorted sequences, while
GDTWMD and GDTWMink find a shorter warping path.
The performance for DTW and GDTWMD tends to degrade
even for small distortions of the y-axis, while GDTWMink

maintains a better warping performance.
In summary, our experimental results confirm the utility of

our newly warped distances (in particular, GDTWMink) in
avoiding singularities or “over-warping” problems incurred by
the classic DTW. They also are less sensible to distortion. In
other words, they promise to be useful in practice.

VII. STUDYING HEART ARRHYTHMIA USING GDTW

In collaboration with expert cardiologists, we explore the
MIT-BIH Arrhythmia Database, created by Beth Israel Dea-
coness Medical Center and MIT, which supports research
into arrhythmia analysis and related subjects. The MIT-BIH
Arrhythmia Database [32], [33] contains 48 half-hour excerpts
of two-channel ambulatory ECG recordings obtained from 47
subjects. 23 recordings were chosen at random from a set of
4000 24-hour ambulatory ECG recordings collected from a
mixed population of inpatients (about 60%) and outpatients
(about 40%) at Boston’s Beth Israel Hospital. To address
the imbalance in the data, the remaining 25 recordings were
selected from the same set to include less common but
clinically significant arrhythmias that otherwise would not be
well-represented in a small random sample.

Medical staff studies similarity of ECGs for diagnosing
arrhythmia which refers to changes of the normal sequence
of electrical impulses. Electrical impulses may cause the heart
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Fig. 9: Visual warpings for a pair of sequences in ItalyPower
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Fig. 10: Case study best match sequences for the same sample
retrieved by GDTW variants

to beat too fast, too slowly, or erratically. When the heart does
not pump blood effectively, the lungs, brain and other organs
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Fig. 11: Warpings for distorted sequences. (a), (b), and
(c) show the warpings using respectively the classic DTW,
GDTWMD and GDTWMink

cannot work properly and may shut down or become damaged.
We use our newly warped distances to explore this database

and find the best match for a given ECG shape. For this
experiment, we first chose the sample heart rate shape of the
record labeled 107. This male patient (age 63) has a complete
heart block condition in which the impulse generated in the
sinoatrial node in the atrium of the heart does not propagate
to the ventricles. We randomly selected 20 records from the
dataset, including that of the patient with record 107 and
asked our cardiologist collaborators to find the best match for
this ECG shape. The cardiologists identified the ECG for the
patient with record number 113, as having the closest heart
rate, meaning average heart rate in beats per minute. Inde-
pendent of their findings, we retrieved the best match for this
sequence by using ED, MD, Mink, GDTWED, GDTWMD,
and GDTWMink. As seen in Fig. 10, different distances

returned different best matches. Sequence 113 was returned
as best match by GDTWMD. All other distances returned
different matches. In this case GDTWMD found the same
best match as the domain expert. We repeated this experiment
five times using different sample sequences and arrived to the
same conclusion based on comparing the answers provided by
the cardiologists with the ones retrieved by our system. Visual
samples are archived along with our additional experimental
results [25]. In short, in this ECG Arrhythmia use case, the
newly warped GDTWMD consistently finds the best match
confirmed by experts and missed by the classic DTW.

VIII. RELATED WORK

DTW has been popular in a large range of application do-
mains including medicine [13], and spoken word recognition
[20]. Despite its ability to compare mis-aligned time series,
it can produce pathological results [11]. Many modifications
of DTW have been proposed to improve the performance,
produce better alignments, and to handle “singularities”. Most
constrain the warpings, while continuing to use ED as base
distance, as we describe below.

For performance improvement, Keogh and Pazzani [34]
introduced PDTW, which applies the classic DTW algorithm
to a higher level abstraction of the data (Piece Aggregate
Approximation), outperforming DTW with little loss of accu-
racy. Indexing and optimization methods [7], [16], [17] further
improved the response time in retrieving similar sequences.

Some works aim to address singularities and produce su-
perior alignments by modifying the way the warping path
is computed. Unfortunately they still keep ED as intrinsic
base distance. For example, [35] introduced a variable penalty
whenever a non-diagonal step is taken. This reduces the
number of non-diagonal moves and improves the alignment
of chromatogram signals. WDTW [19] penalizes points with
a higher phase difference between a reference point and a
testing point to prevent minimum distance distortion caused
by outliers. Closer conceptually to our idea, [20] replaces
ED with another base distance. However, it is restricted to
only incorporating base distances based on sums, such as
Manhattan. Our work is a major step forward, as our method
is general enough to “warp” any distance, regardless of its
mathematical expression.

Symmetric DTW [22] addresses slope weighting. In com-
puter graphics, Iterative Motion Warping [18] finds a spatial
temporal warping between two instances of motion captured
data. In contrast, Derivative DTW [11] produces superior
alignments by replacing ED with the square of the differ-
ence of the derivatives of the sequences, thus gaining more
information about the shape. Closer to our framework, this
replaces ED with a different base distance. Unlike our work,
they stop at using only one derivative based distance, while
our methodology incorporates a wide array of base distances.
[36] integrates multiple “warped” distances such as LCSS
[37], DTW and its variations like derivative DTW [11] for
semi-supervised clustering. This framework combines multiple
already defined “warped distances” while our framework pro-



vides strategies for warping point wise distances. [38] proposes
a suite of operators for trajectories similarity based on locality,
temporality, directionality, and rate of change. This work is
specific to trajectory databases, whereas our framework aims
to help mining time series database in general. [39] devises a
new similarity measure capturing the delay of a reaction to an
action between two time series. This extension of DTW [40] is
compared to multiple matching methods (DTW, edit distance,
LCFM [41]), but the combination of multiple metrics is not
formalized nor connected to developing a methodology for
defining a recurrence.

IX. CONCLUSION

Our proposed general time warping framework offers the
first universal solution for transforming point-wise distances
into robust alignment tools, capable of performing flexible
sequence matching. Our methodology insures that warped
distances can be designed and implemented in a consistent
manner, establishing a valuable resource for the research
community. This repository now includes warped versions
of popular distances with complex mathematical expressions.
While our paper demonstrates that distances warped by our
GDTW methodology achieve improved accuracy over DTW
for time series classification for 85 data benchmark data sets
[10], [26], it opens the avenue for new research [25] in
leveraging these GDTW variants for solving a broad range
of problems from classification and clustering to singularities.
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