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Introduction oo

Why we need to focus on the battery life of modern smartphones?

e1l. The user experience has been severely limited by the phone battery life

E.G.. A survey in May 2014 by research company GMI of 1000 Britons shows 89% rated
long battery life as an “important” factor when buying a new smartphone , which means
long battery life rated higher than all the other features.

e2. Find a available method to improve battery performance is critical
Understanding the energy drain model:
a. The energy drain of wireless interfaces such as WiFi or cellular
b. Different users set very different device configurations
c. Different users spend differing amounts of time each day on the phone.
d. Different users install and play with different apps on their devices
e. Different users can have very different usage patterns on a same App



Power Modeling for Phones

What a power model we need to do in this experiment:

1. It can be used to measure phones in the wild, not in lab

2. It can measure the energy drain of individual apps and services
concurrently running on the phone

3. It can only be collected by modifying the Android framework
or the kernel of the phones and should not rely on packet-level
trace.

4. |t can incorporate different uses’ behaviors such as WiFi
beaconing, cellular paging and SOC suspicion.(SOC is short for
System on a Chip, an integrated circuit that combines all the
primary components of a mobilephone into a single chip)



Modeling Overview

Model trigger

Hardware component
power draw
CPU frequency + utilization
GPU frequency + utilization
Screen brightness level
Wiki FSM + signal strength
3G/LTE FSM + signal strength
WikF1 beacon Wik status
Cellular Paging cellular status
SOC Suspension constant

eThe set of components showing significant power draw on Galaxy S3 and S4
eOur model described which assumes different components are independent



Modeling Details

e CPU: Using CPU microbenchmarks to achieve the relation:

ship

between the CPU power draw and CPU operating frequency

Core 1 (MHz
Core 0 (MHz) 5571301 81((3 1%)26 1247 T 1512
384 296 744 | 766 | 818 | 873 | 977 | 1047
504 359 | 766 | 814 | 866 | 921 | 1036 | 1103
$10 411 | 818 | 866 | 918 | 973 | 1030 | 1154
1076 355 1§73 [ 921 | 977 [ 1020 | 1136 | 1217
1242 555 | 981 | 1029 | 1084 | 1140 | 1199 | 1277
1512 633 1 1062 | 1106 | 1138 | 1221 | 1273 | 1351

This table shows the CPU power draw at 100% CPU utilization for Galaxy S3
under a range of frequencies.



Modeling Details

e Screen: Design a power model based on screen brightness|and

ignored screen content to reduce the overhead.

Brightness 0 51 | 102 | 153 | 204 | 255
Poweron S3 (mW) | 417 | 452 | 484 | 511 | 542 | 373
Power on S4 (mW) | 507 | 562 | 616 | 671 | 725 | 780

Galaxy S3 and S4 screen power for 6 sample brightness levels

e GPU: Recording the duration of each GPU frequency and state
combination every 1 second to predict the GPU power draw

Galaxy S3
Frequency (MHz) 128 | 200 | 300 400
Active power (mA) | 729 | 975 | 1217 | 1482
Nap power (ImA) 78 0 0 18
(Galaxy S4
Frequency (MHz) 128 | 200 | 320 450
Active power (mW) | 293 | 398 | 562 | 1034
Nap power (mW) 0 0 0 164

We run GPU microbenchmarks to
generate workload and in the
meanwhile measure the power
draw using the power meter.



Modeling Details 43

o

e WiFi/3G/LTE State: They have multiple power states and the
power draw and duration at the Active state which is affegted
by the wireless signal strength
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IDLE(The interface is in idle states): when the User Equipment (UE) does not send or receive any
data.

CR(Continuous Reception ): When the UE sends or receives any data, the interface enters the CR
state and consumes high power.

Short DRX(Discontinuous Reception): After the UE finishes data transfer and becomes idle for
200ms, the interface consumes little power but wakes up frequently to check for incoming traffic
Long DRX: The interface enters the Long DRX state after staying in Short DRX for 400ms without
receiving any data.



Modeling Details 13

e WiFi Beacon: When the WiFi radio is associated with an APP and
in power saving mode, the WiFi radio wakes up at fixed intervals
to receive beacons from the APP. 1.1 mA for screen off and 3.3
mA for screen on for both Galaxy S3 and $4.

e Cellular paging: a celluar network, the base station periodically
broadcasts a message during the 3G/LTE Idle state to signal
incoming downlink data. The values are 8.3 mA on S3 and 2.3 mA
on $4.

e SOC during suspension: We turn the screen and WiFi off, set the
phone in airplane mode; soon after the SOC is put in suspension
by the power manager, and we measure the SOC base power
draw in this state. The constant power draw of the SOC
suspended state are 3.8 mA and 5.1 mA for Galaxy S3 and S4



Modeling Validation
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Modeling test 13

Precondition: Install 25 top apps on Google Play including 11
games, 7 online chat apps, 4 music apps and 3 news apps.

eScreen on: A normal user performed similar operations for the
same type of apps, 2-3 minutes each, under WiFi and under LTE.

eScreen off: A user login to all these apps. Then we left the phone
screen-off for 1 hour with either WiFi or LTE connectivity.

The cumulative estimated LTE
energy drain beyond 20min

Screen on 10% 10.3%

Screen off 4.1% 5.0%



CPU Time Analysis
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Least Less Medium More Most breakdown, average over all users
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Average daily CPU time breakdown of 5 groups of the 1520

« CPU idle: 40.7% during screen-on and 34.7% during screen-off
» Screen-on vs. screen-off: total CPU busy time during screen-on and screen-off
periods are 10.2% to 14.4%

« Services vs. apps: background services account for about 28.1% of total CPU
busy time (7.2% in absolute)
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Energy Analysis §'§:

I I I
I SOC. WiFi beacons, WiFi scanning and cellular paging

[ 1Background services during screen off

1800 - Il Background apps during screen off 7 27.1%(24.6%

| I Background services during screen on in screen-off

I Background apps during screen on

[ ]CPU idle during screen on
-l CPU, GPU and network by foreground apps
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Daily energy percentage breakdown,

Least Less Medium More Most
active active active active active averaged over all users

Average daily energy drain breakdown of 5 groups of 1520 users

Suspended state energy : SOC, WiFi beacon, WiFi scanning and cellular
paging activities, account for 24.6%

Screen energy: 58.8% energy incurred during screen-on periods

Useful energy in Screen-on vs. screen-off: apps and services during screen-
off 12.6% , during screen-on 23.9%

CPU idle energy: only drains on average 9.0% of the total energy.(but CPU
spends 75.4% of the total CPU time in idle)



Energy Analysis

Energy breakdown by components
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Cellular paging vs. WiFi beacon: cellular paging 14.6% and WiFi beacon
2.7%,cellular paging is a significant energy hogger.

Cellular vs. WiFi : cellular 11.8% and WiFi 1.5%, cellular drains significantly
more energy than WiFi, tail energy

CPU: The busy CPU energy during screen-on is twice that during screen-off
GPU: 1.7%, used by foreground apps during screen-on periods
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e Screen almost uniform distribution, with the average and median levels being
59.0% and 58.3%

« CPU (1)Core-0 is idle at the lowest 384 MHz for 38.8% of the time during
screen-on but 65.7% of the time during screen-off. In screen-off background
apps/services wake up and acquire some wakelocks and then wait for
responses (2) Both core-0 and core-1 tend to be busy at higher frequencies
during screen-on than during screen-off periods

« GPU: GPU drains only 1.7% while the screen drains 27.4%. Most non-game
apps use little GPU.



Component Analysis §‘

» Networking. compare the time spent and bytes transmitted over the
two types of wireless technologies.
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(a) Distribution of breakdown of (b) Average percentage break-  (c) Average percentage break-  (d) Average percentage break-
time spent in WiFi and cellular down of time spent in WiFi  down of bytes transmitted in  down of energy drain by WiFi
states. and cellular. WiFi and cellular. and cellular.

(a) almost uniform distribution in terms of the percentage time spent in WiFi between
0% to 100%.

(b) 45.5% of the time connected to WiFi, 32.2% to mobile data, and 22.5%from both.
WiFi rarely perform scanning

(c) 63.6% of total traffic is transmitted over WiFi compared to 36.4% in cellular

(d) each device spent 1.4x more time in WiFi and transmitting 1.8x more bytes inWiFi,
but drains 4.2x less energy in WiFi, excluding WiFi scanning energy



38.1% of the daily energy drain of a device is by apps and services. The
rest of the energy drain are largely fixed for a given hardware.

App Energy Analysis ;‘

e Energy Drain, Screen-on vs. Screen-off
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» Dbackground energy can be significant for many apps

« Within the foreground app energy, screen energy is the largest portion

« CPU and GPU energy dominates networking energy, ratios are 2.7x and 2.8x
for foreground and background energy



App Energy Analysis

e App Energy Drain Rate
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« drain rate (EDR): total foreground energy drain of an app divided by the total
foreground time
* 92.6% of the apps have an average power draw between 200-400 mA



App Energy Analysis 3E
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Total energy:. Games and Personalization drain most energy

Background energy: varies significantly, little correlation with total energy drain.
Screen energy: dominating chunk of the total energy.

GPU energy: Game apps much higher than all other app categories

CPU energy: The highest categories are Game, Travel, and Finance

Network energy: Media and Music drain more energy
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Evolution study ses:
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the average CPU time of S4/JB devices is 8.1% increase in total CPU time of
8.1% longer than S3/JB devices. mainly S4/JB over S3/JB devices translates
comes from increased screen-on time into 11.3% energy increase

the average CPU time of S3/KK and S4/KK devices are 33.2% and 22.5% higher than
the corresponding S3/JB and S4/JB. The increase appears to be mainly coming from
increased background CPU time during screen-off, 37.6% and 38.4%.



Evolution study ses:
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(a) Although LTE accounts for 29.0% of total bytes are transmitted, it only accounts
for 8.7% of the time connected to 3G/LTE and only consumes 6.9% of the total
3G/LTE network energy

(b) on average 3G drains 5.9x, 5.3%, and 5.1x more energy per MB transmitted
under good medium and poor signal strength



Ev

olution study

App Evolution: App Updates
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Facebook has more than 120
versions Its fluctuating and high
foreground power happens
mainly due to its frequently
updated new features.
Dropbox and Gmail have less
foreground power variation and
a low average foreground
power. (1)synchronize with
servers in background,
minimizing foreground network
energy. (2)simple Ul lower CPU
and GPU energy.



Related Work

Power modeling of smartphones. Already discussed various
previous work on power modeling of smartphones in § 2.1.
Measurement study. study the energy drain of mobile apps in
the wild. This paper collected trace from a much broader user
base, developed a power model that captures both utilization-
based and FSM-based components (for WiFI, 3G and LTE), and
performed detailed activity and energy analysis across devices,
components, apps, and technology and app evolutions.



Conclusion

» developed a hybrid utilization-based and FSM-based
model

 much insight on energy drain across devices (users),
device components, apps, and multiple technology and
app evolutions

« draw implications to SOC vendors, cellular carriers, and
app developers on better system, network, and app
design to extend battery life
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