
CS 563 Advanced Topics in
Computer Graphics

Noise

by Dmitriy Janaliyev

Outline

§ Introduction
§ Noise functions
§ Perlin noise
§ Random Polka Dots
§ Spectral synthesis
§ Fractional Brownian Motion function
§ Turbulence function
§ Bumpy and Wrinkled textures
§ Windy waves
§ Marble
§ Worley noise

Introduction

§ It is often desirable to introduce controlled variation
to a process

§ Difficulty with procedural textures: we can’t just use
functions such as RandomFloat()

§ The problem is addressed with: Noise functions

Noise functions

§ General representation:
§
for n = 1, 2, 3,… without obvious repetition

§ Basic properties:
§ Should be band-limited (avoid higher frequencies

that are not allowed by Nyquist limit)
§ Exclude obvious repetition of returned values

]1,1[−→nR

Noise functions

§ Implementation
§ Based on the idea of an integer lattice over 3D

space
§ A value is associated with each integer (x,y,z)

position of the lattice
§ Given an arbitrary point in that space the 8

adjoining lattice values are found and interpolated
§ Result is a noise value for that particular point

§ Example
§ Value noise function

Noise functions

§ Implementation issues
§ Noise function should associate an integer lattice

point with the same value every time it is called
§ It is not practical to store values for all lattice

points – some mapping mechanism is required
§ Hash function can be used with lattice points to

look up parameters from a fixed-size table with
precomputed pseudorandom values

§ The idea of the lattice can be generalized to more
or less than 3 dimensions

Perlin Noise

§ Basic description:
§ A noise function introduced by Ken Perlin in 1985
§ Has value of 0 at all (x, y, z) integer lattice points
§ Variation comes from gradient vectors that are

associated with each point

§ Advantages:
§ Computationally efficient
§ Easy to implement

Perlin Noise

2D slice of noise function with four gradient vectors (scanned from
the pbrt book)

Perlin Noise

§ Implementation overview
float Noise(float x, float y, float z){

<Compute noise cell coordinates and offsets>
<Compute gradient weights>
<Compute trilinear interpolation of weights>

}

<Compute noise cell coordinates and offsets>
int ix = Floor2Int(x)
…
float dx = x – ix, dy = y – iy, dz = z - iz

Perlin Noise

Offsets of the real valued point from the origin of the cell

Perlin Noise

<Compute gradient weights>
ix &= (NOISE_PERM_SIZE – 1)
…
float w000 = Grad(ix, iy, iz, dx, dy, dz);
float w100 = Grad(ix+1, iy, iz, dx-1, dy, dz);
float w010 = Grad(ix, iy+1, iz, dx, dy-1, dz);
…

§ NoisePerm[NOISE_PERM_SIZE*2] - a fixed-size table with
precomputed values

§ Indexing into NoisePerm:
NoisePerm[NoisePerm[NoisePerm[ix] + iy] + iz]
(rather than NoisePerm[ix + iy + iz] for instance)

Perlin Noise

Dot product of vectors from the corners of the cell to the lookup point
with gradient vectors gives the influence of each gradient to the noise
value at that point (from the pbrt book)

Perlin Noise

<Compute trilinear interpolation of weights>
float wx = NoiseWeight(dx);
…
float x00 = Lerp(wx, w000, w100);
float x10 = Lerp(wx, w010, w110);
…
float y0 = Lerp(wy, x00, x10);
float y1 = Lerp(wy, x01, x11);
return Lerp(wz, y0, y1);

float NoiseWeight(float t) – smoothing function

Perlin Noise

Trilinear interpolation of adjacent points using Lerp() in 7 steps

Perlin Noise

http://freespace.virgin.net/hugo.elias/models/m_perlin.htm

companion CD-ROM of the pbrt book

Perlin Noise

http://escience.anu.edu.au

http://paintdotnet.12.forumer.co
m/viewtopic.php?t=1971

some more noise clouds

Ken Perlin’s demo

Random Polka Dots

§ (s, t) texture space is divided into cells
§ Each cell has a 50% chance of a dot inside of it
§ Dots are randomly placed inside their cells
§ Both dots and “empty space” are represented by

textures

§ Presence or absence of a dot at a particular cell is
defined by Noise() function

§ Noise() function is also used to specify the offset of
the dot from the center of the cell

Random Polka Dots

Polka Dots texture applied to pbrt’s Quadric Shapes
(from companion CD-ROM of the pbrt book)

Spectral Synthesis

§ The fact that the noise function is a band-limited allows to create
a noise function with a desired rate of variation

§ Spectral synthesis – representation of a complex function fs(s) by
a sum of weighted contributions from another function f(x):

§ Parameter scales si are generally chosen in a geometric
progression, such that si = 2si-1 and weights wi = wi-1/2

§ Each term in the summation is called octave of noise

∑=
i

iis xsfwxf)()(

Fractional Brownian Motion

§ When spectral synthesis is used with Perlin noise the
result is referred to as Fractional Brownian motion
(FBm)

§ Advantages:
§ Allows to vary level of noise returned by the function
§ Easy to compute and implement
§ Well-defined frequency content

§ Implementation:
float FBm(const Point& P, const Vector& dpdx, const Vector&
dpdy, float omega, int maxOctaves){

<Compute number of octaves for antialiased FBm>
<Compute sum of octaves of noise for FBm>
return sum;

}

Fractional Brownian Motion

§ Antialiasing the FBm function is based on clamping – ignoring
those components of the summation that have frequencies
beyond Nyquist limit and using average values instead

§ Maximum frequency content for the Noise() function is
§ Given a sampling rate s we need to find number of terms n

such that:

1=ω

222 == ωsn

s
n 1

2 1 =−







=−

s
n

1
log1

)log(
2
1

1 2sn −=

Fractional Brownian Motion

<Compute number of octaves for antialiased FBm>
float foctaves = min(maxOctaves, 1 – 0.5*Log2(s*s));
int octaves = Floor2Int(foctaves);

<Compute sum of octaves of noise for FBm>
float sum = 0., lambda = 1., o = 1.;
for(int i = 0; i < octaves; i++){

sum += o*Noise(lambda*P);
lambda *= 1.99;
o *= omega;

}
float partialOct = foctaves – octaves;
sum += o*SmoothStep(0.3, 0.7, partialOct)*Noise(lambda*P);

Fractional Brownian Motion

Graphs of the FBm functions with 2 and 6 octaves of noise
respectively (from the pbrt book)

Turbulence function

§ Similar to FBm, but uses absolute values of the Noise
function:

§ Taking absolute values introduces first-derivative
discontinuities in the resulting function which leads
to infinitely high frequency content and makes
antialiasing techniques not that effective

∑=
i

iis xsfwxf)()(

Turbulence function

§ Implementation
same as FBm’s but taking absolute values of Noise()

<Compute sum of octaves of noise for turbulence>
float sum = 0., lambda = 1., o = 1.;
for(int i = 0; i < octaves; i++){

sum += o*fabs(Noise(lambda*P));
lambda *= 1.99;
o *= omega;

}
float partialOct = foctaves – octaves;
sum +=
o*SmoothStep(0.3,0.7,partialOct)*fabs(Noise(lambda*P));

Turbulence function

Graphs of the Turbulence functions with 2 and 6 octaves of noise
respectively (from the pbrt book)

Bumpy and Wrinkled
textures

§ The FBm and Turbulence functions can be used to
compute offsets for bump maps

§ In PBRT FBmTexture uses FBm for bump mapping
and WrinkledTexture uses Turbulence for the same
purposes

Bumpy and Wrinkled
textures

FBmTexture and WrinkledTexture used for bump mapping of a sphere
(from companion CD-ROM for the pbrt book)

Windy waves

§ FBm can be used to create textures of windy waves
§ In PBRT WindyTexture class employs FBm function

twice to generate texture of realistic water surface
§ The first call to FBm is used to get local variation of

wind strength
§ The second call to FBm determines amplitude of the

wave at the particular point
§ The product of these two values is returned by

Evaluate function as actual wave offset for a
particular point

Windy waves

Waves created with WindyTexture
(from companion CD-ROM for the pbrt book)

Marble

§ Marble material can be represented as a series of a
layered strata

§ Noise is then used to perturb coordinates that are
used to look up color values among the strata

MarbleTexture perturbs the coordinate used to index table of colors with
FBm function (from companion CD-ROM for the pbrt book)

Worley Noise

§ In 1996 Steven Worley introduced “Cellular texture
based function”

§ Basic idea
§ In 3D space n points are randomly chosen – feature

points
§ Given arbitrary point x the function F1(x) - distance between

point x and the closest feature point. F2(x) - distance from x
to the second closest feature point and so on

§ Values, returned by functions Fn(x) are mapped to color or
texture coordiantes

Worley Noise

§ Implementation
§ 3D space is partitioned into cubes with faces at integers
§ Given a point p with real coordinates (x, y, z) the index of

the cube that the point lies inside is floor of x, y and z
§ Index of the cube is used to seed a random number

generator
§ The random number is then used for a number of feature

points inside the cube
§ The random number generator is used again to find

coordinates of those feature points
§ The distances from feature points to the lookup point are

calculated and sorted
§ Neighboring cubes should also be checked for presence of

feature points that are closer to p than those in the current
cube

Worley Noise

§ For the distance calculation different distance metrics can be
used:
§ Eucidean distance (“as-the-crow-flies”):

§ Manhattan distance (“city-block”):

§ Chebychev distance:

∑
=

−=
n

i
ii yxd

1

2)(

∑
=

−=
n

i
ii yxd

1

)(max iii yxd −=

Worley Noise

F1, F2 and F3 (from left to right) mapped to grayscale color. Euclidean
distance was used as distance metrics

Worley Noise

F1 mapped to grayscale color with Manhattan and Chebychev
distance metrics

Worley Noise

F2 – F1 is mapped to grayscale color with Euclidean, Manhattan and
Chebychev distances (from left to right)

Worley Noise

F1 was used to find components of a point p (x, y, z) that was then passed to
Perlin noise function. The result was mapped to grayscale color

Worley Noise

“Concentric rings” texture applied to different shapes

References

§ Matt Pharr, Greg Humphreys
“Physically Based Rendering from theory to
implementation”

§ Boonthanome Nouanesengsy
CSE 782 Lab 4:
http://www.cse.ohiostate.edu/~nouanese/782/lab4/

§ Ken Perlin
“Making noise”:
http://www.noisemachine.com/talk1/index.html

