CS 563 Advanced Topics in Computer Graphics Summary and Conclusion

by Juan Li

Ray Tracing

- Appel 1968 Ray casting
- 1. Generate an image by sending one ray per pixel
- 2. Check for shadows by sending a ray to the light

Ray Tracing

Whitted 1979 Recursive ray tracing(reflection and refraction)

PBRT Architecture

PBRT Organization

Table 1.1: Plug-ins. pbrt supports 13 types of plug-in objects that can be loaded at run time based on the contents of the scene description file. The system can be extended with new plug-ins, without needing to be recompiled itself.

Base class	Directory@	Section
Shape	shapes/	17000000000000000000000000000000000000
Primitive	accelerators/	4.1
Camera	cameras/	6.1
Film	film/	8.1
Filter	filters/	7.6
Sampler	samplers/	7.2
ToneMap	tonemaps/	8.4
Material	materials/	10.2
Texture	textures/	11.3
VolumeRegion	volumes/	12.3
Light	lights/	13.1
SurfaceIntegrator	integrators/	16
VolumeIntegrator	integrators/	17

Primitive

- Primitive: a shape with its appearance properties such as material properties. It is the bridge between the geometry processing and shading subsystem.
- Primitives
- 1. Basic geometric primitive
- 2. Primitive instance
 - Reuses transformed copies of a single collection of geometry at multiple positions
- 3. Aggregate(collection)

Treat collections just like basic primitives Incorporate acceleration structures into collections May nest accelerator of different types Types:grid.cpp kdtree.cpp

Accelerator

Uniform grid

Preprocess scenes

- 1.Find bounding box
- 2.Determine resolution
- 3.Place object in cell if object overlaps cell

Traverse grid

Accelerator

Spatial Hierarchies

- Letters correspond to planes(A,B,C,D)
- Point location by recursive search

Accelerator

Variations

- Kd-tree recursively split along one coordinate axe
- OCT-tree use 3 axisperpendicular planes to split
 to 8 regions
- BSPtree adaptively subdivide space into irregularly sized regions

Radiometry

- Basic quantities
- Flux: power, energy per unit time (J/s) or(W), symbol ${igoplus}$
- Irradiance : area density of flux(W/m²) E

$$E(x) \equiv \frac{d\Phi_i}{dA}$$

 Intensity: power per unit solid angle

$$I(\omega) = \frac{d\Phi}{d\omega}$$

 Radiance: the flux density per unit area per unit solid angle

$$L = \frac{d\Phi}{d\mathbf{w}dA}$$

Radiometry

ncident and Exitant Radiance functions

- Incident Radiance, distribution of radiance arriving at the point Li(p,w)
- Exitant Radiance: outgoing reflected radiance from the surface Lo(p,w)

Li(p,w)! = Lo(p,w)

Radiometric Intergrals

$$E(p,n) = \int_{\Omega} L_i(p, \boldsymbol{w}) |\cos \boldsymbol{q}| d\boldsymbol{w}$$

Scattering equation Lo(p,w0)=?s2f(p,w0,wi)Li (p,wi)|cos?i|dwi;

Camera Model

Projective Camera Models
Project a 3D scene onto a 2D image
Orthographic projection model
Perspective projection model
Depth of field
blurriness in the out-of-focus regions
Cause: aperture has finite area

Cameral

As the size of the lens aperture increases, more blur

Sampling and Reconstruction

The sampling and reconstruction process Real world: continuous Digital world: discrete Basic signal processing Fourier transforms The convolution theorem The sampling theorem Aliasing and antialiasing Uniform supersampling Nonuniform supersampling

 Fourier Transforms
 Each function has two representations Spatial domain-normal representation
 Frequency domain-spectral representation
 Spectral representation treats the function as a weighted sum of sines and cosines

Spatial Domain

Frequency Domain

• Convolution $h(x) = f \otimes g = \int f(x')g(x - x') dx'$

Convolution Theorem: Multiplication in the frequency domain is equivalent to convolution in the space domain.

 $f \otimes g \leftrightarrow F \times G$

Ideal Sampling

$$III_{T}(x) = T \sum_{i} d(x - iT)$$
$$III_{T}(x)f(x) = T \sum_{i} d(x - iT)f(iT)$$

- The multiplication yields and infinite sequence of values of the function at equally spaced points;
- Ideal reconstruction

Computing the convolution between the sample values above and a filter function

 $(III_T(x) f(x)) \otimes r(x)$

Aliasing

- The left: when the sampling rate is too low, the copies of the function's spectrum overlap
- The right: resulting in aliasing when reconstruction is performed.

Antialiasing

- Antialiasing = preventing aliasing
- 1.Analytically prefitler the signal
- Filter the original function so that no high frequencies remain
- 2. Uniform supersampling and resample
 Increasing the sampling rate;
- 3.Nonuniform or stochastic sampling
 Varying the spacing between samples in a nonuniform way.

Reflection Models

BRDF

Bidirectional reflectance distribution function

BTDF

Bidirectional transmission distribution function

BSDF

Bidirectional scatter distribution function Combine the above two functions

 Types of reflection functions Ideal specular **Reflection law** Mirror Ideal diffuse Lambert's law Specular Glossy **Directional diffuse**

Reflection equation

$$L_r(x,\omega_r) = \int_{H^2} f_r(x,\omega_i \to \omega_r) L_i(x,\omega_i) \cos \theta_i \, d\omega_i$$

- Reflection and refraction
- Laws
- Lr=kdLicos?;
- ?_isin?_i=?_tsin?_t

Microfacet models Distribution of facets + BRDF from individual microfacets.

Self-shadowing

shadows on rough surface

