
Copyright © 2009 by the Association for Computing Machinery, Inc.
ACM acknowledges that this contribution was co-authored by an employee or affiliate of
the Brazilian Government. As such, the Brazilian Government retains an equal interest
in the copyright. Reprint requests should be forwarded to ACM, and reprints must
include clear attribution to ACM and the Brazilian Government.
VRST 2009, Kyoto, Japan, November 18 – 20, 2009.
© 2009 ACM 978-1-60558-869-8/09/0011 $10.00

Standalone Edge-Based Markerless Tracking of Fully 3-Dimensional Objects for
Handheld Augmented Reality

João P. Lima1∗ Veronica Teichrieb1† Judith Kelner1‡ Robert W. Lindeman2§

1Virtual Reality and Multimedia Research Group
Informatics Center - Federal University of Pernambuco, Brazil

2Department of Computer Science
Worcester Polytechnic Institute, USA

Abstract

This paper presents a markerless tracking technique targeted to the
Windows Mobile Pocket PC platform. The primary aim of this
work is to allow the development of standalone augmented reality
applications for handheld devices based on natural feature track-
ing of fully 3-Dimensional objects. In order to achieve this goal,
a model-based tracking approach that relies on edge information
was adopted. Since it does not require high processing power, it is
suitable for constrained devices such as handhelds. The OpenGL
ES graphics library was used to detect the visible edges in a given
frame, taking advantage of graphics hardware acceleration when
available. In addition, a subset of two computer vision libraries
was ported to the Pocket PC platform in order to provide some re-
quired algorithms to the markerless mobile solution. They were
also adapted to use fixed-point math, with the purpose of improv-
ing the overall performance of the routines. The port of these li-
braries opens up the possibility of having other computer-vision
tasks being executed on mobile platforms. An augmented reality
application was created using the implemented technique and eval-
uations were done regarding tracking performance, accuracy and
robustness. In most of the tests, the frame rates obtained are suit-
able for handheld augmented reality and a reasonable estimation of
the object pose was provided.

CR Categories: I.4.8 [Image Processing and Computer Vi-
sion]: Scene Analysis—Tracking H.5.1 [Information Interfaces and
Presentation]: Multimedia Information Systems—Artificial, Aug-
mented, and Virtual Realities;

Keywords: markerless tracking, augmented reality, computer vi-
sion, handheld, mobile

1 Introduction

Two topics have been gaining more attention from Augmented Re-
ality (AR) researchers over the last few years: handheld-device sup-
port and markerless tracking. Mobility and compactness require-
ments of some application domains favor AR projects that focus on
handheld platforms. In addition, the presence of markers in an envi-
ronment can be considered intrusive, justifying the need for natural-
feature tracking.

This paper proposes a standalone markerless AR solution based on

∗e-mail: jpsml@cin.ufpe.br
†e-mail: vt@cin.ufpe.br
‡e-mail: jk@cin.ufpe.br
§e-mail: gogo@wpi.edu

tracking of fully 3-Dimensional objects, running on the Microsoft
Windows Mobile Pocket PC handheld platform, which promotes
the development of fully mobile AR applications. An edge-based
markerless tracking algorithm [Wuest et al. 2005] was adapted to
run under the constrained processing and graphics capabilities of
a handheld device. Some modifications were performed in the
visible-edge-detection and control-points-matching steps, and all
math operations were converted to fixed-point math. As a byprod-
uct, portions of the Vision-something-Libraries (VXL) [VXL 2008]
and the Visual Servoing Platform (ViSP) [Marchand et al. 2005]
were ported to the Pocket PC platform, providing infrastructure for
the development of other computer-vision solutions targeted at mo-
bile devices. A method for the edge visibility checking step, which
makes use of OpenGL ES, was implemented. It consists of project-
ing all edges using hidden line removal, and associating one color
to every model edge. After that, the algorithm looks for sampled
points in the image and compares if the color is the same as its edge
to decide if that point is visible. It is suitable for the reduced func-
tionality of the given mobile graphics library, and can also exploit
the graphics hardware acceleration available on some handheld de-
vices.

There have been some attempts to perform markerless tracking on
mobile devices. Mozzies is a First Person Shooting (FPS) game
where camera movement is detected based on the captured im-
age in order to allow the player to aim at the enemies [Siemens
2008]. Kick Real consists of a penalty shootout competition
where the player kicks the virtual ball with his own foot [Reimann
2005]. However, the previously mentioned games only perform 2D
tracking of the environment. Virtual Video uses a mobile phone
equipped with a Global Positioning System (GPS), accelerometers
and a magnetometer to determine the position and orientation of
the camera in relation to the real world [Kahari and Murphy 2006].
Nevertheless, the tracking is not very accurate and provides only
approximations of object locations. AR-PDA [Gausemeier et al.
2003] and AR Phone [Woodward 2006] are able to perform precise
3D natural feature tracking. However, they are distributed, since
all computer vision processing is done by a server. The ULTRA
system performs autonomous 3D markerless calibration, although
not in real-time [Riess and Stricker 2006]. Wagner et al. [2008]
developed a standalone natural feature tracking solution for mobile
phones that runs at interactive frame rates, but it is only able to de-
tect planar objects. The solution proposed in this work is capable of
performing markerless tracking of fully 3-Dimensional objects in a
standalone manner, using a handheld device.

This paper is organized as follows. Section 2 details the edge-based
tracking algorithm pipeline used as the basis for this work. Section
3 explains the steps needed to implement the markerless-tracking
feature on the Pocket PC platform. The results obtained and evalu-
ations performed are presented in Section 4. Section 5 draws some
final considerations and discusses possible future work.

2 Edge Based Tracking

The work described in this paper implements a variation of the
Wuest et al. [2005] single-hypothesis, edge-based tracking tech-

139

nique . This technique was chosen because it utilizes consolidated
methods in the markerless tracking area and also due to its low CPU
load, making it suitable for execution on mobile devices in an au-
tonomous way.

The first step of edge-based tracking is to determine what the visi-
ble parts of the edges are when the 3D model of the object is pro-
jected onto the image plane using previous pose information. The
visibility checking used by Wuest et al. could not be used on the
handheld platform, since it makes use of an OpenGL extension that
is not available for mobile devices. Therefore, a different approach
was developed, as further explained in Section 3.2.

A sampling of the projected visible edges is done, obtaining con-
trol points. This is performed in image space in order to produce
evenly spaced points. The number of sampled points per edge n is
calculated using the following formula:

n = edge length/sampling step. (1)

The sampling step value, which determines the density of control
points, was empirically set to 10 pixels in the current implementa-
tion.

Next, for each control point, a corresponding point in the image
gradient is determined. This search is done in a perpendicular di-
rection relative to the edge. Differently from Wuest et al., who use
a simple filter mask, the Moving Edges (ME) algorithm was uti-
lized for finding the correspondences, which is a more refined way
of retrieving the edge matches [Bouthemy 1989]. Since the ME
algorithm works with gray scale images, the input colored image
must first be converted. When the correspondences between points
and edges are known, the Levenberg-Marquardt method is used to
calculate the pose minimizing the reprojection error, defined as:

err =
∑

i

|(qi − pi) · (ni)|, (2)

where pi is the projected control point, qi is the corresponding point
in the image and ni is the normal of the projected edge. The pose
is parameterized using six variables: three for rotation and three
for translation. Instead of considering all the nine elements of a
3x3 matrix, the rotation is represented using an exponential map
[Lepetit and Fua 2005]. This reduces the number of variables to be
minimized and avoids the introduction of unnecessary constraints
to ensure that the rotation matrix is orthonormal. In the exponential
map formulation, the three parameters define a vector, which repre-
sents the rotation axis. The vector magnitude is the rotation angle
around the axis.

3 Handheld Implementation

In order to run the edge-based tracking solution on a Pocket PC, ex-
isting computer vision libraries that implement some required fea-
tures needed to be available on the platform. Therefore, part of
the VXL and ViSP libraries were ported to the Pocket PC. VXL
provided all the required math support, including the Levenberg-
Marquardt method. ViSP contains an implementation of the ME al-
gorithm. After that, most of the math code was modified to use fixed
point, aiming for performance improvements. Finally, edge visibil-
ity was handled using the OpenGL ES graphics library. The next
subsections describe how the fixed-point math and visible-edge de-
tection steps were accomplished.

3.1 Fixed-Point Math

Since the target processor does not have a FPU, all floating-point
operations are emulated in software, which incurs a significant per-
formance penalty. Therefore, instead of using floating-point types

to perform real-number calculations, a fixed-point type had to be
utilized. In order to accomplish this, a type for real numbers was
created. Depending on the platform being used, it is mapped to a
fixed- or floating-point type. In addition, the code of the support-
ing libraries and the application was modified to use the real type
instead of the floating-point type directly.

The fixed-point type provides an implementation for basic oper-
ations, comparison, absolute value, square root, rounding, and
trigonometric functions. The 64-bit fixed-point math format ini-
tially used was S47.16 (1 bit for sign, 47 bits for the integer part,
and 16 bits for the decimal part). A large number of bits was used
to represent the integer part in order to avoid overflows.

One of the main drawbacks of using a fixed-point representation
is the lack of precision in the decimal part. As a consequence, the
fixed-point version of the Levenberg-Marquardt algorithm needed a
larger number of iterations to converge than its floating-point coun-
terpart, resulting in a performance decrease. In addition, the quality
of the minimization also decreased. Therefore, the number of bits
used to represent the decimal part was raised, and the S40.23 for-
mat was adopted. As a result, it avoids overflows and the numeric
optimization routines’ outputs were satisfactory.

3.2 Visible-Edge Detection

The approach adopted by Wuest et al. for determining the
visible parts of the edges at a given frame makes use of
the OpenGL extension GL OCCLUSION TEST HP. However,
neither this extension nor the equivalent standard extension
GL ARB OCCLUSION QUERY is available for OpenGL ES. In
addition, reading from the depth buffer is not allowed by the mo-
bile graphics library.

An alternative method was developed to perform visibility testing
on the handheld platform. It is inspired by the Facet-ID method
[Vacchetti et al. 2004]. Since its goal is to identify edges, it is
called the Edge-ID method. In Facet-ID, the index of each polygon
is encoded in its color value, and after the model is rendered, it is
possible to discover the facet that generated a given pixel when pro-
jected. Edge-ID exploits the same idea for edges, but for a different
purpose: while Facet-ID is used for finding the 3D back-projection
of a pixel and its normal at the model, Edge-ID aims to determine if
a control point sampled from an edge is visible or not. Another dif-
ference between the methods is that in Facet-ID the model is drawn
with filled faces, while in Edge-ID a wireframe model with hidden
line removal is rendered. This way, only the visible model edges
will have a color value different from the background color. It is
then possible to find out if a control point p(x, y) is visible by com-
paring the index of its edge with the index decoded from the color
stored at the position (x, y) in the color buffer. The use of unique
IDs for each edge is justified by the fact that points from different
edges can be projected to the same position in image space. If no ID
checking is performed, a hidden control point could be considered
visible. Figure 1 illustrates the proposed visibility testing approach.

In summary, the outline of the Edge-ID method is as follows:

1. Map the color value of each model edge to its index

2. Render the model edges with hidden line removal

3. For each model edge i

(a) Sample the edge, obtaining control points

(b) For each sampled point p(x, y)

i. If ID(x, y) = i, then the point is visible

140

Figure 1: Edge-ID method.

Initially, the coding scheme adopted for mapping the IDs to RGB
color components was rather simple. The color black (R = 0,
G = 0, B = 0) is reserved for representing the background. Then,
each edge index is incremented by one and, considering its 24-bit
binary representation, the most significant byte is stored at the red
channel, the next byte is stored at the green channel and the least
significant byte is stored at the blue channel. The inverse process
is done for decoding. With this representation, the maximum num-
ber of model edges is 224 − 1 = 16, 777, 215. The average edge
count of the models commonly used for tracking does not even ap-
proach this value. Using this coding scheme on the handheld plat-
form presented some problems related to OpenGL ES. In the avail-
able graphics library implementation, the primitives are not ren-
dered with the exact color value specified for it. Instead, an approx-
imation is done and a color value close to the original one is used.
This leads to confusion between different edges that are drawn with
the same color. The solution found to this problem was to choose
uniformly spaced values in the color domain for representing the
edges. A spacing of 8 levels between consecutive component val-
ues was shown to be sufficient in order to prevent confusion be-
tween colors. A 15-bit representation was adopted, using only the
upper 5 bits of each channel. This way, an edge index i is encoded
using the following equations:

R = ((i + 1)/128) mod 256, (3)

G = ((i + 1)/4) mod 256, (4)

B = ((i + 1) · 8) mod 256. (5)

The edge index can then be decoded by:

i = 32, 768 ·R + 1, 024 ·G + 32 ·B − 1. (6)

This coding scheme is capable of representing at most 215 − 1 =
32, 767 edges, which is sufficient for 3D tracking applications.

4 Results

A simple standalone application that tracks a 3D cube object and
displays a solid cone model registered with it was developed for the
handheld platform. It applies the described edge-based tracking al-
gorithm and the computer vision infra-structure. The mobile device
used in the tests was a Personal Digital Assistant (PDA) Dell Axim
x51v. It has a 624 MHz Intel PXA270 XScale ARMV5 processor,
256 MB of ROM, 64 MB of RAM, and a VGA LCD display with
16-bit color depth. This PDA also has an Intel 2700G multimedia
accelerator with 16 MB of video memory. The operating system is
Microsoft Windows Mobile 5.0 Pocket PC. The camera used on the
mobile device was the Spectec SD (Secure Digital) Camera SDC-
001A, with QVGA resolution (320 x 240) and a frame rate of 15 fps
(frames per second). The development tool employed to implement
the project was Microsoft Visual Studio .NET 2005 Professional
Edition. Hardware accelerated OpenGL ES version 1.0 was uti-
lized for 3D graphics rendering, and the GLUT-ES library was in
charge of the GUI, application loop, and input handling.

Once working, the application was evaluated taking into account
frame rate, accuracy, and robustness metrics. Initially, synthetic
QVGA images were used as input. Figure 2 shows some pose esti-
mation results obtained on the handheld platform.

Figure 2: Tracking results for frames 0 (left), 35 (middle), and 45
(right) of the synthetic sequence.

Table 1 presents the percentage of time required by each step of the
tracking algorithm running on the handheld device and using the
cube sequence mentioned above as input. The average total time
spent for tracking a frame is 64 ms, which results in a 15.625 fps
rate. Around 60 points are tracked during the sequence. Figure 3
shows the total time spent for tracking each of the first 60 synthetic
frames. The obtained frame rate is adequate for AR applications,
especially those targeted for handhelds.

Table 1: Percentages of computation time for each step of the track-
ing algorithm on the handheld platform.

STEP TIME (%)
Visible-edge detection 28

Image gray scaling 19
ME 37

Pose calculation 16

Figure 3: Total computation time for each of the first 60 frames of
the synthetic sequence.

The camera positions calculated by the tracking algorithm for the
synthetic sequence in the x, y and z axes are presented in Figure 4,
together with the corresponding ground-truth values.

The average-error values were the following: 4.10 mm in the x
axis, 1.79 mm in the y axis and 2.73 mm in the z axis. The average
distance between the calculated camera position and the ground-
truth was 6.12 mm. The distance between the tracked object and
the camera was about 150 mm. The side length of the cube was 60
mm. Since visual perception is very important in AR applications,
it is reasonable to say that the obtained error rates are acceptable.
While the pose estimation error is not very visually perceptible,
tracking accuracy should still be improved.

After the first tests with synthetic data, the handheld, edge-based
tracker was evaluated using images of the real world captured by a
camera. Figure 5 depicts some augmentation results. The tracker
proved to be robust up to a certain level of occlusion of the tracked
object. The cube model has 12 contour edges and was tracked at 15

141

Figure 4: Estimation accuracy of camera position for the synthetic
sequence in the x (top left), y (top right), and z (bottom) axes.

fps. The wood toy model has 30 contour edges and was tracked at
10 fps. As can be seen, the tracking on the mobile device is highly
dependent on the edge count, currently being suitable only for non-
complex objects. It can achieve interactive frame rates (4-5 fps)
when the object has at most a hundred edges.

Figure 5: Handheld augmented reality results using the developed
markerless 3D tracker.

5 Conclusions and Future Work

An edge-based tracking solution for the Pocket PC platform has
been developed, which makes handheld based standalone marker-
less AR applications feasible. The Edge-ID algorithm for edge-
visibility checking was developed, exploiting graphics resources
available on the mobile platform. We also built a computer vision
infrastructure for the Pocket PC platform through a partial port of
the VXL and ViSP libraries. Fixed-point math was also used in
most calculations to increase performance.

The system provides a reasonable estimation of object pose, visu-
ally speaking. However, tracking accuracy can be improved. The
frame rate obtained with the test application is suitable for handheld
AR when the target object model has a limited number of edges. We
believe that with the release of more powerfull PDAs and cell phone
architectures, such as the Nvidia Tegra [Rayfield 2008], markerless
tracking algorithms such as the one described in this work will be
able to handle complex objects. For example, it will be possible
to exploit GPU programming and image processing units in these
mobile devices.

As future work, robust estimators could be used to improve tracking
robustness and accuracy. Also planned for the handheld platform
is the implementation of an automatic tracker initialization method
[Shahrokni et al. 2002], since this is currently being done manually.

References

BOUTHEMY, P. 1989. A maximum likelihood framework for de-
termining moving edges. IEEE Transactions on Pattern Analysis
and Machine Intelligence 11, 5 (May), 499–511.

GAUSEMEIER, J., FRUEND, J., MATYSCZOK, C., BRUEDERLIN,
B., AND BEIER, D. 2003. Development of a real time image
based object recognition method for mobile ar-devices. In Pro-
ceedings of the International Conference on Computer Graphics,
Virtual Reality, Visualisation and Interaction in Africa (AFRI-
GRAPH), ACM, 133–139.

KAHARI, M., AND MURPHY, D. 2006. Mara - sensor based aug-
mented reality system for mobile imaging. In Proceedings of
the International Symposium on Mixed and Augmented Reality
(ISMAR), IEEE, 1 p.

LEPETIT, V., AND FUA, P. 2005. Monocular model-based 3d
tracking of rigid objects. Foundations and Trends in Computer
Graphics and Vision 1, 1, 1–89.

MARCHAND, E., SPINDLER, F., AND CHAUMETTE, F. 2005. Visp
for visual servoing: a generic software platform with a wide class
of robot control skills. IEEE Robotics and Automation Magazine
12, 4 (Dec.), 40–52.

RAYFIELD, M., 2008. Welcome to the next pc revolution.
http://www.nvidia.com/content/nvision2008/tech presentations/
Technology Keynotes/NVISION08-Tech Keynote-Mobile.pdf.

REIMANN, C. 2005. Kick-real, a mobile mixed reality game.
In Proceedings of the International Conference on Advances in
Computer Entertainment Technology (ACE), ACM, 387–387.

RIESS, P., AND STRICKER, D. 2006. Ar on-demand: a practicable
solution for augmented reality on low-end handheld devices. In
Proceedings of the AR/VR Workshop of the German Computer
Science Society, GI, pp. 119–130.

SHAHROKNI, A., VACCHETTI, L., LEPETIT, V., AND FUA, P.
2002. Polyhedral object detection and pose estimation for aug-
mented reality applications. In Proceedings of Computer Anima-
tion (CA), IEEE, 65.

SIEMENS, 2008. Siemens sx1.
http://en.wikipedia.org/wiki/Siemens SX1.

VACCHETTI, L., LEPETIT, V., AND FUA, P. 2004. Stable real-time
3d tracking using online and offline information. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 26, 10 (Oct.),
1385–1391.

VXL, 2008. Vxl - c++ libraries for computer vision.
http://vxl.sourceforge.net.

WAGNER, D., REITMAYR, G., MULLONI, A., DRUMMOND, T.,
AND SCHMALSTIEG, D. 2008. Pose tracking from natural fea-
tures on mobile phones. In Proceedings of the International
Symposium on Mixed and Augmented Reality (ISMAR), IEEE,
125–134.

WOODWARD, C., 2006. Augmented reality, feature detection
- applications on camera phones. http://cic.vtt.fi/projects/vbe-
net/Interactive 3D/Woodward English.pdf.

WUEST, H., VIAL, F., AND STRIEKER, D. 2005. Adaptive line
tracking with multiple hypotheses for augmented reality. In Pro-
ceedings of the International Symposium on Mixed and Aug-
mented Reality (ISMAR), IEEE, 62–69.

142

