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Abstract— Excessive alcohol use is the third leading lifestyle-
related cause of death in the United States.  Smartphone 
sensing offers an opportunity to passively track alcohol usage 
and record associated drinking contexts. Drinkers can reflect 
on their drinking logs, detect patterns of abuse and self-correct 
or seek treatment. In this paper, we investigate whether a 
smartphone user’s alcohol intoxication level (how many 
drinks) can be inferred from their gait. Accelerometer data 
was gathered from the smartphones of a group of drinkers.  
Time and frequency domain features were then extracted and 
used for classification in a machine learning framework. 
Various classifiers were compared for a task of classifying the 
number of drinks consumed by a user into ranges of 0-2 drinks 
(sober), 3-6 drinks (tipsy) or >6 drinks (drunk). Random 
Forest proved to be the most accurate classifier, yielding 56% 
accuracy on the training set, and 70% accuracy on the 
validation set. Using these results, AlcoGait, an Android 
smartphone application was developed and evaluated by real 
users. The results of user studies were encouraging. 
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I.  INTRODUCTION 
Excessive alcohol use is the third leading lifestyle-related 

cause of death in the United States [4]. In 2012, 5.9 percent 
of all global deaths (3.3 million deaths), were attributable to 
alcohol consumption [2]. Alcohol also contributes to over 
200 diseases and injury-related health conditions including 
alcohol dependence, liver cirrhosis, cancers, and injuries. 
Alcohol is abused for several reasons including coping with 
negative emotions, enhancing positive emotions and gaining 
social acceptance [5].  

In this paper, we explore whether smartphone sensing 
can detect and track alcohol consumption. Specifically, we 
investigate whether a smartphone can passively infer how 
many drinks its owner has consumed while the user walks 
around as usual with their phone in their pockets, hand or 
bag. Aside from direct BAC or BrAC testing using 
breathalyzers, neuromotor testing including analysis of gait 
is the most reliable way to determine intoxication in humans 
[7]. Our general approach is to infer alcohol consumption by 
running machine learning classifiers on the smartphone (an 
app), which analyzes data gathered from its accelerometer. 
We wanted to determine whether alcohol-induced variances 
in the smartphone user’s gait could be detected even in the 
presence of confounding factors that are typical of free-living 
situations. Such factors include diverse phone placements, 
orientation, gender, weight, activities and walking behaviors. 

Prior methods to track alcohol consumption include 
questionnaires such as Alcohol Use Disorder Identification 

Test (AUDIT) questionnaires. Questionnaires are well 
known to suffer from recall bias and may be have 
inaccuracies of up to 20%. Existing alcohol apps mostly 
allow the user to manually record drinks consumed. To the 
best of our knowledge, there is no smartphone app that 
currently detects the drinking levels of users in real time 
[13]. Kao et al proposed a smartphone-based method to 
detect whether (Yes/No) a smartphone user has consumed 
alcohol but does not infer the quantity (how many drinks). 

Smartphone inference of alcohol consumption levels can 
be used in multiple ways to either treat hard drinkers or to 
mitigate alcohol mishaps. Usage in prevention: First, the 
user can receive just-in-time notifications of [excessive] 
alcohol consumption. A drinker who is unsure if they are too 
drunk to drive at a party can walk a few yards and check 
their phone’s alcohol inference. Use in treatment: A 
smartphone can log a frequent drinker’s drinking patterns 
and associated contexts.  Drinkers can reflect on their 
drinking logs, detect recurrent patterns of abuse and self-
correct or seek treatment. Counselors can use such logs as 
evidence to prescribe treatment. In cases where the user loses 
consciousness, emergency room physicians would have an 
accurate record of a patient’s consumption history.  

A. Challenges 
While the potential benefits are substantial, gait inference is 
a challenging research problem that is still actively 
researched in computer vision, biometric recognition and 
health assessment. Specific challenges are now summarized. 
• Alcohol is a controlled substance: Supervised machine 

learning requires accurate labeled data (gait data of 
subjects labeled with the number of drinks consumed). 
To obtain such labeled data, ideally we would have 
conducted controlled experiments in which subjects 
were served various amounts of alcohol and then their 
corresponding gait data was collected. However, only 
licensed individuals and establishments can serve 
alcohol. As we did not have an alcohol license, we were 
not able to run controlled data gathering experiments. 

• Gathering reliable data is difficult: Since we could not 
serve users alcohol, we had to rely on subject self-
reports of alcohol consumption. Self-reports are good 
for generating rough estimates but for the high-
precision labeled data required for machine learning, 
data quality issues arise. Users may forget to record 
entries, may not know how many drinks (e.g. cocktails 
served at a bar), or forget when they consumed alcohol. 
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• Noise: User behaviors in the wild are unpredictable 
causing noisy measurements. A user may place their 
phone in a wide range of pockets, coat pockets or bags. 
Many users (about 50%) also leave their phones on the 
table [26] during their day. They may also lend their 
phone to friends or their batteries may also die during 
data collection. Figure 1 shows some factors that may 
affect gait measurements using a smartphone.  

 
Figure 1 - Experimental Factors that could affect Gait inference 

• Confounding factors: Apart from alcohol, several other 
factors alter user gait including fatigue [25] and their 
mood [24]. Accurately inferring alcohol consumption 
with these confounding factors present is challenging. 

• Generalizability: Each person’s walk is unique and gait 
patterns vary depending on gender, weight and many 
other factors. Classifiers trained on a given population 
may not generalize to other populations. 

B. Our Contributions 
This work takes a first step in an important new direction. 
Our key contributions, expounded in later sections include: 
• Novel IRB-approved data collection method: Since we 

were not licensed to serve alcohol in controlled 
experiments, we devised a data collection method. A 
smartphone app continuously gathered subjects’ gait 
data whenever they walked. Subjects then self-reported 
any alcohol consumption the next day (Section III). 

• Gait feature exploration: We explored how sensitive 
various time and frequency domain gait features were 
to alcohol consumption (Section IV). 

• Trained machine learning classifiers: Using frequency 
and time domain gait features, we trained machine 
learning classifiers to infer alcohol consumption from 
gait. Random Forest was the most accurate classifier, 
achieving 56% accuracy on the training set, and 70% 
accuracy on the validation set when classifying user 
alcohol consumption into ranges of 0-2 drinks (sober), 
3-6 drinks (tipsy) or >6 drinks (drunk) (Section V). We 
were significantly more accurate than a random 

selection of the 3 bins, which would have yielded 
33.3%. 

• Developed a smartphone application for alcohol 
detection: Leveraging our machine learning classifiers, 
we developed AlcoGait, an Android app that can 
passively infer how many drinks its user has consumed 
in free-living situations (Section VI).  

• AlcoGait evaluation: The results of a user study to 
evaluate AlcoGait were encouraging (Section VII).  

• Explored personalization: We explored whether per-
person machine learning classifiers that learned users’ 
individual gait characteristics could improve AlcoGait’s 
accuracy. Inference accuracy was improved for 66% of 
users.  (Section VII). 

II. BACKGROUND 

A. Measures of Alcohol Consumption 
When a person drinks alcohol, it either goes into their 

blood or is released through their breath, urine, or sweat 
[10]. The standard measures of alcohol are Blood Alcohol 
Concentration (BAC) or Breath Alcohol Concentration 
(BrAC), which are the amounts of alcohol in a person’s 
blood or breath respectively. BAC and BrAC can be 
measured by breath, blood, or urine tests [9]. 

B. Effects of Alcohol on Human Gait 
Approximately ten minutes after initial alcohol 

consumption, the drinker’s heart rate begins to increase in 
order to filter out the toxins from the bloodstream through 
the kidneys. After about twenty minutes, the alcohol 
penetrates the blood-brain barrier noticeablely impacting 
cognitive and neuromotor functions such as human gait [7]. 
Human gait is a coordinated effort by the brain and muscles 
to produce mobility or walking [8]. Alcohol impairment can 
dramatically impact the ability to walk, jog, or run.  

C. Gait Analysis Techniques 
Gait analysis assesses human gait in order to determine 

any abnormalities [18]. In this paper, we explore gait 
changes due to alcohol consumed. Human locomotion 
produces a signal in the tri-axial accelerometer sensor of 
smartphones (See figure 2), which can be processed to infer 
various user activities.  

D. Prior studies about the effects of alcohol on human gait  
Prior studies have found anomalies in human gait 

following alcohol consumption. While they do not use a 
smartphone for sensing gait, we review them here because 
their results inspired our work and ultimately informed our 
choices of gait parameters to investigate as features in our 
machine learning model. Ando et al. [7] conducted a study 
to determine the effects of alcohol ingestion on neuromotor 
functions, postural sway, hand tremors, and reaction time in 
thirteen healthy males. Participants were served either 
alcohol or juice. Sway area and transversal sway tended to 
increase after alcohol ingestion [7].  
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Nieschalk et al. [14] observed the effects of low or 
moderate amounts of alcohol on the body with respect to 
equilibrium. The BrACs of the participants were measured 
30 minutes after the ingestion of alcohol. They determined 
that “sway area was the most sensitive parameter for 
detecting increased body sway after alcohol ingestion” [14].   

Demura and Uchiyama [6] observed the gait of fifteen 
male adults at normal and controlled tempos before alcohol 
ingestion and at 10, 20, and 30 minutes after alcohol 
ingestion. Gait was measured using a gait analysis apparatus 
to record time and spatial information. Their gait cycle, 
stance phase, gait velocity, cadence, stride and one step 
width of participants’ gait were analyzed. They discovered a 
decline in static balance ability, stride length, gait velocity, 
and cadence around 20 minutes after alcohol ingestion [6].  

 
Figure 2 – Example gait data while user walks 

E. Existing alcohol applications on smartphones 
Several smartphone alcohol apps have emerged [16, 17]. 

Alcohol logging apps have menus through which a user can 
manually record and track the quantity, time and types of 
alcoholic drinks consumed. However, manual recording is 
tedious and the user’s recollection of their alcohol 
consumption may be inaccurate.  

BAC calculator smartphone applications calculate BAC 
based on information entered by a user such as the quantity 
and time of alcohol consumption. However, many BAC 
calculators are inaccurate because they use wrong formulas 
or the user inputs their alcohol consumption accurately. 
Weaver et al. [13] reviewed several alcohol-related Apple 
and Android smartphone applications to determine their 
accuracy and relevance in measuring a person’s BAC. They 
found that most alcohol applications were for entertainment 
purposes and tended to encourage alcohol consumption, 
rather than for the anticipated health promotion purposes. 
They found that BAC levels calculated by 98 alcohol apps 
were highly unreliable and inaccurate [13]. 

Some smartphone applications to mitigate alcohol abuse 
have also been proposed. Kao et al. [15] created a 
smartphone sensing system that analyzed any anomalies in a 
user’s gait in order to detect if they had consumed alcohol.  
Their system used the smartphone’s tri-axis accelerometer 
and recorded the location and time whenever it detected that 
alcohol had been consumed. Gait anomalies due to alcohol 
consumption were detectable in 3 subjects, but it was 

concluded that more data from more participants was 
required [15]. The quantity of alcohol consumed was not 
inferred, which we investigate in this paper. 

Wang et al. [3] designed SoberDiary, a smartphone 
application that patients recovering from alcohol 
dependence could use to track daily sobriety after 
completing alcohol withdrawal treatment. Patients recorded 
their alcohol levels using a Bluetooth Breathalyzer, from 
which SoberDiary retrieved their readings. SoberDiary also 
reduced relapse through artistic illustrations to educate 
patients on typical symptoms at each stage of the recovery 
process. SoberDiary allowed patients to perform the breath 
alcohol test, review personal progress, share their recovery, 
and input their current emotions [3]. Alcohol consumption 
in SoberDiary was tracked using a Bluetooth breathalyzer, 
but did not infer alcohol levels from human gait as 
investigated in this paper. 

III. GAIT DATA COLLECTION 
Since we were not permitted to serve alcohol, subjects just 
ran a smartphone app that continuously gathered gait data. 
Whenever they consumed alcohol, the following day, 
subjects would self-report how much and when, protocol for 
accurate alcohol studies suggested by Del Boca and Darkes 
[13]. Users were not to record their alcohol consumption at 
the same time that they were drinking. Instead, twice the 
next day, they were prompted to retroactively enter the 
amount and type of alcohol consumed on a smartphone 
application. In this way, users labeled their gait data with 
the corresponding number of drinks consumed.  Subjects 
were not required or encouraged to consume alcohol during 
the study. The details of the study are summarized below: 
• Recruitment: Once IRB approval was received, email 

was sent to WPI students and faculty inviting them to 
participate in the study. Friends and family were also 
recruited by word of mouth and emails.  

• Subject screening: The AUDIT questionnaire was used 
to eliminate subjects who had prior history of alcohol 
issues. Eligible subjects had to be at least 21 years old, 
own an Android smartphone, and have received a score 
of 8 or less out of 40 on the AUDIT questionnaire. 

• Informed consent: All qualifying subjects signed an 
informed consent form. Any questions they had about 
the study were answered at this time. 

• Installing data collection app on their smartphones: 
Once subjects had signed the informed consent, our 
data collection app was installed on their smartphone. 

• Study protocol: The participants were asked to 
continuously run the application over a two week 
period with an option to continue for an additional two 
weeks depending on the amount and quality of data 
collected. They were then asked to continue their daily 
routine as usual. The data recording app automatically 
detected whenever the user was walking and gathered 
accelerometer data till they stopped walking. 
Participants were given the ability to opt-out of the 
study at any point. If subjects opted out, they could 
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either allow any data collected thus far to remain in the 
study or could have their data removed from the study. 
For privacy reasons, each study participants was 
assigned a random ID number. We were not able to 
identify participants or them with associate their data. 
We only knew the randomized numbers and the data 
associated with those numbers. 

A. Smartphone app to gather gait  and alcohol data 
Our gather accelerometer data, our data collection leveraged 
Funf, a third party library for the Android operating system. 
Funf is an open-sensing framework that enables smartphone 
sensor data to be recorded at a selected sampling rate and 
automatically transferred to a remote location for analysis 
[40]. The startup screen of the app is shown in Figure 3. 

 
Figure 3 - Opening Screen of Data Collection App 

IV. GAIT FEATURE EXPLORATION 
In this section, we describe our explorations of gait features 
in both the time and frequency domain. Pre-processing 
steps, feature generation and exploration are described.  

A. Pre-processing raw accelerometer readings:  
The raw accelerometer data were pre-processed in the 
following steps before gait features could be generated.  
a) Normalization: The accelerometer data was collected 

while the phone was oriented in different directions or 
while the phone was carried in different positions 
(pockets, hands or bags). To normalize the data, the 
gravity-corrected magnitude of groups of n 
accelerometer readings was calculated using equation 1:  
 

        (1) 
 
b) Smoothing to reduce noise effects: Smartphone 

accelerometer data are sensitive to physical movements, 
and contain lots of noise. To derive a more stable 
signal, we calculated a moving average for a window 
size of 10 secs (~2000 accelerometer observations).     

B. Gait Feature Generaton 
A gait feature is a property of the signal representing gait 
that can be calculated from the phone’s raw accelerometer 
data [19]. Since human walking is a periodic motion, both 
time and frequency domain features were useful [8].  

1) Time domain features: We calculated time domain 
gait features that had been useful in other work on gait. 
Demura and Uchiyama [6] found that the number of steps 
taken in a  given time interval was impacted by alcohol 
consumption. The number of steps taken per time window 
can be calculated from a time-series of accelerometer data 
by finding the number of local maxima of the gravity-
corrected magnitude of the accelerometer signals that 
exceed one standard deviation from the mean of the signal 
[20]. Figure 4 shows example accelerometer data with the 
number of steps highlighted. 

Kao et al [15] also found that the average step length 
and step time also change when alcohol is consumed. As 
more alcohol is consumed, the gait stretch (average step 
length) and step time  both change (sober vs.  intoxicated).  
Figure 5 from Kao et al illustrates these features. 

 
Figure 4 - Example Data with Number of Steps Highlighted 

 
Figure 5 - Example Data showing Gait Stretch and Step Time [15] 

Other time domain features explored include gait velocity 
and gait cadence [8], which were found to be affected by 
alcohol consumption levels [6]. Gait velocity is a ratio of the 
total distance covered divided by the total number of steps. 
Gait cadence is a ratio of the number of steps taken divided 
by the amount of time taken. Additionally, we added the 
skewness and kurtosis features of the marginal distribution 
of the signal to help further characterize the data for the 
classifier. Skewness is a measure of the lack of symmetry in 
a dataset. Similarly, kurtosis is a measure of whether the 
data are peaked or flat relative to a normal distribution. The 
time-domain features we explored are shown in table 1. 
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TABLE 1 – TIME DOMAIN GAIT FEATURES EXPLORED 

Time Domain Feature Definition 

Number of Steps [8] The number of steps taken in a given 
time interval 

Average Step Length 
[15] 

Average in the distance covered by 
each step 

Average Step Time 
[15] 

Average in the time covered by each 
step 

Gait Velocity [8] Ratio of the total distance covered by 
the total time 

Cadence [8] Ratio of the total number of steps by 
the total time 

Skewness [8] Asymmetry of the signal distribution 

Kurtosis [8] “Peakedness” of the distribution and 
the heaviness of its tail 

 
2) Frequency Domain Features: To convert the raw 

accelerometer data to the frequency domain, we applied the 
Discrete Fourier Transform (DFT) as shown in equation 2. 

           (2) 

One helpful tool to provide insight on the presence of 
alcohol in gait was the one-sided power spectral density 
(PSD) of a signal. A periodogram is one way to estimate the 
PSD of the signal and is calculated from the DFT. Unlike 
the simple DFT, it describes how the variance of data in the 
time domain is distributed over the frequency components 
into which the signal can be decomposed [33].  Frequently 
in signal analysis, there is a considerable amount of noise in 
the periodogram of the PSD. To reduce the effects of noise, 
we calculated the one-sided PSD of the data using Welch's 
overlapped segment averaging estimator algorithm (Fig 6). 
From the PSD, the frequencies where the energy of the 
signal is distributed can be discovered. The highest peak 
was at the fundamental frequency of the signal. During the 
activity of walking, the fundamental frequency of the signal 
is typically between 1-5Hz [8].  

. 
Figure 6  - PSD of Example Data Using Welch Algorithm 

The frequency domain features of the signal that 
we extracted for gait classification were 1) the average 
power of the signal, 2) the ratio of high to low energy peaks 
of the PSD, 3) the signal to noise ratio of the signal, and 4) 
the total harmonic distortion of the signal. These features 

were selected based on their effectiveness in prior research 
involving passive gait verification [15] [8]. The average 
power of a signal is the mean of the total power underneath 
the curve of the PSD estimate for a signal [1].  

Another useful frequency domain feature in gait 
classification is the ratio of the energy in high frequency 
peaks to the energy in low frequency peaks in the power 
spectral density estimate [8]. A value of 1 implies that there 
is an equal amount of energy in the high and low frequency 
peaks that are discovered by looking at the PSD estimate of 
the signal. Signal to Noise ratio (SNR) is a value typically 
calculated in decibels relative to the carrier (dBc) of a real-
valued input signal. The SNR is used in radio broadcast 
transmission to express how much of the signal is distorted 
by noise in the airwaves. For an accelerometer, any outside 
force on the phone that is not directly attributable to walking 
is considered as noise. For instance, if the sidewalk the user 
is walking on is being excavated using a jackhammer. 
Mathematically, the SNR is determined using the 
periodogram of the signal. The periodogram was smoothed 
using a Kaiser window with � = 38. The Kaiser window is a 
windowing technique that is commonly used in digital 
signal processing, especially when smoothing 
periodograms. We considered the energy contained within 
the peaks of the first six harmonics (including the 
fundamental frequency) to be the signal. Thus, the power 
outside of these harmonics is considered to be the noise of 
the signal for the ratio value [1].  

Another frequency domain feature that we selected 
was the Total Harmonic Distortion (THD). The THD is used 
in audio analysis to determine the amount of distortion the 
signal undergoes when being played through another source, 
such as a stereo speaker. On accelerometer data, the THD 
expressed how much the fundamental frequency of walking 
is distorted by other external factors such as hand 
movements and phone repositioning. The THD is calculated 
in dBc of a real-valued signal. It is determined from the 
fundamental frequency and the first five harmonics using a 
periodogram of the input signal from the phone [1]. It is 
most commonly defined as the ratio of the RMS amplitude 
of a set of higher harmonic frequencies to the RMS 
amplitude of the first harmonic, or fundamental, frequency 
[23]. Assuming  is energy contained within the peak of 
the PSD at the fundamental frequency and  are the energy 
contained within the harmonics, THD can be calculated in 
general form using Equation 3. A lower THD (and higher 
SNR) indicate that that the signal is relatively clean with a 
small amount of contamination. Table 2 summarizes the 
frequency domain features we investigated . 

TABLE 2 – FREQUENCY DOMAIN GAIT FEATURES EXPLORED 
Frequency Domain Feature Definition 

Average Power [8] The variance per unit time 

Ratio of Spectral Peaks [8] Ratio of the energies of low and 
high frequency bands 

SNR Power of whole signal / power 
of its computed noise 

THD Distortion of the whole signal 
compared to its harmonics 
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                 (3) 

C. Results of Feature Extraction 
Below are plots of pre-processed accelerometer data for 

sober gait (Figure 7) and the gait associated with an 
estimated BAC of 0.117, or > 6 drinks (Figure 8). Clear 
differences can be observed between the sober and 
intoxicated gait signals. The sober gait has more sharply 
defined “steps”, while the intoxicated gait exhibits noise 
between steps. Table 3 lists the features that were extracted 
from the signals in figures 7 and 8 

. 
Figure 7  - MATLAB Plot of Sober Gait in Time Domain 

. 
Figure 8- MATLAB Plot of Intoxicated Gait in Time Domain 

.TABLE 3 – SOBER VS INTOXICATED FEATURE COMPARISON  
 Sober Intoxicated 

numSteps 12 12 
cadence 1.1638 1.3327 

skewness 1.6739 0.81458 
kurtosis 6.1112 3.6834 

gaitVelocity 0.096984 0.11106 
stepLength -1.9231 -1.9231 

ratio 0.47392 0.79152 
stepTime 3.6547 6.9889 
avgPower 32307 13379 

SNR -2.9788 -5.1409 
THD -2.0745 -14.41 

numDrinks 0 12 
 

The number of steps and step length for this recording 
window (10 sec.) are the same. Interestingly though, the 
cadence and velocity were quicker when this particular 

study subject was walking. There is a noticeable difference 
in all of the features. The SNR measurements suggest that 
intoxicated gait produces a less noisy signal, and the THD 
measurements suggest that there is less distortion in the 
signal as the number of drinks increase. Figure 9 is a plot of 
all features investigated for varying levels of intoxication. 

V. CLASSIFIERS OF ALCOHOL CONSUMPTION 
To generate machine learning classifiers, we used our 

time and frequency domain features as inputs to the Weka 
machine learning engine. Of the 209 samples that were 
analyzed, the minimum number of drinks was 0 and the 
maximum number reported was 12. The mean of this data 
set was 4.643 drinks per subject, and the standard deviation 
was 3.896 drinks. Because of the mean and standard 
deviation of the data set, we decide to put the data into 3 
bins in order to improve the accuracy of the model. These 
bins were 0-2 drinks, 3-6 drinks, and above 6 drinks 
consumed. After removing obviously wrong entries we were 
left with 61 instances of features for the 0-2 drink bin, 31 
instances of the 3-6 drink bin and 48 instances of the >6 
drink bin.  

We compared the accuracy of the Naïve Bayes Net, the 
J48 Decision Tree, the Support Vector Machine, and the 
Random Forest machine learning classifiers. For each test 
run, five-fold cross validation was used to ensure that the 
model was not over-fitting or memorizing the data [21]. K-
fold cross validation runs the classifier K times, but each 
time 1/K’s worth of the dataset is withheld and used to test 
(or validate) the model [21]. By doing this, the model can be 
tested to ensure that it is actually predicting and not 
memorizing data. 

The Random Forest classifier produced the most 
accurate classification of all of the investigated methods. A 
Random Forest is a collection of trees each considering a 
random number of features, a random first feature, and a 
random depth to find the best possible classification [21]. It 
had an accuracy of 56%, an F-score of 0.629, and an AROC 
of 0.658. Next, we analyzed other classifiers which could be 
selected for the model. The Naiive Bayes net performed 
worst of the four classifiers considered. Despite its 
simplicity, it was unable to draw useful inferences from the 
data about whether or not the presence of alcohol existed in 
gait. It had 42.1429% accuracy, a weighted F-score of 
0.393, and a ROC area of 0.564. 

We also explored the Support Vector Machine (SVM) 
classifier, which is implemented in Weka by using John 
Platt’s Sequential Minimal Optimization (SMO) algorithm. 
Typically SVM’s perform better in binary classification 
when not much is known about the problem domain. 
However, this data are not linearly separable. To overcome 
this, a technique called “kerneling” (shown in figure 1) is 
used to create the maximal separating hyperplane.   
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Figure 9 – Feature Values for Varying Levels of Intoxication 

Kerneling is achieved using a similarity function that 
helps to separate instances of data in the input space and 
transform them into a linearly separable set in the feature 
space. By doing this, a maximal hyperplane distance can be 
calculated for non-linearly separable data. To handle 
multiple classes, the SVM in Weka uses a technique called 
“one-against-one.” That is, for each class (sober, tipsy, and 
drunk) an SVM is trained for each pair of classes. For the 
alcohol dataset in our study, the SVM performed only 
slightly better than the Naïve Bayesian network. 

 
Figure 10 – A visual illustration of kerneling 

The final classifier we considered was the J48 decision tree. 
The algorithm builds a decision tree from the training data 
that it is presented using the concept of information entropy. 
Information entropy is a quantitative measure of the amount 
of information contained in a single message (or single 
classified instance) [21]. For each feature of gait, the 

decision tree builder considers the feature that maximizes 
the information gain at that step. Information gain is the 
difference between the entropy of the tree at level  
and . The decision tree seeks to minimize this value 
(thereby maximizing information gain) [21]. For the training 
data, the J48 tree performed second best of all of the 
classifiers, with an accuracy of 53.5714%, an F-score of 
0.510, and an ROC Area of 0.646. Table 4 summarizes the 
results of all classifiers considered.  

TABLE 4 – COMPARISON OF CLASSIFIER PERFORMANCE 
Classifier Accuracy %  F-Score ROC Area 

Naïve Bayes 42.1429 0.393 0.564 
J48 Decision Tree 53.5714 0.510 0.646 

SVM 47.1429 0.427 0.562 
Random Forest 56.0000 0.629 0.658 

 
Based on the previous results, the Random Forest was 

the best performing classifier and was selected to be 
implemented in AlcoGait, our real time alcohol inference 
app. After choosing this classifier, we investigated whether 
techniques such pruning, bagging, and boosting would 
improve its accuracy. This process is known as 
“ensembling.” Bagging is a technique whereby the training 
data are sampled uniformly with replacement and trained. 
The output is the average of all classifications by the 
decision tree model being bagged. This technique is used to 
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improve unstable dataset classification. From all of the 
ensembling techniques considered, a bagged Random Forest 
of 10,000 trees created the best model. It had an accuracy of 
56.00%, an F-score of 0.629, and AROC of 0.658. Its 
training data confusion matrix is shown in Table 5. This 
model was loaded onto the phone for use in the algorithm 
that will classify gait.  

TABLE 5 – RANDOM FOREST CONFUSION MATRIX 
Ensemble 
Classifier 

A  
(0-2 Drinks) 

B  
(3-6 Drinks) 

C  
(> 6 Drinks) 

A (0-2 Drinks) 85 34 26 
B (3-6 Drinks) 7 5 5 
C (> 6 Drinks) 15 6 26 

Overall, our results show promise but accuracy suffered 
slightly because of insufficient data. Since the majority of 
data was in the “sober” category,  it makes sense that the 
classifier was able to accurately classify sober gait more 
than heavily intoxicated gait. It seems also that each 
classifier struggled to classify the 3-6 drink range. This 
could be due to both the lack of data for this bin and the fact 
that the feature response values are not well separated at the 
3 and 6 drink mark. 
After the classifier was selected, we verified its accuracy on 
a validation dataset previously unseen by the classifier. We 
used a sample of 30 instances to test the pre-trained model. 
It had an accuracy of 70.00%, an F-score of 0.786, and 
AROC of 0.825. Its validation data confusion matrix is 
shown in Table 6. This indicates the model is performing 
better than the cross-validated Random Forest.  

TABLE 6 – VALIDATION SET CONFUSION MATRIX 

Validation Set A  
(0-2 Drinks) 

B  
(3-6 Drinks) 

C  
(> 6 Drinks) 

A (0-2 Drinks) 1 0 9 
B (3-6 Drinks) 0 6 0 
C (> 6 Drinks) 0 0 14 

The model performs well on predicting class C and 
appears to have a reduced number of errors on predicting 
class B when compared to the initial training confusion 
matrix. This could be due to the different proportions of 
instances in each bin between the training and validation 
sets. The hope is that it will improve its accuracy when 
more data is available. 

VI. ALCOGAIT: SMARTPHONE APP TO INFER ALCOHOL 
CONSUMPTION 

Using the alcohol inference classifiers we generated 
above, a real time Android application was designed and 
developed. This app was a background service that 
continuously received updates from the Android Activity 
Recognition API. When walking was detected, the raw 
accelerometer data was fed into the background service’s 
main thread in 5 second increments. If walking terminates, 
the data are discarded and the service waits for the next 
walking event. The implementation leveraged the GaitLib 
library’s GaitAnalysis()method [22]. A maximum of 

three 5-second samples are gathered per hour to prevent 
overcrowding of data and to manage storage space on the 
device. Once a 5 second sample is captured and checked for 
continuity between readings, it is fed into the feature 
generator.  

The feature generator is a JAR file exported from 
MATLAB that contains all of the functions written to 
generate features from the previous experiment and study. 
The JAR is called with raw accelerometer data and returns 
the list of features calculated from them in order. If the JAR 
does not return values for some of the features, the data are 
discarded and the service waits for a new dataset. Once the 
features are generated from a set, the accelerometer readings 
are discarded, and the generated features are saved as a new 
row in a database table locally on the phone. 

These features are labeled on the following day by the 
user using the in-app survey which included when they 
began drinking, when they finished drinking, and how many 
drinks they had. The data are labeled with the first sample 
inside the window being the baseline “0” drink mark. The 
number of drinks is spaced out over the interval of time 
spent drinking and samples are labeled accordingly. In 
addition to labeling the window during which drinking 
occurred, the application also labels the period after 
drinking occurs based on the average rate of alcohol 
metabolization of 1 drink per hour. After this labeling 
process occurs, the model is retrained using 10-fold cross 
validation on the entire data set to date. Figure 11 illustrates 
the logic of our app. 

 
Figure 11 – Algorithm Model Flow 

Once this training has been done, this model is loaded back 
into the application to be used to make inferences for the 
next 24 hours when it is updated again. 

VII. EVALUATION ALCOGAIT IN USER STUDIES 
We conducted a usability study to evaluate how well the 
AlcoGait application inferred intoxication levels of real 
users and to gather user impressions. The application was 
installed on subjects’ phones for a few days. They were then 
asked to complete a short usability survey. The volunteers 
were students of the WPI computer science department as 
well as students of a WPI sorority. The only restriction for 
participation was that the volunteer must have been over 21 
years of age. The survey consisted of a brief description of 
the intended future use of the application once it has been 
fully implemented and is consumer ready. It asked if they 
thought the goal of this future application was meaningful 
and useful to society as well as if there were any 
improvements they thought would be beneficial for the 
future application.  
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A. Results of AlcoGait User Study 
Approximately 86% of respondents found the app’s 

vision useful when the application is complete. One of the 
users responded that they “found it to be very insightful.” 
Another found it to be “functional and easy to use.” All of 
users said they would recommend this application to a 
friend but only 57% would use the application themselves. 
When users were asked to rate the classifier’s accuracy on 
their intoxication levels on a scale of 1-10 (with 10 being 
100% accurate), the mean value was 8.86 with a standard 
deviation of 1.86. Table 7 includes responses to primary 
questions and the number of individuals who responded yes. 

 
TABLE 7 – SUMMARY OF USER RESPONSES 

 
 

B. Personalization: Classification Improvements as users 
corrected wrong inferences 
One of the most useful properties of supervised machine 

learning is the fact that classifiers tend to get more accurate 
when given more data. We speculated that after the initial 
loading of the model at application install time, 
classification would become more accurate if users 
corrected wrong inferences and as more data are available to 
train and test the model. The lower bound of classification is 
the 57% accuracy which comes with the application on 
installation. After only a few days’ worth of use, the range 
of descriptive statistics retrieved from users in the usability 
study are expressed in Table 8.  

 
TABLE 8 – RESULTS OF CLASSIFIER IMPROVEMENTS DUE TO 

PERSONALIZATION 

User Accuracy % F-Score ROC Area 
User 1 58.435 0.597 0.612 
User 2 52.784 0.513 0.538 
User 3 62.947 0.640 0.631 
User 4 67.249 0.651 0.683 
User 5 73.854 0.754 0.749 
User 6 33.333 0.410 0.551 

 
Classification accuracy did improve for 66% of users but 

got worse for 33% of them. This reduction in accuracy could 
be due to abnormal walking conditions or accidental triggers 
of the recording mechanism. For example, shaking the phone 
rapidly in a rhythmic motion for 5 seconds engages the step 
detector which triggers our application to begin recording. 

VIII. DISCUSSION 
The application on the phone produced an average of 

57% accuracy in classification. This result is encouraging 
for an initial effort in the wild given that there is a large set 
of factors that influence gait along with alcohol. However, 
the result is not without flaw. The biggest problem is 

insufficient data. We gathered data for relatively few 
instances and not all bins were adequately covered. We 
believe that our app’s accuracy will increase as we gather 
data for more people and over more time per user.  

There are many ways in which this classification is not 
able to handle all edge cases. For starters, we assume that all 
drinking occurs in one sitting. In reality, drinks could be 
spaced out in many ways which all intoxicate the user 
differently. Different individuals also process alcohol 
differently. Other factors include whether food was 
consumed prior to or during drinking, and the type of 
alcohol consumed.  

Specific to the classifiers, we noted that each technique 
was better at classifying the extremes (the 0-2 drink bin, and 
the > 6 drink bin) than classifying the 3-6 drink bin. We also 
noted that it was interesting that the validation set of data 
accuracy percentage (70%) was better than the overall 
model accuracy percentage (57 %). Over time, it seems that 
this result improved for some users of the application, and 
got worse for others. This could be due to gait conditions 
specific to some users, a mistake in the feature calculation, 
or an error in data collection. We noted that not all 
classifications improved over time, but after only a few 
days, most showed promise of improvements. 

Additionally, a user’s walk may change over time due to 
any number of circumstances including weather, phone 
placement, ground conditions or personal injury. A user’s 
gait may also change if they are fatigued or in a bad mood. 
Ultimately, gathering more data to cover majority of cases 
and labeling any contributing factors should improve 
inference accuracy and robustness.   

IX. RELATED WORK 

A. Alcohol Detection Devices 
SCRAM: SCRAM Continuous Alcohol Monitoring [11] is a 
commercial alcohol detection device that is worn 
continuously around the ankle. It is mainly used for high-
risk, DUI (Driving Under the Influence) alcohol offenders 
who have been ordered by a court to avoid consuming 
alcohol. It samples the user’s perspiration every 30 minutes 
in order to measure their BAC levels.  The user’s data is 
sent to secure servers and can be accessed by court officials. 
The data is typically used to confirm abstinence from 
alcohol consumption and as evidence of good or bad 
behavior in court trials[11].  
Kisai Intoxicated LCD Watch: The Kisai Intoxicated LCD 
Watch by TokyoFlash Japan [12] is a breathalyzer watch. In 
addition to being a normal watch, it has a built-in 
breathalyzer on its side that the user can use at any point. By 
simply breathing into the Breathalyzer, the watch 
determines and displays graphs of the user’s BAC level.  

X. CONCLUSION 
In this paper, we investigated whether smartphones could 
infer the alcohol intoxication levels (how many drinks) of 
their users based on anomalies in their gait. Time and 
frequency domain features were extracted from 
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accelerometer data of drinkers and used for classification in 
a machine learning framework. For a task of classifying the 
number of drinks consumed by a user into ranges of 0-2 
drinks (sober), 3-6 drinks (tipsy) or >6 drinks (drunk), 
Random Forest yielded  56% accuracy on the training set, 
and 70% accuracy on the validation set. Using these results, 
AlcoGait an Android smartphone application was developed 
and deployed to real users. The results of user  studies were 
encouraging. 
In future, we would like to gather data from additional 
sensors including the gyroscope, GPS, bluetooth, the 
compass and other inertial sensors. Gathering more data 
from more users over longer periods will probably improve 
the accuracy of our models. This application could 
eventually be integrated into the healthcare system and used 
by alcoholics who are in therapy to generate accurate 
drinking records and associated contexts. Frequent partiers 
could also use it to check if they are too drunk to drive. 
Social networking could also be integrated so that drinkers 
could find each other, discuss their progress and support 
each other. 

ACKNOWLEDGMENT  
The authors would like to acknowledge the contributions 

of Joseph Petrucelli of the WPI department of mathematical 
sciences, who provided valuable advice and guidance in the 
statistical analysis of the data in this study. 

REFERENCES 
[1] A. V Oppenheim, and R W Schafer, Discrete-Time Signal 

Processing, 3rd Edition, Prentice Hall. 
[2] World Health Organization, "Global status report on alcohol and 

health," WHO, 2014. URL: http://www.who.int/substance_abuse/ 
publications/global_alcohol_report/msb_gsr_2014_1.pdf?ua=1. 

[3] K.-C. Wang, Y.-H. Hsieh, C.-H. Yen, C.-W. You, M.-C. Huang, C.-
H. Lee, S.-Y. Lau, H.-L. Kao, H.-H. Chu and M.-S. Chen, 
"SoberDiary: A Phone-based Support System for Assisting Recovery 
from Alcohol Dependence," in Proc Ubicomp 2013. 

[4] J. Rehm, T. K. Greenfield and J. D. Rogers, "Average Volume of 
Alcohol Consumption, Patterns of Drinking, and All-Cause Mortality: 
Results from the US National Alcohol Survey," American Journal of 
Epidemiology, vol. 153, no. 1, pp. 64-71, 2001. 

[5] J. Westmaas, S. Moeller and P. B. Woicik, "Validation of a Measure 
of College Students' Intoxicated Behaviors: Associations With 
Alcohol Outcome Expectancies, Drinking Motives, and Personality," 
Journal American College Health, vol. 55, no. 4, pp. 227-237, 2007. 

[6] S. Demura and M. Uchiyama, "Influence of moderate alcohol 
ingestion on gait," Sport Sci Health, no. 4, pp. 21-26, 2008. 

[7] S. Ando, T. Iwata, H. Ishikawa, M. Dakeishi and K. Murata, "Effects 
of acute alcohol ingestion on neuromotor functions," 
NeuroToxicology, vol. 29, pp. 735-739, 2008. 

[8] H. Lu, J. Huang, T. Saha and L. Nachman, "Unobtrusive Gait 
Verification for Mobile Phones," in ISWC, Seattle, WA, USA, 2014. 

[9] Centers for Disease Control and Prevention, "Alcohol and Public 
Health," Centers for Disease Control and Prevention, 19 August 2014.  
http://www.cdc.gov/alcohol/fact-sheets/alcohol-use.htm. 

[10] M. Izzi, "SCRAM Bracelet Laws," LegalMatch, 3 Sept 2014. 
http://www.legalmatch.com/law-library/article/scram-bracelet-
laws.html. 

[11] SCRAM Systems, "SCRAM Continuous Alcohol Monitoring," 
Alcohol Monitoring Systems, Inc., 2014. http://www. scramsystems. 
com/index/scram/continuous-alcohol-monitoring. 

[12] Tokyoflash Japan, "Kisai Intoxicated LCD Watch," Tokyoflash 
Japan, 2014. : http://www. tokyoflash.com/en/watches/ 
kisai/intoxicated/.  

[13] E. R. Weaver, D. R. Horyniak, R. Jenkinson, P. Dietze and M. S. 
Lim, ""Let's get Wasted!" and Other Apps: Characteristics, 
Acceptability, and Use of Alcohol-Related Smartphone 
Applications," JMIR MHEALTH AND UHEALTH, vol. 1, no. 1, pp. 
1-11, 2013. 

[14] M. Nieschalk, C. Ortmann, A. West, F. Schmäl, W. Stoll and G. 
Fechner, "Effects of Alcohol on body-sway patterns in human 
subjects," Int’l Journal of Legal Medicine, vol. 112, pp. 253-60, 1999. 

[15] H.-L. Kao, B.-J. Ho, A. C. Lin and H.-H. Chu, "Phone-based Gait 
Analysis to Detect Alcohol Usage," in Proc ACM Ubicomp 2012. 

[16] K. R. Hirsch, "The 19 Best Alcoholism iPhone & Android Apps of 
2014," Healthline Networks, 21 May 2014. http://www.healthline. 
com/health-slideshow/top-alcoholism-iphone-android-apps#1.  

[17] N. Pell, "The 9 Best Alcohol-Related Apps," Made Man, 30 
December 2011. [Online]. Available: http://www.mademan.com/the-
9-best-alcohol-related-apps/.  

[18] "Sports Injury Clinic," 2014. http://www.sportsinjuryclinic.net/sports-
specific/running-injuries/gait-analysis. [Accessed 20 March 2014]. 

[19] E. Sejdi�, K. A. Lowry, . J. Bellanca, M. S. Redfern and J. S. Brach, 
"A comprehensive assessment of gait accelerometry signals in time, 
frequency and time-frequency domains.," IEEE Trans Neural Systems 
and Rehabilitation Engineering, vol. 22, no. 3, pp. 603-612, 2014. 

[20] Mathworks, "Counting Steps by Capturing Acceleration Data from 
Your Android™ Device," Mathworks, Mar 1 2015.  http://www.  
mathworks.com/help/supportpkg/mobilesensor/examples/counting-
steps-by-capturing-acceleration-data-from-your-android-
device.html?prodcode=ML. [Accessed 22 March 2015]. 

[21] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern 
Approach, Upper Saddle River: Prentice Hall/Pearson. 
M. M. A. Wu, O. S. Schneider, I. Karuei, L. A. Leong and K. E. 
MacLean, "Introducing GaitLib: A Library for Real-time Gait 
Analysis in Smartphones," 2014. https://circle.ubc.ca/bitstream/ 
handle/2429/46848/gaitlib-paper.pdf?sequence=1. 

[22] I. V. Blagouchine, “Analytic Method for the Computation of theTotal 
Harmonic Distortion by theCauchy Method of Residues," IEEE 
Trams Communication, vol. 59, no. 9, pp. 2478-2491, 2011. 

[23] M Karg, K Kuhnlenz, M Buss, "Recognition of Affect Based on Gait 
Patterns," Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE 
Transactions on , vol.40, no.4, pp.1050,1061, Aug. 2010 

[24] M Karg, G Venture, J Hoey, D Kulic, "Human Movement Analysis as 
a Measure for Fatigue: A Hidden Markov-Based Approach," Neural 
Systems and Rehabilitation Engineering, IEEE Trans, vol.22, no.3, 
pp.470,481, May 2014 

[25] A K Dey, K Wac, D Ferreira, K Tassini, J Hong, J Ramos, Getting 
closer: an empirical investigation of the proximity of user to their 
smart phones, in Proc Ubicomp 2011. 

 

427426


