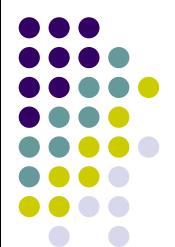
Ubiquitous and Mobile Computing CS 528: Detecting Boredom from Mobile Phone Usage

John Bosworth & David Modica

Computer Science Dept. Worcester Polytechnic Institute (WPI)



Outline

- Introduction
- Motivation
- Related Work
- Study 1
 - Methodology
 - Results
- Study 2
 - Motivation
 - Methodology
 - Results
- Conclusion
- Future work
- References

- People have periods of time where attention is sparse, and time when attention is abundant and people are looking for stimulus.
- The goal was to show that "a user-independent machine-learning model of boredom-leveraging features related to recency of communication, usage intensity, time of day, and demographicscan infer boredom with accuracy"

Boredom is an opportunity:

- Recommending content, services, or activates that may help to overcome the boredom
- Suggesting to turn their attention to more useful activities

"Feeling bored often goes along with an urge to escape such a state. This urge can be so severe that in one study ... people preferred to self-administer electric shock rather than being left alone with their thoughts for a few minutes" - Pielot et al, citing Wilson et al

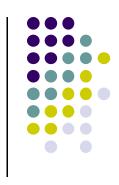
Related Work

- Bored Detection
 - Bixler and D'Mello
 - Expression recognition
 - Picard et al
 - Emotional state detection using physiological sensors
 - Significantly more invasive
 - Mark et al
 - Rhythm of attention in the workplace
- Inferring Emotions
 - LiKamWa et al
 - Determining mood based on communications and routine activities
 - Bogomolov et al
 - Daily happiness and stress can be inferred from mobile phone usage, personality traits and weather data

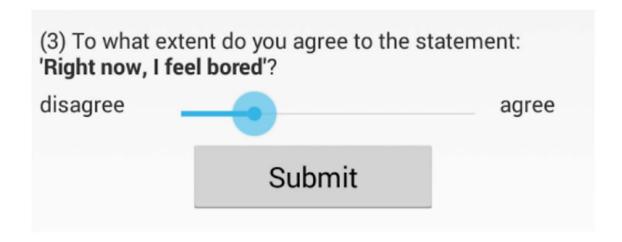
Points of inquiry

- Study 1
 - Does boredom measurably affect phone use?
 - What aspects of mobile phone usage are the most indicative of boredom?
- Study 2
 - Are people who are bored more likely to consume suggested content on their phones?

Methodology: Study 1



- Created data collection app Borapp
 - 54 valid participants for at least 14 days
 - Self-reported levels of boredom on a 5 point scale at semiregular intervals
 - App collected sensor data, some sensor data at all times, others just when phone was unlocked



Results: Study 1

- Use machine-learning to analyze sensor and selfreported data and create a model
 - Classifier Selection
 - Nested-cross validation of three widely used classifiers
 - Random Forests performed the best and was used
 - Feature Analysis
 - Ranked feature importance using Mean Impurity Decrease
 - Selected top 20 most important features of 35

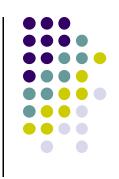
Results: Study 1, Features

Feature	Import	Correlation	The more bored, the
time_last_outgoing_call	0.0607	-0.143	less time passed
time_last_incoming_call	0.0580	0.088	more time passed
time_last_notif	0.0564	0.091	more time passed
time_last_SMS_received	0.0483	0.053	more time passed
time_last_SMS_sent	0.0405	-0.090	less time passed
time_last_SMS_read	0.0388	-0.013	less time passed
light	0.0537	-0.010	darker
hour_of_day	0.0411	0.038	later
proximity	0.0153	-0.186	less covered
gender (0=f, 1=m)	0.0128	0.099	more male (1)
age	0.0093	n.a.	+20s/40s, -30s
num_notifs	0.0123	0.061	more notifications
time_last_notif_cntr_acc	0.0486	-0.015	less time passed
time_last_unlock	0.0400	-0.007	less time passed
apps_per_min	0.0199	0.024	more apps per minute
num_apps	0.0124	0.049	more apps
bytes_received	0.0546	-0.012	less bytes received
bytes_transmitted	0.0500	10.039	more bytes sent
battery_level	0.0268	0.012	the higher
battery_drain	0.0249	-0.014	the lower

Results: Study 1

- End Result:
 - A model that could predict boredom ~82% of the time
 - Found correlation between boredom and phone use
 - Found features that indicate boredom

Motivation: Study 2



Now that we can predict when people are bored.

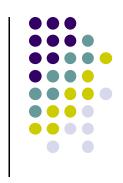
 Are people who are bored more likely to consume suggested content?

Methodology: Study 2

- Created app *Borapp2*
- 16 new participants took part in a quasiexperiment
 - When participant was bored, the app would suggest the newest Buzzfeed article
 - When the participant was not bored, there was a 1/9 chance the app would suggest the newest Buzzfeed article
 - 48% of the time an article was suggested the algorithm predicts the user was bored, 52% of the time the user was not bored

Methodology: Study 2

- Measured Click-ratio: how often the user opened the Buzzfeed article divided by the total number of notifications
- Engagement-ratio: How often the user opened the Buzzfeed article for at least 30 seconds divided by the total number of notifications



Click-Ratio: Bored v Normal

Engagement-Ratio: Bored v Normal 60 -60 -

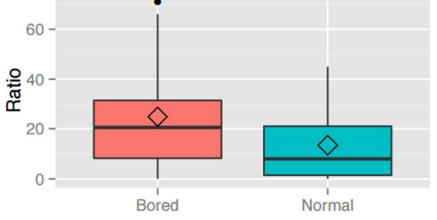


Figure 6. Click-ratio per condition.

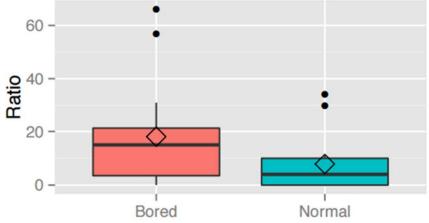


Figure 7. Engagement-ratio per condition.

 Preliminary findings: Users were more likely to open and engage with suggested content

- More studies to provide stronger statistical proof
 - This study was small and biased (Self-selection)
 - High error rate in boredom model makes the second study impure
- Expanded studies into boredom
- Personalize suggested content to user tastes during periods of boredom

References

- Bixler, R., and D'Mello, S. Detecting boredom and engagement during writing with keystroke analysis, task appraisals, and stable traits. In Proc. IUI '13, ACM (2013).
- Bogomolov, A., Lepri, B., Ferron, M., Pianesi, F., and Pentland, A. S. Daily stress recognition from mobile phone data, weather conditions and individual traits. In Proc. MM '14, ACM (2014).
- LiKamWa, R., Liu, Y., Lane, N. D., and Zhong, L. Moodscope: Building a mood sensor from smartphone usage patterns. In Proc. MobiSys '13, ACM (2013).
- Mark, G., Iqbal, S. T., Czerwinski, M., and Johns, P. Bored mondays and focused afternoons: The rhythm of attention and online activity in the workplace. In Proc. CHI' 14, ACM (2014).
- Picard, R. W., Vyzas, E., and Healey, J. Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 23, 10 (Oct. 2001), 1175–1191.
- Pielot, M., Dingler, T., Pedro, J. S., and N. Oliver When Attention is not Scarce Detecting Boredom from Mobile Phone Usage
- Wilson, T. D., Reinhard, D. A., Westgate, E. C., Gilbert, D. T., Ellerbeck, N., Hahn, C., and C. L. Brown, A. S. Just think: The challenges of the disengaged mind. Science 345, 6192 (2014), 75–77.