
CS 563 Advanced Topics in 
Computer Graphics

Irradiance Caching and Particle Tracing

by Stephen Kazmierczak



Introduction

§ Unbiased light transport algorithms can 
sometimes take a large number of rays to 
generate an image without noise
§ To counter this, biased algorithms such as 

irradiance caching and photon mapping have 
been developed
§ Reuse previously computed results
§ Produce images without high-frequency noise 

artifacts
§ Produce good images using less additional 

computing power
§ Hard to do error estimation, however



Irradiance Caching

§ Based on the notion that while direct lighting 
changes drastically from point to point, 
indirect lighting does not
§ Compute indirect lighting at a sparse set of 

sample points and interpolate the rest



Indirect Illumination



IC Issues

1) When are new representations of indirect 
light computed, and how often are already 
existing ones interpolated?

2) How is the indirect lighting distribution 
represented and stored after being 
computed at a point?



Computing Points

§ Indirect lighting computed on-the-fly (as 
opposed to on a fixed set of points chosen 
ahead of time)
§ First cache is searched for an acceptable 

point using a set of error metrics
§ If a point cannot be found in the cache, a 

new point is created



Storing Information

§ Only irradiance is stored at each point (light 
representation is a single Spectrum object)
§ As long as the surface is of a perfectly diffuse 

material, irradiance alone can exactly 
compute from the surface due to a particular 
incident lighting distribution

§ A perfectly specular surface, however, can 
potentially introduce an arbitrarily large error



ICaching vs. Path Tracing



Points for IC



Implementation Details

§ Partitions BSDF for indirect lighting 
computation
§ Perfect specular reflection handled by sampling 

BSDF and recursively calling the integrator

§ Implementation uses irradiance caching for 
both diffuse and glossy components
§ Glossy components introduce additional error

§ Reflection and transmission handled 
separately
§ Reflective surface hemisphere completely 

different than transmissive surface hemisphere



New Irradiance Values

§ Uses a cosine-weighted distribution of 
directions
§ Uses the standard Monte Carlo estimator



Storing Values

§ Uses an octree data structure to store 
computed estimates
§ Each estimate has an axis-aligned bounding 

box associated with it, giving the overall area 
for which the sample is valid
§ Bounding box clamped to make sure it is 

neither too large nor too small
§ Boxes are smaller around groups of objects, 

as the more objects that are close to a 
sample point the greater potential for rapidly 
changing irradiance
§ Estimate stored in IrradianceSample object



Computing Irradiance

§ Traverse the octree to find appropriate box
§ Using an irradiance sample from the tree and 

the point to be shaded, test
§ Reject if surface normals too different
§ Reject if too far from point
§ Reject if sample in front of point
§ Compute error term

§ If everything passes, weight the sample 
based on error term and use
§ Final interpolated irradiance

E = (? i wiEi) / (? i wi)



Photon Mapping

§ Photon Mapping is one of a family of particle-
tracing algorithms
§ Construct paths from lights, and at each vertex 

the amount of incident illumination recorded

§ Unlike irradiance caching, photon mapping 
handles both glossy and diffuse reflection 
well
§ Can also handle perfectly specular reflection 

(handled separately with recursive ray 
tracing)



Photon Integrator

§ Photon mapping integrator traces particles 
into the scene
§ It interpolates among particles (called 

photons) to approximate the incident 
illumination at shading points
§ Integrator uses a kd-tree to store photons, 

which allows quick access to the photons 
around the point being shaded



Photon Integrator (2)

§ Adjusting the quality of results computed is 
easy with the photon mapper, as it partitions 
the LTE in a number of ways
§ Particles coming from lights are characterized: 

direct illumination, caustic illumination, and 
indirect illumination

§ Partitioning allows flexibility in how reflected 
radiance is estimated
§ Integrator also partitions the BSDF
§ Uses recursive ray tracing to handle perfectly 

specular components, and either photon maps or 
Monte Carlo ray tracing for the rest



Photon Integrator Config

§ Integrator is highly configurable
§ Desired number of photons of each type (direct, 

caustic, and indirect)
§ Number of photons used for interpolation
§ Whether to do “Final Gathering” or not



Building the Photon Maps

§ Particles begin at light sources and are 
traced through the scene until the integrator 
has accumulated the desired number of 
particle histories
§ At each intersection of the path with an 

object a weighted particle contribution (of 
type Photon) is stored in the appropriate 
map
§ A Halton sequence is used to generate 

particle rays, as they need to be well 
distributed but it is unknown ahead of time 
how many are needed



Following the Photon

§ While the photon intersects with objects in 
the scene
§ Handle photon/surface intersection
§ Update photon weight and photon ray direction
§ Possibly terminate photon path
§ Russian roulette



Using the Photon Map

§ At rendering time, the photon map is used to 
compute reflected light at each point being 
shaded
§ Photon mapping interpolates information 

about illumination at the point from nearby 
photons
§ The more photons around the point and the 

higher their weights the more radiance is 
estimated to be incident at the point
§ Estimated radiance used in conjunction with 

surface BSDF to compute reflected light



Photon Map in Action



Final Gathering

§ Calculates the irradiance at selected sample 
points in the scene by shooting many rays 
and gathering light from other surfaces
§ Very expensive for more than one bounce
§ Can be combined with photon mapping:
§ Use photon mapping for N – 1 bounces
§ Use final gathering for the final bounce



Final Gathering Compare



Photon Interpolation
and Density Estimation

§ Search the photon list for photons near the 
point to be shaded, and keep track of 
photons close to the point
§ Photons stored in kd-tree

§ Need both the local density of particles and 
their individual weights
§ Use a kernel method to estimate density (will use 

a constant function)
§ Nearest-neighbor techniques can adaptively 

choose soothing parameter based on local density



Photon Final

§ Substituting everything into the 
measurement equation, the exitant radiance 
at point p in direction w is:

Lo(p, wo) = p(p) ? aj f (p, wo, wj)

Where the sum is over the n nearest photons



References

§ Pharr, Humphreys, Physically Based 
Rendering, Sections 16.4 & 16.5
§ Using Global Illumination in Turtle: 

http://www.illuminatelabs.com/support/tutori
al-folder/advanced-global-illumination/


