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Abstract

This paper discusses a novel approach for 
capturing and translating isolated gestures of 

American Sign Language into spoken and written 

words. The instrumented part of the system combines 
an AcceleGlove and a two-link arm skeleton. Gestures 

of the American Sign Language are broken down into 

unique sequences of phonemes called Poses and 
Movements, recognized by software modules trained 

and tested independently on volunteers with different 

hand sizes and signing ability. Recognition rates of 
independent modules reached up to 100% for 42 

postures, 6 orientations, 11 locations and 7 movements 

using linear classification. The overall sign recognizer 
was tested using a subset of the American Sign 

Language dictionary comprised by 30 one-handed 

signs, achieving 98% accuracy. The system proved to 
be scalable: when the lexicon was extended to 176 

signs and tested without retraining, the accuracy was 

95%. This represents an improvement over 
classification based on Hidden Markov Models and 

Neural Network.  

1. Introduction

American Sign Language (ASL) is the native 

language of some 300,000 to 500,000 people in North 

America. It is estimated by Costello [3] that 13 million 

people, including members of both the deaf and 

hearing populations, can communicate to some extent 

in sign language just in the United States, representing 

the fourth most used language in this country. It is, 

therefore, appealing to direct efforts toward electronic 

sign language translators. In addition to the potential 

commercial application of such translators, sign 

linguists have interest in the use of automatic means to 

study signed languages, as Stokoe wrote [17]: 

"Looking back, it appears that linguistics was made 

possible by the invention of writing. Looking ahead, it 

appears that a science of language and communication, 

both optic (gestures) and acoustic (speech), will be 

enabled, in all probability, not by refinements in 

notational systems, but by increasing sophistication in 

techniques of recording, analyzing, and manipulating 

visible and auditory events electronically." 

Researchers of Human-Computer Interaction (HCI) 

have proposed and tested some quantitative models for 

gesture recognition based on measurable parameters 

[15][4]. Yet, the use of models based on the linguistic 

structure of signs (Stokoe [17], Lidell [13]) that ease 

the task of automatic translation of sign language into 

text or speech is in its early stages. Linguists have 

proposed different models of gesture from different 

points of view, but they have not agreed on definitions 

and models that could help engineers design electronic 

translators. Existing definitions and models are 

qualitative and difficult to validate using electronic 

systems.  

As with any other language, differences are 

common among signers depending on age, experience 

or geographic location, so the exact execution of a sign 

varies but the meaning remains. Therefore, any 

automatic system intended to recognize signs has to be 

able to classify signs accurately with different 'styles' 

or 'accents'. Another important challenge that has to be 

overcome is the fact that signs are already defined and 

cannot be changed at the researcher's convenience or 

because of sensor deficiencies. In any case, to balance 

complexity, training time, and error rate, a trade-off 

takes place between the signer's freedom and the 

device's restrictions. 

2. Review of previous approaches

Previous approaches have focused on two 

objectives:  the hand alphabet which is used to finger-

spell words [5, 7, 10, 11, 18], and complete signs 

which are formed by dynamic hand movements [1, 16, 

19, 20]. So far, body posture and face gesticulation 

have been left out. 

The instruments used to capture hand gestures can 

be classified in two general groups: video-based and 

instrumented. The video-based approaches claim to 

allow the signer to move freely without any 

instrumentation attached to the body. Trajectory, hand 

shape and hand locations are tracked and detected by a 

camera (or an array of cameras). By doing so, the 

signer is constrained to sign in a closed, some-how 

controlled environment. The amount of data that has to 

be processed to extract and track hands in the image 
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also imposes a restriction on memory, speed and 

complexity on the computer equipment. 

For instrumented approaches, all sensors are placed 

on the signer's limbs or joints. Although they might 

seem restrictive and cumbersome, the approaches 

based on gloves, such as the Data Entry Glove [5], the 

CyberGlove [10], the Data Glove [4], and The 

AcceleGlove [6], have been more successful in 

recognizing hand shapes than video-based approaches. 

To capture the dynamic nature of hand gestures, it 

is necessary to know the position of the hand at certain 

intervals of time. For instrumented approaches, gloves 

are complemented with infra-red, ultrasonic or 

magnetic trackers to capture movement and hand 

location with a range of resolution that goes from 

centimeters (ultrasonic) to millimeters (magnetic). The 

drawback of these types of trackers is that they force 

the signer to remain close to the radiant source and 

inside a controlled environment free of interference 

(magnetic or luminescent) or interruptions of line of 

sight.  

Mechanical skeletons achieve tracking that is 

immune to ambient noise by placing angle sensors 

directly on the signer's joints (wrist, elbow, shoulder). 

To the best of our knowledge the combination of 

gloves with skeleton trackers has not been used to 

capture gestures of ASL. 

2.1. Phonetic structure 

Selecting the right set of features is the decisive key 

to avoid ambiguity in a pattern recognition system. 

Ideally, these features are necessary and sufficient in 

number and nature to discriminate any pattern in the 

sample space as a member of one and only one class. 

Therefore it makes sense to base classification of ASL 

gestures on features that reflect the phonetic structure 

of the language. 

By using traditional methods of linguistics to 

isolate segments of ASL, Stokoe [17] found that signs 

could be broken down into three fundamental 

constituent parts: the hand shape (dez), hand location 

with respect to the body (tab), and the movement of the 

hand with respect to the body (sig), and that these 

phonemes happen simultaneously. Lidell [13] proposed 

a model of movements and holds, Sandler [23] 

proposed movements and locations, and Perlmutter 

[14] proposed movements and positions, all of them 

happen sequentially. Under these sequential models, 

ASL follows the linear structure of spoken languages: 

phonemes make up words, words in turn make up 

sentences. It is interesting to note that these phonemes 

are based, in some degree, on the three simultaneous 

components of Stokoe, so the ASL structure is a 

sequential combination of simultaneous phonemes.  

Some examples of automatic systems that have 

followed a model similar to Stokoe are described in [1, 

12, 19, 21]. Vogler [20] followed Lidell's model. 

Starner [16] and Waleed [21] proposed ad-hoc set of 

features. Along with different models, these 

approaches also tested several recognition methods 

such as Hidden Markov Models (HMM) and Neural 

Networks (NN) to recognize either complete sentences 

[1, 16], isolated words [12, 20], or phonemes [19]. In 

these systems, the scalability promised by the phonetic 

model is compromised by the recognition method. 

2.2. The Pose-Movement model 

In this section we describe a phonetic model that 

treats each sign as a sequential execution of two 

measurable phonemes: one static, and one dynamic. 

Definition 1: A pose is a static phoneme composed 

of three simultaneous and inseparable components 

represented by vector P = [hand shape, palm 

orientation, hand location]. The static phoneme occurs 

at the beginning and at the end of a gesture. 

Definition 2: A posture is a vector of features Ps = 

[hand shape, palm orientation]. Twenty-four out of the 

26 letters of the ASL alphabet are postures that keep 

their meaning regardless of location. The other two 

letters are not considered postures because they have 

movement. 

Definition 3: Movement is a dynamic phoneme 

composed by the shape and direction of the trajectory 

described by hands when traveling between successive 

poses. M=[direction, trajectory]. 

Definition 4: A manual gesture is a sequence of 

poses and movements, P-M-P. 

Definition 5: L, the set of purely manual gestures 

that convey meaning in ASL is called the lexicon.

Definition 6: A manual gesture s is called a sign if s 

 L. 

Definition 7: Signing space refers to the physical 

location where signs take place. This space is located 

in front of the signer and is limited by a cube bounding 

the head, back, shoulders and waist. 

In this paper a Lexicon of one-handed signs of the 

type Pose-Movement-Pose is chosen for recognition 

based on the framework set by these definitions. By 

doing so, the recognition system is divided into smaller 

systems trained to recognize a finite number of 

phonemes, as opposed to training one to recognize an 

unlimited number of words. Since any word is merely 

a new combination of the same phonemes, the 

individual systems do not need to be re-trained when 

new words are added to the lexicon. 
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3. System implementation 

The capturing system comprises two main 

elements: an AcceleGlove [6] and a two-link arm 

skeleton. Sensors and wires of the AcceleGlove were 

mounted on a leather glove to improve robustness 

without losing portability; the glove is able to detect 

hand shapes accurately for different hand sizes. The 

two-link arm skeleton comprises three components: 

one dual-axis accelerometer and two resistive angular 

sensors. One axis of the accelerometer detects arm 

elevation ( 1), the second axis detect arm rotation ( 2), 

one resistive angular sensor placed on the shoulder 

measures forearm rotation ( 4) and the second angular 

sensor placed on the elbow measures forearm flexion 

( 3). In Figure 1, the shoulder and elbow are modeled 

as 2-degree of freedom revolute joints. Palm and finger 

are modeled as telescopic links whose lengths H and I 

are calculated as the projections of the hand and the 

index lengths onto the gravitational vector g, based on 

the angle measured by the corresponding 

accelerometers on the AcceleGlove. 

Figure 1. Four angles and four links make up the 
reduced arm model. H and I are telescopic. 

 The capturing system is augmented by two push 

buttons pressed by the user to indicate the beginning 

and ending of a gesture. Approximately one 

millisecond is needed to read each accelerometer's axis 

and resistive sensors by a micro controller PIC16F877 

running at 20MHz. One byte per signal is sent via 

serial port at 9600 baud to a laptop think-pad IBM T-

21 with a Pentium III running at 500 Mhz. The 

program to read the signals and extract the features, 

discriminate postures, locations, movements and search 

for the most likely sign, was written in Pascal 1.5 for 

Windows. The micro controller is connected to a 

speech synthesizer V8600 'DoubleTalk' from RC 

Systems which receives the ASCII string of the word 

corresponding to the recognized gesture. 

4. Training and testing 

Each module on the recognition system is linked to 

a part of the capturing hardware; they were trained and 

tested independently with help of 17 volunteers of 

different skill levels, from novice to native signer, 

which provided a range of accents and deviations with 

respect to the citation form. The complete recognition 

system was tested on 30 (later 176) one-hand gestures 

from one signer. 

4.1. Palm Orientation 

Two accelerometers placed perpendicularly to each 

other provide three axes of tilt to measure orientation 

of the palm. Since they react to gravity, only pitch and 

roll can be measured. The axis to measure 900 of pitch 

runs along the palm parallel to fingers. The other two 

axes measure 3600 of roll. All seventeen signers were 

asked to hold the initial pose of FATHER, NICE, 

PROUD, PLEASE, THING and ASIDE to capture 

hand orientations: vertical, horizontal, vertical up-side 

down, horizontal tilted, horizontal palm up, and 

horizontal tilted counter clockwise.  

The classification algorithm is a decision tree that 

starts finding vertical, horizontal and up-side down 

orientations based on hand pitch. The rest of the 

orientations are found based on hand roll. To test the 

classifier, all volunteers were asked to perform all the 

53 static postures of the extended alphabet [8] fifteen 

times each. 

In average, the orientation module accurately 

recognized 94.8% of the samples. The worst 

recognition rate corresponded to horizontal postures 

where the threshold is blurred by the deviations 

introduced by signers' accents, since they were asked 

to hold their poses, not to hold their hand in a certain 

position. 

4.2. Postures 

The posture module progressively discriminates 

postures based on the position of fingers on eight 

separate decision trees: five corresponding to each 

orientation plus three trees for the vertical postures 

divided into vertical-open, vertical-horizontal and 

vertical-closed based on the position of the index 

finger [7]. The decision trees are generated as follows: 

For all eight trees do:

first node discriminates posture based on position 

of the  pinky finger. Subsequent nodes based 

discrimination on the next finger. 

If postures are not discriminated by finger flexion, 

then continue with finger abduction. 

Arm  Forearm 

I

H
2

1

3

4

Shoulder

A  F 

Elbow 

Index

Hand

S
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If postures are not different by individual finger 

flexions or abductions, then discriminate by the 

overall finger flexion and overall finger roll [7]. 

end.

To set the thresholds on each node, six novice 

signers were carefully instructed on how to perform the 

postures, so they are as close as possible to the citation 

form. Once thresholds were set, the algorithms were 

tested using new samples from seventeen signers 

including four of the initial six volunteers. 

4.2.1. Aliases 

Since accelerometers do not detect angular 

positions around the gravity vector, 10 postures were 

impossible to discriminate based on finger bending or 

spread around the gravity vector. These postures are 

called aliases. This aliasing reduced the number of 

recognizable postures from 53 to 43. 

The highest accuracy (100%) corresponds to a 

vertical palm with knuckles pointing down, which is 

used to sign PROUD. The worst accuracy rate 

corresponded to postures C and E, with 68%. The total 

recognition average for all 43 postures is 84%. 

4.3. Locations 

Eleven locations in the signing space were 

identified as starting and ending positions for the signs 

in the lexicon composed by one-handed signs: head, 

cheek, chin, right shoulder, chest, left shoulder, 

stomach, elbow, far head, far chest and far stomach. 

Four signers were asked to locate their hand at the 

initial poses of the following signs: FATHER, KNOW, 

TOMORROW, WINE, THANK YOU , NOTHING, 

WHERE, TOILET, PLEASE, SORRY, KING, 

QUEEN, COFFEE, PROUD, DRINK, GOD, YOU, 

FRENCH FRIES and THING.  From all the signs 

starting or finishing at the eleven regions, these signs 

were selected randomly. The signers were selected 

because their heights represented the extremes and the 

average in the group of signers: 1.55, 1.82, 1.75 and 

1.70 meters. 

The coordinates of vector S, in Figure 1, were 

calculated using values of F=A=10, and H=I=3 that 

represent upper-arm, arm, hand and finger length's 

proportions. The sampled points in the signing space 

are plotted in Figure 2, as executed for the first 

volunteer who is 1.70 meters in height, Figure 2a 

corresponds to locations close to the body and Figure 

2b corresponds to locations away from the body. A 

human silhouette is superimposed on the plane to show 

locations related to signer's body. The plane y-z is 

parallel to the signer's chest, with positive values of y

running from the right shoulder to the left shoulder, 

and positive values of z above the right shoulder.  

Similar to orientations and postures, locations are 

solved using a decision tree. The first node 

discriminates between close and far locations; 

subsequent nodes use thresholds on y and z that bound 

the eleven regions. Samples from the other three 

volunteers clustered with a similar distribution, but are 

shifted either to the right or to the left with respect to 

samples in Figure 2. On the female subject, a wider 

gap between chest and stomach was found. In all four 

subjects it was possible to set the thresholds on y and z 

at least 4  around the mean, so that signers of different 

heights can use the skeleton system if a calibration 

routine is provided to set the proper thresholds.  

(a)

(b) 

Figure 2. a) Close locations b) Far locations. 

The evaluation of the location module is based on 

the samples used to train the thresholds. On four 

signers, the accuracy rate averaged: head 98%, cheek 

95.5%, chin 97.5%, shoulder 96.5%, chest 99.5%, left 

shoulder 98.5%, far chest 99.5%, elbow 94.5 %, 

head

shoulder cheek
chin

chest

stomach 

far head 

far chest 

elbow

far stomach 
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stomach, far head and far stomach 100%. The overall 

accuracy was 98.1%. The advantage of the skeleton 

system is its portability (it does not need an external 

source), and its immunity to ambient noise. 

4.4. Movements 

Movements of the one-handed signs considered in 

this work are described by means of two movement 

primitives: shape and direction.   

4.4.1. Shapes. 

Shapes are classified based on the curviness
defined by Bevilacqua in [2] as the relation of the total 

distance traveled divided by the direct distance 

between ending points. This metric is orientation and 

scale independent. As with the case of hand shapes and 

locations, the exact execution of a curve varies from 

signer to signer and from trial to trial. Thresholds to 

decide what is straight or circular were set 

experimentally by computing the mean over several 

trials performed by the same four signers. A curviness 

greater than 4 discriminated circles from straight lines 

with 100% accuracy. 

4.4.2. Direction. 

Direction is defined as the relative location of the 

ending pose with respect to the initial pose (up, down, 

right, left, towards, and away) determined by the 

maximum displacement between starting and ending 

locations as follows: 

Direction = max ( | x| ,  | y| ,  | z| )          (1) 

where x = xfinal – xinitial , y = yfinal – yinitial , z = zfinal

– zinitial ; and x, y, z are the coordinates defining hand 

location. 

To evaluate the movement module, the same four 

signers were asked to perform the six basic movements 

along the main axes ten times each. Only left and right 

(77% and 75%) were classified with less than 100% 

accuracy in all signers. The overall accuracy reached 

92%.  

4.5. Sign Classifier 

To classify complete signs, we used conditional 

template matching, a variation of template matching. 

Conditional template matching compares the incoming 

vector of components (captured with the instrument) 

with a template (in the lexicon) component by 

component and stops the comparison when a condition 

is met: 

For the Lexicon do:

extract a list of signs with same initial posture 

recognized by the corresponding module.  

end. This is the first list of candidate signs. 

For the list of candidates do:

select the signs with same initial location 

recognized by the corresponding module.  

end. This is the new list of candidate signs. 

Repeat the selection and creation of new lists of   

candidates by using movement, final posture and   

final location.  

Until all components have been used OR when there is 

only one sign on the list. That sign on the list is called 

'the most likely'. 

This search algorithm will stop after finding the 

initial pose if there is only one sign with such initial 

pose in the lexicon. In those cases, the probability of 

finding the sign is equal to P(ip|Xip)P(il|Xil), the 

product of the conditional probability of recognizing 

the initial pose given the input Xip from sensors, times 

the probability of recognizing the initial location given 

the input Xil. In the worst-case scenario the accuracy 

of conditional template matching equals the accuracy 

of exact template matching when all conditional 

probabilities are multiplied: 

P(sign) = P(ip|Xip) P(il|Xil) P(m|Xm) P(fp|Xfp) 

 P(fl|Xfl)                               (2) 

where P(m|Xm) is the probability of recognizing the 

movement given the input Xm, P(fp|Xfp) is the 

probability of recognizing the final posture, and 

P(fl|Xfl) is the probability of recognizing the final 

location given the input Xfl. 

 5. Evaluation. 

To evaluate the search algorithm, a lexicon with 

only the one handed signs from Starner [16], Vogler 

[20], and Waldron [22] was created and tested, 

producing 30 signs: BEAUTIFUL, BLACK, BROWN, 

DINNER, DON'T LIKE, FATHER, FOOD, GOOD, 

HE, HUNGRY, I, LIE, LIKE, LOOK, MAN, 

MOTHER, PILL, RED, SEE, SORRY, STUPID, 

TAKE, TELEPHONE, THANK YOU, THEY, 

WATER, WE, WOMAN, YELLOW, and YOU. 

To create the lexicon, the PMP sequences are 

extracted from the citation forms found in Costello [3] 

and in the Ultimate ASL Dictionary [9] and written in 

an ASCII file.  

This reduced lexicon comprises eighteen postures, 

two trajectory shapes, and four directions. Almost all 

of them are identified immediately after recognizing 

the initial pose. The overall recognition rate was 98%. 
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5.1. Scalability 

By using the conditional template matching to 

classify signs, the lexicon can be extended as long as 

the description of new signs is different from the signs 

already in the lexicon. To prove this statement, the 

lexicon was expanded to 176 one handed signs taken 

from Costello's and IDRT's [9] dictionaries, and one 

signer performed fifteen trials of each. The overall 

recognition rate on the 176 signs reached 94%.

6. Conclusions and Future Work 

By breaking down the hand signs into their 

constituent phonemes, and facilitating their capture by 

a modular system, a syntactic classification algorithm 

to translate gestures of the American Sign Language in 

a straightforward manner was implemented. The work 

described in this paper leads to believe that this system 

is truly lexicon scalable, since retraining was not 

needed and accuracy was kept high when expanding 

the vocabulary, which represents the most valuable 

improvement over previous approaches for translating 

sign languages. 

The combination of resistive and inertial sensors 

proved to be highly efficient in the two-link skeleton. 

This combination should be explored to recognize new 

classes of orientations and hand shapes around the 

gravity vector impossible to detect with 

accelerometers. The addition of proven low-cost, low-

power wireless technologies will uncover new 

applications of the recognition system in many other 

areas of research beyond sign languages for instance, 

animation, virtual reality, tele-manipulation, 

rehabilitation, and gaming.  
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