
CS 563 Advanced Topics in
Computer Graphics

by Emmanuel Agu

What is Rendering?

§ Create a 2D picture of a 3D world
§ Photorealistic: Indistinguishable from photo

Applications

§ Movies
§ Interactive entertainment
§ Industrial design
§ Architecture
§ Demo products
§ Virtual reality (games)

High Quality Rendering

§ Ingredients: Require good models for
§ Light source (sky, light bulb, flourescent)
§ Volume through which light travels (smoke, fog,

mist, water)
§ Reflection at object surfaces (velvet, wood,

polished, rough, smooth)

§ Old approach: Fudge it! (Phong’s shading)
§ New approach:
§ study light physics
§ derive models
§ Use physically-based models for rendering

Physically-based
rendering

uses physics to simulate the interaction between
matter and light, realism is primary goal

What can we model?

Physically-based
Appearance Models

§ Why does the sky appear blue?
§ Why does wet sand appear darker than dry sand?
§ Why do iridescent surfaces (CD-ROM) appear to have

different colors when viewed in different directions ?
§ Why do old and weathered surfaces appear different

from new ones?
§ Why do rusted surfaces appear different from un-

rusted ones?
§ Physically-based appearance models in computer

graphics try to use laws of physics to answer these
questions

Physically-Based
Appearance Modeling

§ Using physics-based appearance models to render:
§ Humans (face, skin)
§ Nature (water, trees, seashells)
§ Animals (feathers, butterflies)

Modeling & Simulating
Appearance

§ Models
§ Light and color
§ Light sources
§ Shapes
§ Materials
§ Interfaces: Reflection and texture models
§ Medium: Atmospheric scattering models

§ Cameras
§ Lens and film

§ Simulation
§ Illumination

History: Geometric
Aspects First

§ Transformation/clipping and the graphics
pipeline
§ Evans and Sutherland

§ Hidden line and surface algorithms
§ Sutherland, Sproull, Shumacker

History: Simple Shading

§ Simple shading and texturing
§ Gouraud ⇒ interpolating colors
§ Phong ⇒ interpolating normals
§ Blinn, Catmull, Williams ⇒ texturing

History: Optical Aspects
Second

§ Reflection and texture models
§ Cook and Torrance ⇒ BRDF
§ Perlin ⇒ Procedural textures
§ Cook, Perlin ⇒ Shading languages

§ Illumination algorithms
§ Whitted ⇒ Ray tracing
§ Cohen, Goral, Wallace, Greenberg, Torrance

Nishita, Nakamae ⇒ Radiosity
§ Kajiya ⇒ Rendering equation

Lighting

Lighting Simulation

§ The Rendering Equation
Given a scene consisting of geometric primitives with material
properties and a set of light sources, compute the illumination
at each point on each surface

§ Challenges
§ Primitives complex: lights, materials, shapes
§ Infinite number of light paths

§ How to solve it?
§ Radiosity Finite element
§ Ray tracing Monte Carlo

Lighting Example:
Cornell Box

Hard Shadows

Caustics Indirect Illumination
Surface Color

Lighting Example:
Diffuse Reflection

Surface Color Diffuse Shading

Lighting Example:
Shadows

No Shadows Shadows

Lighting Example: Soft
Shadows

Hard Shadows
Point Light Source

Soft Shadows
Area Light Source

Radiosity: Indirect
Illumination

Simulated

Program of Computer Graphics
Cornell University

Early Radiosity

Early, Early Radiosity

Parry Moon and Domina Spencer (MIT), Lighting Design, 1948

Lighting Effects: Glossy
Materials

Hard Shadows Soft Shadows

Caustics Indirect Illumination

Caustics

Jensen 1995

Complex lighting

Complex Indirect
Illumination

Modeling: Stephen Duck; Rendering: Henrik Wann Jensen

Mies Courtyard House with Curved Elements

Radiosity: “Turing Test”

Measured Simulated

Program of Computer Graphics
Cornell University

Materials

Plastic

Classic Computer
Graphics Model

Brushed Copper

Classic Computer
Graphics Model

Material Taxonomy

Plastic
Shiny Plastic

Rough Metal
Shiny Metal

Matte

From Apodaca and Gritz, Advanced RenderMan

RenderMan

Shadows on Rough
Surfaces

Without self-shadowing With self-shadowing

Translucency

Surface Reflection Subsurface Reflection

Translucent objects

Water Flows on the
Venus

Patinas

A Sense of TIme

Final Fantasy
SquareUSA

Virtual Actors: Faces

Jensen,
Marschner,
Levoy,
Hanrahan

Virtual Actors: Hair

Black Brown

Refraction/dispersion

§ Iridescent: Wavelength-dependent
phenomena

Coupling Modeling &
Rendering

Fedkiw, Stam, Jensen 2001

Clouds and Atmospheric
Phenomena

7am

9am

6:30pm

Hogum Mountain
Sunrise and sunset

Modeling:
Simon Premoze
William Thompson

Rendering:
Henrik Wann Jensen

Vegetation

Texture and complex
materials

Pinhole camera

Introduction to ray
tracing

Ray Casting (Appel, 1968)

Ray Casting (Appel, 1968)

Ray Casting (Appel, 1968)

Ray Casting (Appel, 1968)

() ()()∑
=

⋅+⋅+
nls

i

n
isidiaa VRkNLkIIk

1

Ray Casting (Appel, 1968)

direct illumination

Recursive ray tracing
(Whitted, 1980)

§ Recursive ray tracing creates tree of rays

Ray tracer components

§ Cameras
§ Films
§ Lights
§ Ray-object intersection
§ Visibility
§ Surface scattering
§ Recursive ray tracing

Why Ray Tracing Looks
Fake/Effects

§ Jagged edges
§ Hard shadows
§ Everything in focus
§ Objects completely still
§ Surfaces perfectly shiny
§ Glass perfectly clear

Why Ray Tracing Looks
Fake

§ Distributed Ray Tracing
§ Rob Cook, SIGGRAPH 84
§ Replace single ray with distribution of rays
§ Not just fat ray through pixel, but fat rays everywhere
§ Cast Multiple

§ Eye rays
§ Shadow rays

§ Reflection rays
§ Refraction rays

§ Supersampling
§ Cast multiple rays from eye

through different parts of same pixel

Why Ray Tracing Looks
Fake

§ Motion blur
§ Cast multiple rays from eye

through same point in each pixel
§ Each of these rays intersects

the scene at a different time
§ Reconstruction filter controls

shutter speed, length

§ Depth of Field
§ Better simulation of camera model
§ f-stop
§ focus

§ Others (soft shadow, glossy, etc)

Photon Mapping

§ Jensen EGRW 95, 96
§ Simulates the transport of individual photons
§ Two parts. First
§ Photons emitted from source
§ Photons deposited on surfaces

§ Secondly:
§ Photons reflected from

surfaces to other surfaces
§ Photons collected by rendering

§ Good for:
§ Light through water
§ Cloud illumination
§ Marble

Rendering Techniques

§ Photon mapping examples

Images: courtesy of Stanford rendering
contest

Professor Background

§ Dr. Emmanuel Agu (professor, “Emmanuel”)
§ Research areas
§ Computer Graphics (appearance modeling, etc)
§ Mobile Computing (mobile graphics), wireless networks

§ Research opportunities
§ MQP
§ MS theses
§ PhD theses

Course Prerequisites

§ No official prerequisite
§ However, will assume you
§ Can program in C++
§ Have basic knowledge of data structures and algorithms
§ Have taken at least one graphics class (4731, 543)
§ can understand text, graphics papers (book gives good

coverage + Discussions in class)
§ Can fill in gaps (extra work) if required
§ Linear algebra, probability, compilers
§ Can learn and use rendering package (Maya, Studio Max)

§ Questions? See me

Syllabus

§ http://www.cs.wpi.edu/~emmanuel/courses/cs563/
§ Office hours:
§ Monday: 3:00-4:00 Thursday: 3:00-4:00
§ Note: Please use office hours or book appointments first

§ Important: All questions on myWPI
§ Email to make appointment or ask questions specific to

you

Textbook

Physically Based Rendering from
Theory to Implementation,
by Matt Pharr and Greg Humphreys

§Authors have experience in ray
tracing

§Text Condenses lots of state-of-
the art theory + code +
explanation of code

§Complete code, more concrete
§Plug-in architecture

Literate programming

§ A programming paradigm proposed by Knuth
when he was developing Tex.

§ Programs should be written more for people’s
consumption than for computers’ consumption.

§ Entire book is a long literate program. When you
read book, you also read a complete program.

Literate Programming
Features

§ Mix prose with source: description of the code is
as important as the code itself

§ Allow presenting the code to the reader in a
different order than to the compiler

§ Easy to make index
§ Traditional text comments usually not enough,

especially for graphics
§ This decomposition lets us present code a few

lines at a time, making it easier to understand.
§ It looks more like pseudo code.

Literate Programming
Example

§ Consider function

void InitGlobals(void){
num_marbles = 25.7;
shoe_size = 13;
dielectric = true;
my_senator = REPUBLICAN;

}

§ Problem? Are these types double, int, etc.
§ May be defined elsewhere. Unsuitable for human

Literate Programming
Example

§ Solution: define function in fragments

§ <Function Definitions>=
void InitGlobals(){

< Initialize Global Variables 3>

Insert explanation here

§ <Initialize Global Variables>=
shoe_size = 13;

Insert explanation here

§ <Initialize Global Variables>+=
dielectric = true;

pbrt

§ Plug-in architecture
§ Core code performs the main flow and

defines the interfaces to plug-ins. Necessary
modules are loaded at run time as DLLs, so
that it is easy to extend the system.
§ main() in renderer/pbrt.cpp

pbrt plug-ins

PBRT Flow

§ Parsing: uses lex and yacc: core/pbrtlex.l and
core/pbrtparse.y

§ After parsing, a scene object is created
(core/scene.*)

§ Rendering: Scene::Render() is invoked.

(generates sample positions
for eye rays and integrators)

Course Objectives

§ Understand state-of-the-art techniques and literature
for photorealistic rendering

§ Learn from working code
§ Hands-on exploration of one of the

models/techniques encountered.
§ Work with cutting edge ray tracer
§ Possibly extend one of ray tracer (write plug in) to

handle new effect/feature

Sample Course Topics

§ High Dynamic Range Lighting
§ Reflection/refraction
§ Texture Mapping
§ Motion Blur, Depth of Field
§ Distributed Ray-Tracing

§ Ray tracing acceleration Techniques (kd-trees, BVH,
uniform grid)

§ Sub-surface scattering (skin, milk, marble)
§ Monte Carlo ray tracing
§ Sampling and reconstruction

Computer Skills to learn?

§ Literate programming
§ Lex and yacc?
§ Object-oriented design
§ C++ programming
§ Code optimization tricks
§ Modeling Techniques

Why This Class?

§ WPI graduate course requirements
§ Masters, PhD, grad course requirements

§ WPI research requirements
§ Want to do research in graphics (MS, PhD theses)

§ Work in graphics
§ Rendering
§ Animation, etc.

§ Hobbyist
§ Want to build cooler stuff
§ Understand more how visual effects, etc happen

Course Structure

§ Grading
§ Presentations (2) (40%)
§ Class participation (10%)
§ Projects (50%)
§ Assigned projects +
§ Final project: Rendering contest

§ Class Time:
§ 2 halves with 10 minutes break
§ Each half
§ 45 minute presentation
§ 30 minute discussion of topic(s) and questions

About This Course

§ Previous versions of class
§ Students chose any topics/papers they liked
§ Students tend to pick what’s easy
§ Sometimes big picture lost

§ This version..
§ Learn how state-of-the-art physically-based rendering

techniques
§ Focus on coverage in text
§ Book provides full-blown physically-based ray tracer (PBRT),

description, concrete implementation
§ Projects will focus on using and modifying PBRT

Presentations

§ Goal is to teach you how to present effectively
§ I will be strict with time (Good practice!!)
§ Try to teach concepts carefully, don’t just recite
§ Communicate basic ideas to fellow students
§ Offer a ‘roadmap’ for studying assigned section
§ This week: Skim text
§ Next week: pick sections you want to present

§ Note: can use any resources to build your talk. Must give
credit, references. If not.. Cheating!!!

Presentations

§ Common mistakes:
§ Avoid: putting too much on a slide (talk!!)
§ Too many slides for alloted time (2-3 mins/slide)

§ First two student presentations in two weeks:

To do

§ Before next class
§ Read chapters 1 –2
§ Many concepts familiar to CS 543 students
§ If you did not take CS 543 with me, skim
§ Ray tracing chapter: F.S Hill, “Computer Graphics Using

OpenGL”, 2nd edition, Prentice Hall, 2000

§ Homework 0
§ Download and install pbrt
§ Run several examples

Final Project

§ Use some of techniques discussed to render
photorealistic image

§ You propose what you want to do
§ Use high end package
§ Maya
§ Renderman
§ Blender
§ PovRay, etc

§ Must submit proposal by March 31st, 2007
§ Ideas?? See Stanford rendering competition
§ http://graphics.stanford.edu/courses/cs348b-

competition/

References/Shamelessly
stolen

§ Pat Hanrahan, CS 348B, Spring 2005 class slides
§ Yung-Yu Chuang, Image Synthesis, class slides,

National Taiwan University, Fall 2005
§ Kutulakos K, CSC 2530H: Visual Modeling, course

slides
§ UIUC CS 319, Advanced Computer Graphics Course

slides

