CS-525V: Building Effective Virtual Worlds

What Makes Good VR?

Robert W. Lindeman

Worcester Polytechnic Institute
Department of Computer Science
gogo@wpi.edu
Plan for Tonight

☐ Effective VR
☐ Talk about Project Ideas
What Makes Good VR?

☐ Physical immersion
 ■ VR world presented based on user location and orientation
 ■ Sensory stimuli in response to user actions
 ■ *Synchronized* video, audio, etc.
 ☐ Not so easy!
 ■ User-movement tracking

☐ Mental immersion
 ■ The level of *engagement* of the user
Two Schools of Thought

- Experience must be extremely realistic
 - No "point to fly" abilities
 - Excludes anything that demonstrates you are not in the real world

- Experience may contain "magical" properties
 - Can actually increase presence
 - Also, in realistic systems, breaks in realism can kill presence
Components of Immersion

- User is immersed to the point of suspension of disbelief

- Key elements
 - Personal meaningfulness
 - Interactivity
 - Sufficient resolution
 - Spatial resolution
 - Units vary by sensory modality
 - Temporal resolution
 - Update-rate varies by sensory modality
 - System latency/lag
 - Each component introduces latency
What do we Actually Need to do?

- A typical "render loop" might look something like this:

```c
for( ;; ) {
    GetInput( );
    UpdateScene( );
    RenderScene( );
}
```
What does `UpdateScene` look like?

- Contains everything that needs to be done at each frame, like:
  ```
  UpdateScene() {
    DoAI();
    DoPhysics();
    ...
  }
  ```

- What order should these be done in?
- How will they be synchronized?
What does **RenderScene** look like?

- Must trigger output for each sensory modality, like:
  ```c
  RenderScene( ) {
    RenderGraphics( );
    RenderAudio( );
    ...
  }
  ```

- But these run at different update rates, so what should we do?
 - Wait for the slowest one?
 - Use shared memory with last "good" state?
 - Double buffer?
Good Rules to Follow

☐ Relax dependencies as much as possible
 ■ If using mutex, keep the window small

☐ Design for multi-core processing as much as possible
 ■ This is the future!

☐ Get away from the linear-nature of the preceding example render loop
 ■ Just set things up at the beginning, and only communicate to synchronize
Transference of Permanence

- If some objects are of high fidelity, users will assume all are
 - Physical object registered with a virtual one
Levels of Immersion

- None
- Minor Acceptance
- Engaged
- Full Mental Immersion

- Some people have sensory dominance
 - Visual
 - Audio
 - Haptically

- User study on user descriptions

- Physiological measures
Points of View

- First person
 - Pretty common

- Second person
 - Gives more context

- Third person
 - Like a movie

- Inside-out vs. outside-in
 - User can switch to give focus+context
Rules in the VR World: Physics

- Static-world physics
- Cartoon physics
- Newtonian physics
- Choreographed physics
- Do all objects need to follow the same laws?
 - Drop something

- Do you need to follow the same laws?
 - How can you fly?
Rules in the VR World (cont.)

- What should happen when I push on a virtual wall?