Digital Image Processing (CS/ECE 545) Lecture 1: Introduction to Image Processing and ImageJ

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

What is an Image?

2-dimensional matrix of Intensity (gray or color) values

F(x,y)

I(u, v)

Example of Digital Images

- a) Natural landscape
- b) Synthetically generated scene
- c) Poster graphic
- d) Computer screenshot
- e) Black and white illustration
- f) Barcode
- g) Fingerprint
- h) X-ray
- i) Microscope slide
- i) Satellite Image
- k) Radar image
- Astronomical object

Example: a camera Converts light to image

Credits: Gonzales and Woods

Digital Image?

•Remember: digitization causes a digital image to become an approximation of a real scene

Real image

Digital Image (an approximation)

Real image

Digital Image (an approximation)

Digital Image

- Common image formats include:
 - 1 values per point/pixel (B&W or Grayscale)
 - 3 values per point/pixel (Red, Green, and Blue)
 - 4 values per point/pixel (Red, Green, Blue, + "Alpha" or Opacity)

Grayscale

RGB

We will start with gray-scale images, extend to color later

What is image Processing?

- Algorithms that alter an input image to create new image
- Input is image, output is image

- Improves an image for human interpretation in ways including:
 - Image display and printing
 - Image editting
 - Image enhancement
 - Image compression

Example Operation: Noise Removal

Noisy Image

Denoised Image

Think of noise as white specks on a picture (random or non-random)

Examples: Noise Removal

Example: Contrast Adjustment

Low Contrast

Original Contrast

High Contrast

Example: Edge Detection

Example: Region Detection, Segmentation

Example: Image Compression

Original, 2.1MB

JPEG Compression, 308KB (15%)

Damaged Image

Restored Image

Credit: M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester: Image Inpainting, SIGGRAPH 2000

Inpainting? Reconstruct corrupted/destroyed parts of an image

Examples: Artistic (Movie Special)Effects

Biology

Credit: Dartmouth Electron Microscopy Facility

Astronomy

Credit: NASA, Jeff Hester, and Paul Scowen (Arizona State) More info here

Applications of Image Processing

Medicine

Applications of Image Processing: Medicine

Applications of Image Processing

Satellite Imagery

Credit: NASA

Personal Photos

Credit: Tom Fletcher

Applications of Image Processing: Geographic Information Systems (GIS)

- Terrain classification
- Meteorology (weather)

Applications of Image Processing: Law Enforcement

- Number plate recognition for speed cameras or automated toll systems
- Fingerprint recognition

Applications of Image Processing: HCI

- Face recognition
- Gesture recognition

Computer Vision

Object detection, recognition, shape analysis, tracking Use of Artificial Intelligence and Machine Learning

Image Analysis

Segmentation, image registration, matching

Low-level

Image Processing

Image enhancement, noise removal, restoration, feature detection, compression

Key Stages in Digital Image Processing

Key Stages in Digital Image Processing: Image Aquisition

Key Stages in Digital Image Processing: Image Enhancement

Key Stages in Digital Image Processing: Image Restoration

Key Stages in Digital Image Processing:

Key Stages in Digital Image Processing: Segmentation

Key Stages in Digital Image Processing: Object Recognition

Key Stages in Digital Image Processing: Representation & Description

Key Stages in Digital Image Processing: Image Compression

Key Stages in Digital Image Processing: Colour Image Processing

Mathematics for Image Processing

- Calculus
- Linear algebra
- Probability and statistics
- Differential Equations (PDEs and ODEs)
- Differential Geometry
- Harmonic Analysis (Fourier, wavelet, etc)

About This Course

- Image Processing has many aspects
 - Computer Scientists/Engineers develop tools (e.g. photoshop)
 - Requires knowledge of maths, algorithms, programming
 - Artists use image processing tools to modify pictures
 - DOES NOT require knowledge of maths, algorithms, programming

Example: Portraiture photoshop plugin

Example: Knoll Light Factory photoshop plugin

Example: ToonIt photoshop plugin

About This Course

- Most hobbyists follow artist path. Not much math!
- This Course: Image Processing for computer scientists and Engineers!!!
- Teaches concepts, uses ImageJ as concrete example
- ImageJ: Image processing library
 - Includes lots of already working algorithms,
 - Can be extended by programming new image processing techniques
- Course is NOT
 - just about programming ImageJ
 - a comprehensive course in ImageJ. (Only parts of ImageJ covered)
 - about using packages like Photoshop, GIMP

About This Course

- Class is concerned with:
 - How to implement image processing algorithms
 - Underlying mathematics
 - Underlying algorithms
- This course is a lot of work. Requires:
 - Lots of programming in Java (maybe some MATLAB)
 - Lots of math, linear systems, fourier analysis

Administrivia: Syllabus Summary

- 2 Exams (50%), 5 Projects (50%)
- Projects:
 - Develop ImageJ Java code on any platform but must work in Zoolab machine
 - May discuss projects but turn in individual projects
- Class website: http://web.cs.wpi.edu/~emmanuel/courses/cs545/S14/
- Text:
 - Digital Image Processing: An Algorithmic Introduction using Java by Wilhelm Burger and Mark J. Burge, Springer Verlag, 2008
- Cheating: Immediate 'F' in the course
- My advice:
 - Come to class
 - Read the text
 - Understand concepts before coding

Light And The Electromagnetic Spectrum

- •Light: just a particular part of electromagnetic spectrum that can be sensed by the human eye
- The electromagnetic spectrum is split up according to the wavelengths of different forms of energy

- The colours humans perceive are determined by nature of light reflected from an object
- •For example, if white light (contains all wavelengths) is shone onto green object it absorbs most wavelengths absorbed except green wavelength (color)

Electromagnetic Spectrum and IP

Images can be made from any form of EM radiation

From Wikipedia

Images from Different EM Radiation

- Radar imaging (radio waves)
- Magnetic Resonance Imaging (MRI) (Radio waves)
- Microwave imaging
- Infrared imaging
- Photographs
- Ultraviolet imaging telescopes
- X-rays and Computed tomography
- Positron emission tomography (gamma rays)
- Ultrasound (not EM waves)

Human Visual System: Structure Of The Human Eye

The lens focuses light from objects onto the retina

 Retina covered with light receptors called cones (6-7 million) and rods (75-150 million)

 Cones concentrated around fovea. Very sensitive to colour

 Rods more spread out and sensitive to low illumination levels

- Muscles in eye can change the shape of the lens allowing us focus on near or far objects
- An image is focused onto retina exciting the rods and cones and send signals to the brain

- The Pinhole Camera (abstraction)
 - First described by ancient Chinese and Greeks (300-400AD)

Brightness Adaptation & Discrimination

- The human visual system can perceive approximately 10¹⁰ different light intensity levels
- However, at any one time we can only discriminate
 between a much smaller number brightness adaptation
- •Similarly, *perceived intensity* of a region is related to the light intensities of the regions surrounding it

Brightness Adaptation & Discrimination: Mach Band Effect

Perceived intensity overshoots or undershoots at areas of intensity change

Brightness Adaptation & Discrimination

All inner squares have same intensity but appear darker as outer square (surrounding area) gets lighter

Image Acquisition

Images typically generated by illuminating a scene and absorbing energy reflected by scene objects

Image Sensing

- Incoming energy (e.g. light) lands on a sensor material responsive to that type of energy, generating a voltage
- Collections of sensors are arranged to capture images

Array of Image Sensors

Spatial Sampling

- Cannot record image values for all (x,y)
- Sample/record image values at discrete (x,y)
- Sensors arranged in grid to sample image

Image (Spatial) Sampling

- A digital sensor can only measure a limited number of samples at a discrete set of energy levels
- Sampling can be thought of as:
 Continuous signal x comb function

Image Quantization

- Quantization: process of converting continuous analog signal into its digital representation
- Discretize image I(u,v) values
- Limit values image can take

Image Sampling And Quantization

Sampling and quantization generates
 approximation of a real world scene

After spatial sampling and quantization, an image is a discrete function. The image domain Ω is now discrete:

$$\Omega \subset \mathbb{N}^2$$
,

and so is the image range:

$$I:\Omega \to \{1,\ldots,K\},$$

where $K \in \mathbb{N}$.

Image as a Function

A simple image

Image function as a height field

- Image data structure is 2D array of pixel values
- Pixel values are gray levels in range 0-255 or RGB colors
- Array values can be any data type (bit, byte, int, float, double, etc.)

- The spatial resolution of an image is determined by how fine/coarse sampling was carried out
- Spatial resolution: smallest discernable image detail
 - Vision specialists talk about image resolution
 - Graphic designers talk about dots per inch (DPI)

Spatial Resolution

256

512

Images taken from Gonzalez & Woods, Digital Image Processing (2002)

Spatial Resolution: Stretched Images

Intensity Level Resolution

- •Intensity level resolution: number of intensity levels used to represent the image
 - The more intensity levels used, the finer the level of detail discernable in an image
 - Intensity level resolution usually given in terms of number of bits used to store each intensity level

Number of Bits	Number of Intensity Levels	Examples
1	2	0, 1
2	4	00, 01, 10, 11
4	16	0000, 0101, 1111
8	256	00110011, 01010101
16	65,536	1010101010101010

Intensity Level Resolution

Saturation & Noise

Saturation: highest intensity value above which color is washed out

Noise: grainy texture pattern

Resolution: How Much Is Enough?

- •The big question with resolution is always how much is enough?
 - Depends on what is in the image (details) and what you would like to do with it (applications)
 - Key questions:
 - Does image look aesthetically pleasing?
 - Can you see what you need to see in image?

Resolution: How Much Is Enough?

•Example: Picture on right okay for counting number of cars, but not for reading the number plate

Intensity Level Resolution

Low Detail N

Medium Detail

High Detail

Image File Formats

- Hundreds of image file formats. Examples
 - Tagged Image File Format (TIFF)
 - Graphics Interchange Format (GIF)
 - Portable Network Graphics (PNG)
 - JPEG, BMP, Portable Bitmap Format (PBM), etc.
- Image pixel values can be
 - Grayscale: 0 255 range
 - Binary: 0 or 1
 - Color: RGB colors in 0-255 range (or other color model)
 - Application specific (e.g. floating point values in astronomy)

How many Bits Per Image Element?

Grayscale (Intensity Images):

	•	,	
Chan.	Bits/Pix.	Range	Use
1	1	01	Binary image: document, illustration, fax
1	8	0255	Universal: photo, scan, print
1	12	04095	High quality: photo, scan, print
1	14	016383	Professional: photo, scan, print
1	16	065535	Highest quality: medicine, astronomy

Color Images:

Chan.	Bits/Pix.	Range	Use
3	24	$[0255]^3$	RGB, universal: photo, scan, print
3	36	$[04095]^3$	RGB, high quality: photo, scan, print
3	42	$[016383]^3$	RGB, professional: photo, scan, print
4	32	$[0255]^4$	CMYK, digital prepress

Special Images:

Chan.	Bits/Pix.	Range	Use
1	16	-3276832767	Whole numbers pos./neg., increased range
1	32	$\pm 3.4 \cdot 10^{38}$	Floating point: medicine, astronomy
1	64	$\pm 1.8 \cdot 10^{308}$	Floating point: internal processing

Introduction to ImageJ

- ImageJ: Open source Java Image processing software
- Developed by Wayne Rasband at Nat. Inst for Health (NIH)
 - Many image processing algorithms already implemented
 - New image processing algorithms can also be implemented easily
 - Nice click-and-drag interface

Wayne Rasband (right)

ImageJ: Key Features

- Interactive tools for image processing of images
 - Supports many image file formats (JPEG, PNG, GIF, TIFF, BMP, DICOM, FITS)
- Plug-in mechanism for implementing new functionality, extending ImageJ
- Macro language + interpreter: Easy to implement large blocks from small pieces without knowing Java

ImageJ Software Architecture

- ImageJ uses Java's windowing system (AWT) for display
- Programmer writes plugins to extend ImageJ

Already implemented plugins available through ImageJ's

plugins menu

ImageJ Plugins

- Plugins: Java classes that implement an interface defined by ImageJ
- Two types of plugins
 - Plugin: Requires no image to be open first
 - PlugInFilter: Passed currently open image, operates on it
- We will mostly focus on PlugInFilters
- Two methods defined
 - int setup(String arg, ImagePlus im):
 - Does initialization, verifies plugin capabilities matches input image
 - int run(ImageProcessor ip):
 - Does actual work. Passed image (ip), modifies it, creates new images

- Task: Invert 8-bit grayscale (M x N) image
- Basically, replace each image pixel with its complement

$$I(u,v) \leftarrow 255 - I(u,v)$$

- We shall call plugIn My_Inverter
 - Name of Java Class: My_Inverter
 - Name of source file: My_Inverter.java
 - "_" underscore makes ImageJ recognize source file as plugin
 - After compilation, automatically inserted into ImageJ menu

First ImageJ Example: Invert Image

```
1 import ij.ImagePlus;
2 import ij.plugin.filter.PlugInFilter;
3 import ij.process.ImageProcessor;
5 public class My_Inverter implements PlugInFilter {
 6
    public int setup (String arg, ImagePlus im) {
                                                                         Indicates plugIn handles
      return DOES_8G; // this plugin accepts 8-bit grayscale images <
                                                                         8-bit grayscale images
9
10
    public void run (ImageProcessor ip) {
11
                                                                          Retrieves width and
      int w = ip.getWidth();
12
                                                                          height of input image
      int h = ip.getHeight();
13
14
      // iterate over all image coordinates
15
      for (int u = 0; u < w; u++) {
16
                                                                      Loops over all image pixels
        for (int v = 0; v < h; v++) {
17
          int p = ip.getPixel(u, v);
18
                                                                    Sets each pixel to its compliment
          ip.putPixel(u, v, 255-p); // invert 
19
                                                                    (255 – original pixel value)
20
      }
21
22
23
24 } // end of class My_Inverter
```


- Place plugIn source code (My_Inverter.java) in subdirectory of ImageJ install location <ij>/plugins/
- Open grayscale image from samples (since plugin requires image to be open)
- 3. Compile in run plugin by going to menu

Plugins->Compile and Run...

- Note: On startup, ImageJ loads all plugins in the <ij>plugins/ sub-directory
- ImageJ can also be used with eclipse IDE (large programs)

References

- Wilhelm Burger and Mark J. Burge, Digital Image Processing, Springer, 2008
- University of Utah, CS 4640: Image Processing Basics,
 Spring 2012
- Gonzales and Woods, Digital Image Processing (3rd edition), Prentice Hall
- Digital Image Processing slides by Brian Mac Namee