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Abstract

End-hosts on wireless ad hoc networks typically use
TCP as their transport layer protocol. Being designed
for wired networks, TCP can perform poorly over wire-
less metworks. Research that has proposed ways to
improve TCP performance over wireless networks has
concentrated primarily on improving TCP throughput.
However, emerging applications, such as interactive
multimedia and network games, require reduced delay
at least as much as increased throughput. This pa-
per presents LDM', an IP layer queue marking mech-
anism that uses estimates of the number of hops and
flows at each wireless node to approximate the optimal
marking probability. Analysis of NS-2 simulation re-
sults indicates that LDM greatly reduces the round-trip
time of TCP connections while improving throughput
under many configurations.

1 Introduction

Wireless ad hoc networks currently carry traffic us-
ing the Transmission Control Protocol (TCP). How-
ever, TCP was designed for wired networks and thus
can perform poorly in ad hoc wireless environments
including IEEE 802.11 networks [1].

The Media Access Control (MAC) layer of IEEE
802.11 wireless ad hoc networks uses the Car-
rier Sense Multiple Access with Collision Avoidance
(CSMA/CA) with a Request-to-Send/Clear-to-Send
(RTS/CTS) mechanism to avoid data packet colli-
sions. The RTS/CTS pre-exchange helps mitigate
the hidden terminal effect that arises because wire-
less nodes have the transmission range less than the
interference range. A transmission can interfere with
another transmission because the latter is outside
of its transmission range but within its interference
range. The RTS/CTS pre-exchange greatly reduces
data packet collisions due to the hidden terminal prob-
lem but also causes some side effects when the MAC
layer becomes over-saturated.

1LDM stands Low Delay Marking

The primary reasons for TCP performance degra-
dation are the contention delays and contention
drops that the RTS/CTS mechanism causes, which
have been identified as RTS/CTS jamming [2] and
RTS/CTS-induced congestion [3].

Previous research on the improvement of TCP per-
formance over wireless ad hoc networks includes the
investigation of link breakage and routing failure re-
lated problems [4, 5, 6], link layer solutions [7, §],
MAC layer solutions [9], and TCP protocol modifi-
cations [10]. A few recent papers present techniques
to improve TCP throughput by controlling the total
number of packets in flight. Fu et al. [8] present a link
layer approach, Link-RED (LRED), that limits the
TCP sending window to reduce MAC layer collisions,
and Adaptive Pacing (AP), which adds a random de-
lay when sending packets to reduce the probability of
MAC layer collisions. Chen et al. [9] attempt a similar
improvement by directly limiting TCP’s window size.

Most proposed improvements to TCP are link layer
optimizations which are difficult to deploy since they
are tied to network card-specific device drivers rather
than the more general operating system. Furthermore,
throughput has been the most common measure of
improvement. However, emerging applications such
as streaming multimedia and network games, demand
lower round-trip times. Moreover, with the steady in-
crease in maximum wireless network bandwidth (cur-
rently up to 54 Mbps for the 802.11g standard), end-
to-end delays will become increasingly important rel-
ative to throughput.

This paper presents Low Delay Marking (LDM) a
technique to modify the IP layer packet queue man-
ager. The goal is to improve round-trip times loss
rates and collisions for wireless ad hoc networks, with
minimal impact on throughput. LDM is intended to
facilitate easy deployment since operating system up-
grades can be done independently of hardware changes
in the wireless network devices.

The rest of this paper is organized as follows: Sec-
tion 2 reviews background literature on the hidden



terminal problem, LRED and AP; Section 3 focuses
on the LDM mechanisms; Section 4 describes the sim-
ulation setup and analyzes the simulation results; and
Section 5 summarizes our findings and mentions some
possible future work.

2 Background

This section briefly introduces background relevant
to this investigation, including TCP with Explicit
Congestion Notification (ECN) and the Link RED and
Adaptive Pacing algorithms for dealing with wireless
MAC layer retransmissions.

2.1 Explicit Congestion Notification

Explicit Congestion Notification (ECN) [11] allows
routers to mark packets instead of dropping to indi-
cate congestion. The key advantage of marking is that
the TCP source receives the explicit congestion indica-
tor much sooner than when packets are dropped. The
critical point for this research is that for ad hoc net-
works with a small diameter (about 15 hops or fewer),
the window size of a TCP flow needs to be small for
optimal performance [10, 8]. With small window sizes,
an IP router that drops a packet from a TCP flow will
force a timeout since the sender can not get three du-
plicate acknowledgments. With these same window
sizes, an IP router that marks a packet from a TCP
flow allows the TCP source to continue transmitting
at a reduced rate since three duplicate acknowledg-
ments are not required. We assume that all future
TCP sources will be ECN enabled.

2.2 Link RED and Adaptive Pacing

Random Early Detection (RED) [12] is an Active
Queue Management (AQM) scheme that uses the av-
erage queue length to determine the dropping or mark-
ing probability of packets in the queue. LRED [8] is
a data link layer strategy based on RED that keys on
the average number of 802.11 retries instead of queue
length. Analogous to RED, LRED uses parameters
such as ming,, maxy, and max, to compute the drop
probability. LRED can achieve the optimal window
size desired by TCP flows on wireless LANs for some
configurations, but it shares RED’s tuning weaknesses,
noted in [13, 14, 15]. Moreover, the fact that LRED
drops packets makes it difficult to configure when TCP
windows are small and marking at the IP layer based
on MAC layer data poses possible network layer vio-
lations.

Along with LRED, [8] presents Adaptive Pacing
(AP) which is activated by LRED when the average
number of retries is less than min;, and deactivated
when the average number of retries exceeds mingy,.
AP increases MAC layer backoff intervals by the re-
transmission time of one data frame every time an

ACK frame is received. Our analysis in [16] indi-
cates that most of the throughput improvements from
LRED coupled with AP are due to AP and not LRED.
Unfortunately, the downside of AP is that the ad-
ditional backoff time between transmissions increases
the round-trip times.

3 LDM Mechanism

This section presents the Low Delay Marking
(LDM) algorithm which is run at each node on a mul-
tihop ad hoc wireless network as illustrated in Fig-
ure 2. Each node counts the number of flows traveling
through it, as explained in Section 3.3, and maintains
per-flow state information on the number of hops per
flow, as described in Section 3.2. For each arriving
packet, the node computes the optimal window size
for the flow, as described in Section 3.1, and marks the
packet with the marking probability required to meet
this window size, as described in Section 3.4. Figure 1
summarizes the LDM algorithm. In the algorithm, f;
is the i-th flow; h; is the number of wireless hops f;
makes in going from source to destination; p,,q,k is
the marking probability calculated by the IP packet
queue management; n is the total number of flows go-
ing through the node; wop: is the optimal window size
for f;; and p is the packet that arrived at the node.

at each node, on receiving packet p
identify flow f; to which p belongs
estimate h; for f;
estimate n
calculate wopt
calculate pmark
mark p with probability pmaerk

Figure 1: The LDM Algorithm

3.1 Optimal Window Size of a TCP Flow

[10] and [8] derive expressions for the optimal TCP
window size as a function of the number of hops be-
tween the source and destination nodes in a multihop
wireless network. Summarizing these results, a TCP
flow achieves maximum throughput when its window
size is about one-fourth of the number of hops in a
wireless network chain. This restricted window size
limits the number of packets in the network, thereby
reducing MAC layer congestion (RTS/CTS collisions).
However, in determining this optimal TCP window
size, neither [10] nor [8] take into account the number
of flows. Intuitively, the aggregate window size among
all flows should be one-fourth of the number of hops



(h). Thus, each flow should have a window size of one-
fourth of the number of hops divided by the number
of flows (n):
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3.2 Number of Hops for a Flow

To estimate the number of hops from the source
to a destination for a flow, each node keeps per-flow
state information, where a flow is identified by an IP
source-destination pair. For each active flow, a node
records the average time-to-live (TTL) values in the
data packets it routes. It also observes destination-
source acknowledgment packets for the same flow and
records their average TTL value. Since the default
TTL values set by modern operating system are typi-
cally 128 or 256, each node can compute the number
of hops from the node to the source and the number
of hops from the node to the destination, thus deter-
mining the total number of hops for each flow from
source to destination. For example, if a node observes
a data packet with a TTL value of 250 and then a cor-
responding acknowledgment packet with a TTL value
of 251, it can compute the number of hops for that
flow (h;) as (256 — 250) + (256 — 251) = 11.
3.3 Number of Flows at a Node

Based on Morris’ calculations[17], the number of
flows at a node can be counted using a fixed-length bit
vector v. When a packet arrives, it is hashed based
on source-destination address and port number and
the corresponding bit in v is set. The count of bits in
v is an approximation of the number of active flows.
The bits in v are cleared at a rate so as to reset every
bit in v every few seconds. When a bit is cleared,
the corresponding per-flow state information kept (for
example, number of hops for the flow) is also cleared.
This method of tracking flows is very accurate when
the number of bits in v is significantly larger than
the number of flows and does not require any explicit
modification of TCP.
3.4 Marking Probability

TCP performance models under congestion mark-
ing come from work in [18] and [19], with more detailed
performance models in [20] and [21]. Based on results
from pilot studies (see [16] for full details), we use the
relationship between marking rate (p) and window size
(w) derived in [17):

0.76
T w?

2)

From algorithms described in the previous sections
and the state information kept on each active TCP

flow, an LDM node calculates the optimal window
size for each TCP flow and, using Equation 2, the ap-
propriate marking probability to achieve that window
size:

0.76 _ 12.16 x n?

(ﬁ)z - h2

However, a wop of 1 results in a marking marking
probability of 0.76 which, even with packet marking,
causes timeouts. Therefore, if w,p is calculated to be
1 or less, an optimal window size of 2 is used for wp.

Equation 3 represents the overall marking probabil-
ity that needs to be applied to each flow. We propose
that each ad hoc node contributes to this total equally,
although alternate policies where the first node in a
route applies the full marking probability are also pos-
sible. Since a packet has to go through h — 1 nodes
from source to destination, LDM distributes the prob-
ability evenly over h—1 nodes. Other distributions are
possible. Let p,,q4e be the per-node marking probabil-
ity. We can relate ppode 10 Prmark by:

3)

Pmark =

Pmark = 1- (]- - pnode)(h_l)

1
12.16 x n2\ *-1
DPnode = (1 - 7h2 ) (4)

Thus, the overall marking probability, p,,qrk is the
same as the probability of the packet not being marked
through all h—1 nodes with probability of p,,,4.. Using
Equation 4, each node calculates the per-node mark-
ing probability for all incoming packets.

For evaluation purposes, the mechanisms described
in Section 3.2 and Section 3.3 have been hard-coded
into the simulation code used to evaluate LDM, with
implementation and evaluation of the per-flow record
keeping being future work.

4 Evaluation

This section discusses the simulation setup and an-
alyzes the experimental results. Experiments pre-
sented include default TCP performance, TCP per-
formance with window restrictions, TCP performance
with adaptive pacing, and TCP performance with the
LDM algorithm.
4.1 Simulation Setup

To evaluate the effectiveness of LDM, we enhanced
the NS-2 simulator [22] to include code for the LDM
algorithm as described in Section 3. Due to the un-
availability of Adaptive Pacing code from [8], we also
had to implement Adaptive Pacing in NS-2 so as to be
able to compare it with LDM. The simulated wireless
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Figure 2: Simulation Topology

ad-hoc network topology used in this investigation is
shown in Figure 2. In general, there are h + 1 wire-
less nodes, Ny through N}, connected over an IEEE
802.11 chain topology. Default IEEE 802.11 layer set-
tings are used with a wireless capacity of 2 Mbps and
AODYV routing. All flows use TCP NewReno with a
maximum window size of 32, except in the window
constrained case.

The experiments reported in this paper include:
regular TCP, which represents the current practice in
ad hoc network performance; TCP which represents
the optimal performance by manually constraining the
window size of each TCP flow with full network knowl-
edge; Adaptive Pacing where all MAC frames are de-
layed by an additional amount, as described in Sec-
tion 2.2, and LDM. Each of these cases was simulated
with 7 hop, 15 hop and 24 hop ad hoc chain topolo-
gies where all nodes are immobile. Each simulation
was run five times, with the graphs depicting the aver-
ages and minimum and maximum values shown with
error bars. While the graphs report performance in
absolute terms for round-trip time, loss fraction, and
RTS collision fraction, throughput is normalized to
that of regular TCP to help clarify the performance
differences.

Two sets of simulations were run: one with a single
TCP flow and the other with three TCP flows. Due
to space contraints, only the detailed results from the
three flow experiment are presented. However, the
summary of both sets of experiments are given in Fig-
ure 4 and Figure 5 to show that the single flow exper-
iment exhibits similar behavior.

4.2 Multiple Flows

This experiment involves three TCP flows going
through a multihop wireless network. Figure 3 de-
picts the total throughput normalized to that of reg-
ular TCP, the total loss fraction, the total number of
RTS collisions and the round-trip time of one of the
flows.

Over the 7 hop chain, regular TCP achieves 179
Kbps, restrained TCP with a window size of 1 achieve
262 Kbps, Adaptive Pacing improves throughput to
231 Kbps, and LDM achieves 220 Kbps. While Re-

strained TCP yields a signficantly lower RTT (148
ms) than either TCP (464 ms) or Adaptive Pacing
(489 ms), LDM comes close to the restrained case with
a round-trip time of 237 ms. Restrained TCP has
the lowest loss fraction and regular TCP the highest.
Both Adaptive Pacing and LDM have slightly higher
loss fractions compared to restrained TCP, but LDM
offers a lower loss fraction compared to Adaptive Pac-
ing. The RTS collision fraction for Adaptive Pacing is
highest while the RTS collision fraction for restrained
TCP is lowest.

Over the 15 hop chain, regular TCP achieve 148
Kbps with the respective throughputs for restrained
TCP with window size of 2, Adaptive Pacing and LDM
being 213 Kbps, 215 Kbps and 188 Kbps respectively.
With 15 hops, the gap between the two best treat-
ments (Restrained TCP and LDM) and the two worse
treatments (TCP and Adaptive Pacing) with respect
to RTT grows. LDM has the lowest loss fraction and
regular TCP the highest. The Adaptive Pacing loss
fraction is about half way between these two fractions.
The RTS collision fraction decreases by 26.9% for re-
strained TCP, Adaptive Pacing decreases the RTS col-
lision fraction by 11.4%, and LDM reduces the RTS
collision fraction by 26.4%.

With a 24 hop chain, the throughputs are: TCP 176
Kbps, restrained TCP (window size of 2) 202 Kbps,
Adaptive Pacing 227 Kbps, and LDM 186 Kbps. The
RTTs for the four treatments all increase over the 15
hop chain and the only relative difference is that LDM
is slightly higher than Restrained TCP. Restrained
TCP has the lowest loss fraction and regular TCP
the highest. Adaptive Pacing has higher loss fraction
compared to the restrained TCP while LDM offers a
slightly higher loss fraction compared to the restrained
TCP, yet a lower loss fraction compared to Adaptive
Pacing. At 24 hops, the RTS collision fractions are
converging around 0.15 except for regular TCP.

4.3 Summary

Category Single Flow  Multiple Flows
Hops 7 15 24 7 15 24
Throughput + 0 0|+ + 0
Round-Trip Time + + + |+ + +
Loss Fraction + + + |+ + +
RTS Collision Fraction | + + 4+ ||+ + +

Figure 4: Performance of LDM compared to Regular
TCP

The performance of LDM compared with regular
TCP from both the single flow and multi-flow exper-
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Figure 3: Three Flows over Multihop Chain Topology

iments are summarized in a table in Figure 4. A ‘4’
denotes cases where LDM’s performance is better by
more than 10%, a ‘0’ where LDM’s performance is
with within 10%, and a ‘-’ where LDM is worse by
more than 10%. From the table, LDM provides about
the same or better throughput compared to regular
TCP but provides a much lower round-trip time, loss
fraction and RTS collision fraction.

The performance of LDM compared with Adap-
tive Pacing is summarized in Figure 5. LDM pro-
vides about the same or less throughput compared to
adaptive pacing, but provides greatly reduced round-
trip times, loss fractions and RTS collision fractions.
These results are especially significant for applications
that are sensitive to high delays.

Category Single Flow  Multiple Flows
Hops 7 15 24| 7 15 24
Throughput O - —J]0 - -
Round-Trip Time + + + ||+ + +
Loss Faction 0O 0 0|+ + +
RTS Collision Fraction | + 0 0 || + + 0

Figure 5: Performance of LDM compared to Adaptive
Pacing

5 Conclusion

This paper presents Low Delay Marking (LDM),
an IP layer approach to enhance TCP performance
towards lower delays and loss rates without sacrificing
throughput. Building on knowledge of the optimal
TCP window size discussed in [8], LDM marks pack-



ets with the probability calculated with the estimated
number of hops and the number of flows. This forces
TCP flows to reduce their window size closer to an
optimal value, thus resulting in a reduced congestion
at the MAC layer. Less MAC layer congestion leads
to fewer collisions and therefore decreases round-trip
times and loss rates for all flows in the network.

We simulated and evaluated LDM over multiple
chain topologies with single and multiple-flows. The
results show that LDM provides significantly better
round-trip times (up to a 57.6% reduction) and loss
rates (up to a 59.5% reduction) while still providing
the same or better throughput compared to regular
TCP. LDM also provides much better round-trip times
(up to a 67.2% reduction) and loss rates (up to a 33.8%
reduction) compared to Adaptive Pacing.

Currently, our evaluation is done over with the
number of hops and number of flows known ahead of
time by each router. Implementation of hop and flow
counting techniques presented in Section 3 is our cur-
rent ongoing investigation. Additionally, evaluations
with more complex topologies such as crosses and grids
is also under investigation.
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