Kevin Kardian

CS 563 Advanced Topics in Computer Graphics Sampling Light Sources and Volume Scattering

Introduction

Motivation

- It is useful to be able to determine a subset space for relevant rays
- Rays should represent paths of illumination with nonzero values
- BSDF's distribution may be inefficient for sampling
- Consider instead sampling the area in which the light is visible from the point being sampled
- This will be accomplished using Monte Carlo techniques
- Sampling Interface
 - Light::Sample_L()
 - Light::Pdf()

Point lights

- Lights with Singularities are relatively simple to sample...
- Sampling method towards light:
 - Refers to the sampling method from the PointLight object
 - Generates a vector pointing from the point to the light
 - Sampling distribution is always 1; there is only one ray

Point lights (cont.)

- Sampling method away from light:
 - A point light can potentially hit an entire sphere
 - The sphere is sampled uniformly
 - Sampling distribution is the same as the sphere
- PDF:
 - The light source is infinitesimal
 - You cannot sample something smaller than a point
 - Always returns 0

Spotlights

- Sampling method towards light and PDF:
 - Only one way to get to the light from any point
 - Only one possible ray can be generated
 - Uses the same implementations as point lights
- Sampling method away from light:
 - Uses a cone to model illumination
 - Samples from a uniform distribution over the directions encompassed by the cone

Directional lights

- Sampling method towards light:
 - Like the point light, sample is handled by the light object
- Sampling method away from light:
 - The direction of the ray is predefined
 - Consider the bounding sphere for the scene
 - Constructs a disk with the same radius as the sphere
 - Sample this disk using ConcentricSampleDisk()
 - Ensure that origin is outside of the bounding sphere

Directional lights (cont.)

PDF:

- The light has no area
- Must return 0, since its impossible to sample

Projection and Goniophotometric lights

- Projection lights are analogous to spotlights
- Goniophotometric lights are analogous to point lights

Area lights

- Area lights are closely tied to the shapes representing their areas
- Methods should generate samples on those shapes
- Shape Interface
 - Sampling method
 - Distribution function

Sampling Area lights

- Sampling method towards light:
 - Gets a point on the light by sampling the relevant shape
 - Generates ray to this point
 - Calculates radiance emitted at that point
- Sampling method away from light:
 - Gets a point on the light
 - Samples uniformly from a hemisphere of directions
 - Flips the direction based on the surface normal
- PDF:
 - Returns the value of the shape's distribution

Sampling Shapes

Disks

- Uses ConcentricSampleDisk()
- Scales based on radius
- Shifts Z position based on height
- How to handle partial disks? Discuss later.

Triangles

- Uses UniformSampleTriangle()
- This method returns barycentric coordinates
- These coordinates are then converted to a Point object

Sampling Shapes (cont.)

Cylinders

Considered trivial; its basically a rectangle

Spheres

- Default sampling method uses UniformSampleSphere()
- Improvement: Given a point being illuminated...
 - Sample the sphere along the visible solid angle
 - Sets a new coordinate system
 - Different cases for sampling points within sphere or outside of it
- Sampling Distribution
 - Uniform sampling of the sphere from within
 - Uniform sampling of a cone from without

Shapesets

- Useful when a "shape" actually requires many shapes to be sampled
- Still implements the Shape interface
- Still needs a needs sampling method that is uniform over its surface
- Solution: Sample each shape according to a weighted CDF
 - Shapes are weighted proportionally to surface area
 - First, a random shape is chosen
 - Then, a uniform sample from that shape is returned

Infinite Area lights

- Represented by a sphere surrounding the entire scene
- Sampling method towards light:
 - Uniform sampling (as for the interior of a Sphere light) is used when no surface normal is provided
 - Otherwise, cosine-weighted distribution is used
 - Normal is used to construct an appropriate coordinate system
 - Z vector is based on the normal itself
 - X and Y vectors are arbitrarily constructed
 - They are perpendicular to Z and to each other

Infinite Area lights (cont.)

- Sampling method away from light:
 - Problem: How do we ensure that points and ray directions are distributed normally without a finite area?
 - Given: "uniformly distributed lines through the volume enclosed by a sphere can be generated by connecting two uniformely chosen points on [its] surface" (p. 710)
 - Solution:
 - Pick any two points from the surface of the bounding sphere of the scene
 - Connect these two points
 - Weight the ray according to a cosine distribution

Volume Scattering