CS 563 Advanced Topics in Computer Graphics *Camera Models*

by Kevin Kardian

Introduction

- Pinhole camera is insufficient
 - Everything in perfect focus
 - Less realistic
- Different camera models are possible
 - Create varying images from the same scene
 - Simply generates rays differently

Camera Model Basics

- Each model stores very few values
 - Transforms between world and camera spaces
 - Distances to near and far clipping planes
 - Time values simulating camera shutter speed
- Coordinate Spaces
 - Object space
 - World space
 - Camera space
 - Screen space
 - Normalized device coordinate (NDC) space
 - Raster space

New Coordinate Spaces

- Camera space
 - Origin at the camera
 - z+ in the direction of viewing
 - y+ in the up direction
- Screen space
 - The camera space mapped to the image plane
 - z values are scaled to range [0,1]
 - These values correspond to points on the hither and yon planes

New Coordinate Spaces

- Normalized device coordinate (NDC) space
 - Scales all coordinates to range [0,1]
 - Note that y+ is in the down direction
- Raster space
 - Similar to NDC space
 - x,y coordinate values scaled to a different range
 - Based on the overall image resolution

Projective Models

- Subclass of normal camera models
- Projects objects from a space onto a screen
- Allows for depth of field
- Maintains several coordinate space transforms
 - CameraToScreen
 - WorldToScreen
 - RasterToCamera
 - ScreenToRaster
 - RasterToScreen

Orthographic Projection

- Projects a rectangular volume onto a screen
- Preserves parallel lines
- Maintains relative distance between objects
- Does not account for foreshortening

An Example

Rendered using orthographic projection

Note the lack of a vanishing point

 Platform edges remain parallel

Implementation Details

- Maps z values to range of [0,1]
 - First, aligns z = 0 to the hither plane
 - Then, scales values so that z = 1 matches the yon plane
- Creating sample rays
 - Sample points are taken from raster space
 - The point is transformed to a point on the hither plane
 - The ray points straight down the z axis
 - Finally, the ray is transformed to world space

Perspective Projection

- Projects a volume onto a screen
- This volume is not rectangular
- Does not maintain parallel lines
- Accounts for foreshortening
- More realistic view of object size and distance

An Example

Rendered using perspective projection

Note the illusion of a vanishing point

Image appears to have depth

Implementation Details

- Plane of projection is actually at z = 1
 - One unit from the camera position
- Creating sample rays
 - Projecting sample points:
 - First, scale z values to a range of [0,1]
 - Then, divide x,y coordinate values by the scaled z
 - Finally, scale based on the fov angle to get x,y coordinates to a range of [-1,1]
 - Sample rays all point from the origin to this projection

Depth of Field

- Actual lenses do not have perfect focus
- Circle of confusion
 - The image area onto which a single point is projected
 - Based on lens radius and focal distance
 - Focal distance the distance at which the circle of confusion has no radius
- Large number of samples required for each pixel

Undersampling

Undersampling

Creating Sample Rays

Cook, Porter, Carpenter (1984)

- Get a random sample point on the lens
- Observation: Light through the center of a lens isn't refracted
 - Generate this non-refracted ray
 - Find where it intersects the focal plane
- Sample ray originates at the sample point and points towards this intersection

Postprocessing Discussion

- Consider calculating the size of any give circle of confusion
- It is apparent that this can be done after ray tracing
- Each location on the scene can be "blurred" based on how focused it should appear
- Where are the flaws in this approach?
- How/why do these not apply to Cook et al's approach?

Distributed Ray Tracing

Cook, Porter, Carpenter (1984)

- Approach was to achieve improvements by varying sample rays in time
- With extra samples, each spatial location could be sampled at several instants of time
- Instead, separate locations are sampled at varying times
- Oversampling still occurs
- Same result is achieved with fewer total samples

Motion Blur

Potmesil (1983)

- A preprocessing approach
- Attempting to render an image then apply blur is flawed
- Hidden surfaces may be revealed by motion
- What about background surfaces that are also in motion?
- What about other visual effects?
- Solution: Account for motion blur at the time of sampling

Motion Blur

Cook, Porter, Carpenter (1984)

- A distributed approach
- Different parts of an object are sampled at different times
- The object as a whole is captured in motion
- Accounts for various effects because their changes are captured as well
 - Visibility
 - Shading
 - Shadows
 - Depth-of-field
 - Reflections

An Example

Environment Camera

- Images rendered using ray tracing have more flexibility
- Consider a point suspended in space
- Send rays in all directions from that point
- Scene maps to an image on a spherical plane
- Image manipulated to give a 2D view on a flat plane

An Example

Implementation Details

- 180 deg. field of vision from top to bottom
- 360 deg. field of vision from left to right
- Note that this camera cannot use linear projections
 - There is no projection matrix
- Creating sample rays
 - All sample rays have the same origin
 - Sample points are converted to spherical coordinates
 - Coordinates are scaled to the appropriate ranges