CS 543: Computer Graphics

Fractals & Iterative Function Systems

Robert W. Lindeman
Associate Professor
Interactive Media & Game Development
Department of Computer Science
Worcester Polytechnic Institute
gogo@wpi.edu

(with lots of help from Prof. Emmanuel Agu :-)

What are Fractals?

- Mathematical expressions
- Approach infinity in organized way
- Utilize recursion on computers
- Popularized by Benoit Mandelbrot (Yale University)

Dimensionality
- Line is one-dimensional
- Plane is two-dimensional
- Fractals fall somewhere in between

Defined in terms of self-similarity
Self Similarity

- Level of detail remains the same as we zoom in

- Example
 - Surface roughness, or silhouette, of mountains is the same at many zoom levels
 - Difficult to determine scale

- Types or fractals
 - Exactly self-similar
 - Statistically self-similar
Examples of Fractals

- Modeling mountains (terrain)
- Clouds
- Fire
- Branches of a tree
- Grass
- Coastlines
- Surface of a sponge
- Cracks in the pavement
- Designing antennae (www.fractenna.com)
Examples of Fractals: Mountains

Images: www.kenmusgrave.com
Examples of Fractals: Clouds

Images: www.kenmusgrave.com
Examples of Fractals: Fire

Images: www.kenmusgrave.com
Examples of Fractals: Comets?

Images: www.kenmusgrave.com
Koch Curves

- Discovered in 1904 by Helge von Koch
- Start with straight line of length 1
- Recursively
 - Divide line into three equal parts
 - Replace middle section with triangular bump with sides of length 1/3
 - New length = 4/3
Koch Snowflake

- Can form Koch snowflake by joining three Koch curves
- Perimeter of snowflake grows as:
 \[P_i = 3 \left(\frac{4}{3} \right)^i \]
 where \(P_i \) is the perimeter of the \(i \)th snowflake iteration
- However, area grows slowly as \(S_\infty = \frac{8}{5} \)
- Self similar
 - Zoom in on any portion
 - If \(n \) is large enough, shape is the same
 - On computer, smallest line segment > pixel spacing

www.jimloy.com
Koch Snowflake
Psedocode to draw Koch Curve

```plaintext
if (n equals 0) {
    draw straight line
} else {
    Draw $K_{n-1}$
    Turn left 60°
    Draw $K_{n-1}$
    Turn right 120°
    Draw $K_{n-1}$
    Turn left 60°
    Draw $K_{n-1}$
}
```
Gingerbread Man

- Each new point q is formed from previous point p using the equation:
 \[q.x = M(1 + 2L) - p.y + |p.x - LM|; \]
 \[q.y = p.x. \]

- For 640 x 480 display area,
 use $M = 40$ \quad $L = 3$

- A good starting point is
 \((115, 121)\)
Iterated Function Systems (IFS)

- Subdivide
- Recursively call a function
- Does result converge to an image? What image?
- IFS do converge to an image

Examples
- The Fern
- The Mandelbrot set
Example: Ferns
Fractals and Self-Similarity

- **Exact Self-similarity**
 - Each small portion of the fractal is a reduced-scale replica of the whole (except for a possible rotation and shift).

- **Statistical Self-similarity**
 - The irregularities in the curve are statistically the same, no matter how many times the picture is enlarged.
The Fern

- Any (sub) branch looks similar to any other (sub) branch
- Including ancestors and descendents
Examples of Fractals: Trees

Fractals appear “the same” at every scale.
Fractal Dimension – Eg. 2

The Sierpinski Triangle

\[D = \frac{\log N}{\log \left(\frac{1}{s} \right)} \]

\[N = 3, \; s = \frac{1}{2} \]

\[\therefore D = 1.584 \]
Space-Filling Curves

- There are fractal curves which completely fill up higher dimensional spaces such as squares or cubes.

- The space-filling curves are also known as Peano curves (Giuseppe Peano: 1858-1932).

- Space-filling curves in 2D have a fractal dimension 2. You’re not expected to be able to prove this.
Hilbert Curve

- Discovered by German Scientist, David Hilbert in late 1900s
- Space filling curve
- Drawn by connecting centers of 4 sub-squares, make up larger square.
- Iteration 0: 3 segments connect 4 centers in upside-down U
Hilbert Curve: Iteration 1

- Each of 4 squares divided into 4 more squares
- U shape shrunk to half its original size, copied into 4 sectors
- In top left, simply copied, top right: it's flipped vertically
- In the bottom left, rotated 90 degrees clockwise,
- Bottom right, rotated 90 degrees counter-clockwise.
- 4 pieces connected with 3 segments, each of which is same size as the shrunken pieces of the U shape (in red)
Hilbert Curve: Iteration 2

- Each of the 16 squares from iteration 1 divided into 4 squares
- Shape from iteration 1 shrunk and copied.
- 3 connecting segments (shown in red) are added to complete the curve.
- Implementation? Recursion is your friend!!
Space-Filling Curves
Space-Filling Curves in 3D
Generating Fractals

- Iterative/recursive subdivision techniques

- Grammar based systems (L-Systems)
 - Suitable for turtle graphics/vector devices

- Iterated Functions Systems (IFS)
 - Suitable for raster devices
L-Systems
(“Lindenmayer Systems”)

- A grammar-based model for generating simple fractal curves
 - Devised by biologist Aristid Lindenmayer for modeling cell growth
 - Particularly suited for rendering line drawings of fractal curves using turtle graphics

- Consists of a start string (axiom) and a set of replacement rules
 - At each iteration all replacement rules are applied to the string in parallel

- Common symbols:
 - F Move forward one unit in the current direction.
 - + Turn right through an angle A.
 - - Turn left through an angle A.
The Koch Curve

Axiom: F (the zeroth order Koch curve)
Rule: F → F-F++F-F
Angle: 60°

First order:
F-F++F-F

Second order:
F-F++F-F-F-F++F-F++F-F-F-F++F-F++F-F-F-F++F-F++F-F
The Dragon Curve

Axiom: FX

Rules:
- F \rightarrow \emptyset
- X \rightarrow +FX--FY+
- Y \rightarrow -FX++FY–

Angle: 45 °

At each step, replace a straight segment with a right angled elbow.

Alternate right and left elbows.

FX and FY are “embryonic” right and left elbows respectively.
import turtle

turtle.speed(0) # Max speed (still horribly slow)

def draw(start, rules, angle, step, maxDepth):
 for char in start:
 if maxDepth == 0:
 if char == 'F':
 turtle.forward(step)
 elif char == '-':
 turtle.left(angle)
 elif char == '+':
 turtle.right(angle)
 else:
 if char in rules: # rules is a dictionary
 char = rules[char]
 draw(char, rules, angle, step, maxDepth-1)

Dragon example:
draw("FX", {'F':""}, 'X':"+FX--FY+", 'Y':"-FX++FY-"}, 45, 5, 10)
Generalized Grammars

- The grammar rules in L-systems can be further generalized to provide the capability of drawing branchlike figures, rather than just continuous curves.

- The symbol `[` is used to store the current state of the turtle (position and direction) in a stack for later use.

- The symbol `]` is used to perform a pop operation on the stack to restore the turtle’s state to a previously stored value.
Generalized Grammars

Fractal bush:
\[S \rightarrow F \]
\[F \rightarrow FF-[-F+F+F]+[+F-F-F] \]
\((A = 22 \text{ degs.})\)

Zero order bush
\[F \]

First order bush

Fourth order bush
(with 90 deg. rotation)

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development
Random Fractals

- Natural objects do not contain identical scaled down copies within themselves and so are not exact fractals.

- Practically every example observed involves what appears to be some element of randomness, perhaps due to the interactions of very many small parts of the process.

- Almost all algorithms for generating fractal landscapes effectively add random irregularities to the surface at smaller and smaller scales.
Random Fractals

Random fractals are
- randomly generated curves that exhibit self-similarity, or
- deterministic fractals modified using random variables

Random fractals are used to model many natural shapes such as trees, clouds, and mountains.
IFS Example: Generating Fractal Terrain (2D)

1. Choose a random-number range
2. Start with a line
3. Find the midpoint
4. Displace it in y by a random amount
5. Reduce the range of your random numbers
 - Controls roughness
6. Recurse on both new segments
Random Midpoint Displacement Algorithm (2D)

- Subdivide a line segment into two parts, by displacing the midpoint by a random amount “g”. i.e., y-coordinate of C is

\[y_C = \left(\frac{y_A + y_B}{2} \right) + g \]

- Generate g using a Gaussian random variable with zero mean (allowing negative values) and standard deviation s.

- Recurse on each new part
 - At each level of recursion, the standard deviation is scaled by a factor \((1/2)^H\)
 - H is a constant between 0 and 1
 - H = 1 in the example on the right
Midpoint Displacement Algorithm (3D)

Square-Step:
Subdivide a ground square into four parts, by displacing the midpoint by a Gaussian random variable g with mean 0, std dev s.

i.e., Compute y-coordinate of E as

$$y_E = \frac{(y_A + y_B + y_C + y_D)}{4} + g$$

Do that for all squares in the grid (only 1 square for the first iteration).

Then ...
Diamond step

- To get back to a regular grid, we now need new vertices at all the edge mid-points too.
- For this we use a *diamond step*:

Do this for all edges (i.e., all possible diamonds).
Diamond step (cont’d)

“Reflect” vertices at grid edges to make diamonds there.
Diamond-Square Algorithm

The above two steps are repeated for the new mesh, after scaling the standard deviation of g by $(1/2)^H$. And so on …
Diamond Step Process

1st pass 2nd pass 5th pass
Height Maps

- The 2D height map obtained using the diamond-square algorithm can be used to generate fractal clouds.
- Use the y value to generate opacity.
Useful Links

- Terragen – terrain generator
 - http://www.planetside.co.uk/terragen/

- Generating Random Fractal Terrain
 - http://www.gameprogrammer.com/fractal.html

- Lighthouse 3D OpenGL Terrain Tutorial

- Book about Procedural Content Generation

- Book about Procedural Generation
References