CS 563 Advanced Topics In
Computer Graphics

by Emmanuel Agu




= Create a 2D picture of a 3D world
= Photorealistic: Indistinguishable from photo




= Movies

*= |nteractive entertainment
= Industrial design

= Architecture

= Demo products

= Virtual reality (games)




* |ngredients: Require good models for
= Light source (sky, light bulb, flourescent)

* Volume through which light travels (smoke, fog,
mist, water)

= Reflection at object surfaces (velvet, wood,
polished, rough, smooth)

= Old approach: Fudge it! (Phong’s shading)
= New approach:
= study light physics
= derive models
» Use physically-based models for rendering




uses physics to simulate the interaction between
matter and light, realism is primary goal

— L et
T e
F i . A
Rt ay
. i .
. L
1 3 ¥
e - B
i ]







= Why does the sky appear blue?
* Why does wet sand appear darker than dry sand?

= Why do iridescent surfaces (CD-ROM) appear to have
different colors when viewed in different directions ?

* Why do old and weathered surfaces appear different
from new ones?

= Why do rusted surfaces appear different from un-
rusted ones?

= Physically-based appearance models in computer
graphics try to use laws of physics to answer these
guestions




= Using physics-based appearance models to render:
* Humans (face, skin)
= Nature (water, trees, seashells)
= Animals (feathers, butterflies)




Models

Light and color
Light sources
Shapes

Materials
= |nterfaces: Reflection and texture models
= Medium: Atmospheric scattering models

Cameras
= Lens and film

Simulation

IHlumination




= Transformation/clipping and the graphics
pipeline
* Evans and Sutherland
= Hidden line and surface algorithms
= Sutherland, Sproull, Shumacker




= Simple shading and texturing
= Gouraud P interpolating colors
= Phong b Interpolating normals
= Blinn, Catmull, Williams b texturing




= Reflection and texture models
= Cook and Torrance b BRDF
= Perlin P Procedural textures
»= Cook, Perlin b Shading languages

= [llumination algorithms
= Whitted P Ray tracing
* Cohen, Goral, Wallace, Greenberg, Torrance
Nishita, Nakamae P Radiosity
= Kajiya b Rendering equation




Lighting




* The Rendering Equation

Given a scene consisting of geometric primitives with material

properties and a set of light sources, compute the illumination
at each point on each surface

= Challenges
* Primitives complex: lights, materials, shapes
* Infinite number of light paths

= How to solve it?

» Radiosity = Finite element
= Ray tracing ==  Monte Carlo




Surface Color




Surface Color

Diffuse Shading




No Shadows

Lighting Example:
Shadows

Shadows




Hard Shadows Soft Shadows
Point Light Source Area Light Source




Program of Computer Graphics
Cornell University







arry Moon and Domina Spencer (MIT), Lighting Design, 1948




Soft Shadows

Caustics —=




Jensen 1995







Mies Courtyard House with Curved Elements

Modeling: Stephen Duck; Rendering: Henrik Wann Jensen




Measured

Program of Computer Graphics

Simulated

Cornell University




Materials




| :

Ka 0.39 Kd 0. 46 Ks 0.82 Shin 0.75 Material Light Intensity 0.57

Plastic




| Clssccomputer
-

Ka 0.52 kKd 0O.00 Ks 0.82 Shin 0.10 Material Light Intensity 0.31

Brushed Copper




Plastic
Shiny Plastic

RenderMan

Rough Metal
Shiny Metal

Matte

From Apodaca and Gritz, Advanced RenderMan




Without self-shadowing With self-shadowing




Translucency

Surface Reflection

Subsurface Reflection







Water Flows on the
Venus




A Sense of TIme




Virtual Actors: Faces

Jensen,

Marschner,
Final Fantasy Levoy,
T;.'”lte di‘;;itai hemi:g Lse;lfr?hg%nai Fantasy film. Sq u ar e U SA H an rah an




Black

Virtual Actors: Hair




* |ridescent: Wavelength-dependent
phenomena




Fedkiw, Stam, Jensen 2001




Hogum Mountain
Sunrise and sunset

Modeling: 9am
Simon Premoze
William Thompson

Rendering:
Henrik Wann Jensen




S e A A e A e A A A A A ey







L
-——'-"'G————-

2




Image plane

H AN

M
















direct illumination







= Recursive ray tracing creates tree of rays

Eye ray

Object 3

22\




Cameras

-1lms

_ights

Ray-object intersection
Visibility

Surface scattering
Recursive ray tracing




Jagged edges

Hard shadows
Everything in focus
Objects completely still
Surfaces perfectly shiny
Glass perfectly clear




» Distributed Ray Tracing
= Rob Cook, SIGGRAPH 84
» Replace single ray with distribution of rays

= Not just fat ray through pixel, but fat rays everywhere

= Cast Multiple

= Eye rays

= Shadow rays

= Reflection rays
= Refraction rays

= Supersampling
= Cast multiple rays from eye

through different parts of same pixel




= Motion blur
= Cast multiple rays from eye
through same point in each pixel
= Each of these rays intersects
the scene at a different time
= Reconstruction filter controls
shutter speed, length

= Depth of Field
= Better simulation of camera model
= f-stop
= focus

= QOthers (soft shadow, glossy, etc)




Jensen EGRW 95, 96
Simulates the transport of individual photons

Two parts. First

= Photons emitted from source
= Photons deposited on surfaces

Secondly:
= Photons reflected from
surfaces to other surfaces
= Photons collected by rendering

Good for:

= Light through water
= Cloud illumination
= Marble




Photon mapping examples

Images: courtesy of Stanford rendering
contest




= Dr. Emmanuel Agu (professor, “Emmanuel”)
= Research areas

= Computer Graphics (appearance modeling, etc)

= Mobile Computing (mobile graphics), wireless networks
= Research opportunities

= MQP

= MS theses

= PhD theses




= No official prerequisite

= However, will assume you
= Can program in C++
» Have basic knowledge of data structures and algorithms
» Have taken at least one graphics class (4731, 543)

= can understand text, graphics papers (book gives good
coverage + Discussions in class)

= Can fill in gaps (extra work) if required

* Linear algebra, probability, compilers

= Can learn and use rendering package (Maya, Studio Max)
= Questions? See me




= http://www.cs.wpi.edu/~emmanuel/courses/cs563/
= Office hours:

= Monday: 3:00-4:00 Thursday: 3:00-4:00

* Note: Please use office hours or book appointments first
* Important: All questions on myWPI

= Email to make appointment or ask questions specific to
you




Physically Based Rendering from
Theory to Implementation,

by Matt Pharr and Greg Humphreys

=7 . .
1 » Authors have experience in ray
PHVSICALLY BASED  tracing

RENDERING

» Text Condenses lots of state-of-
the art theory + code +
explanation of code

= Complete code, more concrete

= Kq W  ="'1::'\ | =Plug-in architecture
= \th J\ Wi Jﬂ‘ﬁ‘l L NIV i g

e P o B _'at-:--.r 't'ﬂ




= A programming paradigm proposed by Knuth
when he was developing Tex.

= Programs should be written more for people’s
consumption than for computers’ consumption.

= Entire book is a long literate program. When you
read book, you also read a complete program.

e wEAve et TeX —| documant

weh e

ohject
code

L+ tangle —+ compiler —

Pra::essing d WEB




Mix prose with source: description of the code is
as important as the code itself

Allow presenting the code to the reader in a
different order than to the compiler

Easy to make index

Traditional text comments usually not enough,
especially for graphics

This decomposition lets us present code a few
lines at a time, making it easier to understand.

It looks more like pseudo code.




void I nitd obal s(voi d){
num nmar bl es = 25. 7;
shoe size = 13;
dielectric = true;
ny_senat or = REPUBLI CAN,

= Consider function

= Problem? Are these types double, int, etc.
= May be defined elsewhere. Unsuitable for human




Solution: define function in fragments

<Function Definitions>=
void Initd obal s( ){
< |lnitialize dobal Vari ables 3>

Insert explanation here

<Initialize d obal Vari abl es>=
shoe size = 13;

Insert explanation here

<Initialize d obal Vari abl es>+=
dielectric = true;




= Plug-in architecture

= Core code performs the main flow and
defines the interfaces to plug-ins. Necessary
modules are loaded at run time as DLLs, so
that it is easy to extend the system.

= mal n() In renderer/pbrt.cpp




pbri supports 13 types of plug-in objects that can be loaded at run time based

cnthe contents of the scene description file. The systam can be extended with new plug-ins, without
needing to ke recompiled itsalf.

Base class Directory@ Section
Shape shapes/ 3.1
Frimitive accalerators/ 4.1
Camera cameras, 6.1
Film film/ 8.1
Filter filters/ 7.6
Sampler samplers/ 7.2
ToneMap tanemaps/ 8.4
Material naterials/ 10.2
Texture textures/ 11.3
VolumeReglon volumes/ 12.3
Light lights/ 13.1
Surfacelntegrator fntegrators/ 16
Volumelntegrator integrators/ 17




= Parsing: uses lex and yacc: core/pbrtlex.l and
core/pbrtparse.y

= After parsing, a scene object is created
(core/scene.*)

= Rendering: Scene: : Render () Is invoked.

[ Sampler ] | Camera

Sample

Scene::Render( ) J{ ’[ Integrators
Radiance

Radiance




Understand state-of-the-art techniques and literature
for photorealistic rendering

Learn from working code

Hands-on exploration of one of the
models/techniques encountered.

Work with cutting edge ray tracer

Possibly extend one of ray tracer (write plug in) to
handle new effect/feature




High Dynamic Range Lighting
Reflection/refraction
Texture Mapping
Motion Blur, Depth of Field
= Distributed Ray-Tracing

Ray tracing acceleration Techniques (kd-trees, BVH,
uniform grid)

Sub-surface scattering (skin, milk, marble)

Monte Carlo ray tracing

Sampling and reconstruction




= Literate programming

= Lex and yacc?

» Object-oriented design
= C++ programming

= Code optimization tricks
= Modeling Techniques




= WPI graduate course reguirements
= Masters, PhD, grad course requirements

= WPI research requirements
= Want to do research in graphics (MS, PhD theses)

= Work in graphics
= Rendering
= Animation, etc.
Hobbyist
= Want to build cooler stuff
» Understand more how visual effects, etc happen




= Grading

* Presentations (2) (40%)
= Class participation (10%)
* Projects (50%)
= Assigned projects +
= Final project: Rendering contest

Class Time:
= 2 halves with 10 minutes break
Each half

= 45 minute presentation
= 30 minute discussion of topic(s) and questions




Previous versions of class
= Students chose any topics/papers they liked
= Students tend to pick what's easy
= Sometimes big picture lost

This version..

= Learn how state-of-the-art physically-based rendering
techniques

= Focus on coverage in text

= Book provides full-blown physically-based ray tracer (PBRT),
description, concrete implementation

= Projects will focus on using and modifying PBRT




Goal is to teach you how to present effectively
| will be strict with time (Good practice!!)

Try to teach concepts carefully, don’t just recite
Communicate basic ideas to fellow students
Offer a ‘roadmap’ for studying assigned section

This week: Skim text
= Next week: pick sections you want to present

Note: can use any resources to build your talk. Must give
credit, references. If not.. Cheating!!!




Common mistakes:

* Avoid: putting too much on a slide (talk!!)
* Too many slides for alloted time (2-3 mins/slide)

First two student presentations in two weeks:




»= Before next class
* Read chapters 1 -2
» Many concepts familiar to CS 543 students

* |f you did not take CS 543 with me, skim

= Ray tracing chapter: F.S Hill, “Computer Graphics Using
OpenGL”, 2" edition, Prentice Hall, 2000

= Homework O
* Download and install pbrt
* Run several examples




Use some of techniques discussed to render
photorealistic image

You propose what you want to do

Use high end package

= Maya

* Renderman

» Blender

= PovRay, etc

Must submit proposal by March 31st, 2007
Ideas?? See Stanford rendering competition

http://graphics.stanford.edu/courses/cs348b-
competition/




= Pat Hanrahan, CS 348B, Spring 2005 class slides

* Yung-Yu Chuang, Image Synthesis, class slides,
National Taiwan University, Fall 2005

= Kutulakos K, CSC 2530H: Visual Modeling, course
slides

= UIUC CS 319, Advanced Computer Graphics Course
slides




