
CS 528 Mobile and Ubiquitous Computing
Lecture 6b: Ubicomp: Sensors, step counting, HAR

Emmanuel Agu

Administrivia

 Groups should submit 1-slide on their final project (due next class)

 Quiz
 Covers lectures 5-6

 All code in those lectures handed out

 Papers and handouts

 Project 3 posted
 I’ve covered everything you need to do it EXCEPT Activity Recognition (Next week)

Android Sensors

What is a Sensor?

 Converts physical quantity (e.g. light, acceleration, magnetic
field) into a signal

 Example: accelerometer converts acceleration along X,Y,Z axes
into signal

So What?

 Raw sensor data can be processed into useful info

 Example: Raw accelerometer data can be processed/classified to infer
user’s activity (e.g. walking running, etc)

 Voice samples can be processed/classified to infer whether speaker is
nervous or not

Raw accelerometer

readings

Walking

Running

Jumping

Step count

Calories burned

Falling

Machine learning

Feature extraction

and classification

Android Sensors

 Microphone (sound)

 Camera

 Temperature

 Location (GPS, A-GPS)

 Accelerometer

 Gyroscope (orientation)

 Proximity

 Pressure

 Light

 Different phones do not

have all sensor types!!

AndroSensor Android

Sensor Box

Android Sensor Framework
http://developer.android.com/guide/topics/sensors/sensors_overview.html

 Enables apps to:

 Access sensors available on device and

 Acquire raw sensor data

 Specifically, using the Android Sensor Framework, you can:
 Determine which sensors are available on phone

 Determine capabilities of sensors (e.g. max. range, manufacturer, power
requirements, resolution)

 Register and unregister sensor event listeners

 Acquire raw sensor data and define data rate

Android Sensor Framework
http://developer.android.com/guide/topics/sensors/sensors_overview.html

 Android sensors can be either hardware or software

 Hardware sensor:

 physical components built into phone,

 Example: temperature

 Software sensor (or virtual sensor):

 Not physical device

 Derives their data from one or more hardware sensors (a formula)

 Example: gravity sensor

Sensor Types Supported by Android

 TYPE_PROXIMITY
 Measures an object’s proximity to

device’s screen

 Common uses: determine if handset is
held to ear

 TYPE_GYROSCOPE
 Measures device’s rate of rotation

around X,Y,Z axes in rad/s

 Common uses: rotation detection
(spin, turn, etc)

Types of Sensors

Sensor HW/SW Description Use

TYPE_ACCELEROMETER HW Rate of change of velocity Shake, Tilt

TYPE_AMBIENT_TEMPERATURE HW Room temperature Monitor Room temp

TYPE_GRAVITY SW/HW Gravity along X,Y,Z axes Shake, Tilt

TYPE_GYROSCOPE HW Rate of rotation Spin, Turn

TYPE_LIGHT HW Illumination level Control Brightness

TYPE_LINEAR_ACCELERATION SW/HW Acceleration along X,Y,Z – g Accel. Along an axis

TYPE_MAGNETIC_FIELD HW Magnetic field Create Compass

TYPE_ORIENTATION SW Rotation about X,Y,Z axes Device position

TYPE_PRESSURE HW Air pressure Air pressure

TYPE_PROXIMITY HW Any object close to device? Phone close to face?

TYPE_RELATIVE_HUMIDITY HW % of max possible humidity Dew point

TYPE_ROTATION_VECTOR SW/HW Device’s rotation vector Device’s orientation

TYPE_TEMPERATURE HW Phone’s temperature Monitor temp

2 New Hardware Sensor introduced in Android 4.4

 TYPE_STEP_DETECTOR
 Triggers sensor event each time user takes a step (single step)

 Delivered event has value of 1.0 + timestamp of step

 TYPE_STEP_COUNTER
 Also triggers a sensor event each time user takes a step

 Delivers total accumulated number of steps since this sensor was first registered by an app,

 Tries to eliminate false positives

 Common uses: step counting, pedometer apps

 Requires hardware support, available in Nexus 5

 Alternatively step counting available through Google Play Services (more later)

Sensor Programming

 Sensor framework is part of android.hardware

 Classes and interfaces include:
 SensorManager

 Sensor

 SensorEvent

 SensorEventListener

 These sensor-APIs used for:
1. Identifying sensors and sensor capabilities

2. Monitoring sensor events

Sensor Events and Callbacks

 Sensors send events to sensor manager
asynchronously, when new data arrives

 General approach:
 App registers callbacks

 SensorManager notifies app of sensor event
whenever new data arrives (or accuracy
changes)

Sensor

 A class that can be used to create instance of
a specific sensor
 E.g instance of accelerometer

 Has methods used to determine a sensor’s
capabilities

 Included in sensor event object

SensorEvent

 Android system sends sensor event information as a sensor event object

 Sensor event object includes:
 Sensor: Type of sensor that

generated the event

 Values: Raw sensor data

 Accuracy: Accuracy of the data

 Timestamp: Event timestamp

Sensor value depends

on sensor type

Sensor Values
Depend on
Sensor Type

Sensor Values Depend on Sensor Type

SensorEventListener

 Interface used to create 2 callbacks that receive notifications (sensor events)
when:

 Sensor values change (onSensorChange()) or

 When sensor accuracy changes (onAccuracyChanged())

Sensor API Tasks

 Sensor API Task 1: Identifying sensors and their capabilities

 Why identify sensor and their capabilities at runtime?

 Disable app features using sensors not present, or

 If multiple sensors of 1 type, choose implementation with best performance

 Sensor API Task 2: Monitor sensor events

 Why monitor sensor events?

 To acquire raw sensor data

 Sensor event occurs every time sensor detects change in parameters it is measuring

 E.g. change in phone’s rotational velocity triggers gyroscope sensor event

Sensor Availability

 Different sensors are available on different Android versions

Identifying Sensors and Sensor Capabilities

 First create instance of SensorManager by calling getSystemService()
and passing in SENSOR_SERVICE argument

 Then list sensors available on device by calling getSensorList()

 To list particular type, use TYPE_GYROSCOPE, TYPE_GRAVITY, etc

http://developer.android.com/guide/topics/sensors/sensors_overview.html

Checking if Phone has at least one of particular Sensor Type

 Device may have multiple sensors of a particular type.
 E.g. multiple magnetometers

 If multiple sensors of a given type exist, one of them must be designated “the default
sensor” of that type

 To determine if specific sensor type exists use getDefaultSensor()

 Example: To check whether device has at least one magnetometer

Example: Monitoring Light Sensor Data

 Goal: Monitor light sensor data using onSensorChanged(), display it in a TextView
defined in main.xml

Create instance of

Sensor manager

Get default

Light sensor

Called by Android system when accuracy of sensor being monitored changes

Example: Monitoring Light Sensor Data (Contd)

Get new light sensor value

Unregister sensor if app

is no longer visible to

reduce battery drain

Register sensor when app becomes visible

Called by Android system to report new sensor value

Provides SensorEvent object containing new sensor data

Handling Different Sensor Configurations

 Different phones have different sensors built in

 E.g. Motorola Xoom has pressure sensor, Samsung Nexus S doesn’t

 If app uses a specific sensor, how to ensure this sensor exists on target device?

 Two options

 Option 1: Detect device sensors at runtime, enable/disable app features as appropriate

 Option 2: Use AndroidManifest.xml entries to ensure that only devices possessing required
sensor can see app on Google Play

 E.g. following manifest entry in AndroidManifest ensures that only devices with accelerometers will
see this app on Google Play

Option 1: Detecting Sensors at Runtime

 Following code checks if device has at least one pressure sensor

Example Step Counter App

 Goal: Track user’s steps, display it in TextView

 Note: Phone hardware must support step counting

https://theelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

Example Step Counter App (Contd)

https://theelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

Example Step Counter App (Contd)

https://theelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

Step Counting
(How Step Counting Works)

Sedentary Lifestyle

 Sedentary lifestyle
 increases risk of diabetes, heart disease, dying earlier, etc

 Kills more than smoking!!

 Categorization of sedentary lifestyle based on step count by paper:
 “Catrine Tudor-Locke, Cora L. Craig, John P. Thyfault, and John C. Spence, A step-defined sedentary

lifestyle index: < 5000 steps/day”, Appl. Physiol. Nutr. Metab. 38: 100–114 (2013)

Step Count Mania

 Everyone is crazy about step count these days

 Pedometer apps, pedometers, fitness trackers, etc

 Tracking makes user aware of activity levels, motivates them to exercise more

How does a Pedometer Detect/Count Steps
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 As example of processing Accelerometer data

 Walking or running results in motion along the 3 body axes (forward, vertical, side)

 Smartphone has similar axes
 Alignment depends on phone orientation

The Nature of Walking
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Vertical and forward acceleration increases/decreases during different phases
of walking

 Walking causes a large periodic spike in one of the accelerometer axes

 Which axes (x, y or z) and magnitude depends on phone orientation

Step Detection Algorithm
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Step 1: smoothing
 Signal looks choppy

 Smooth by replacing each sample with average of current, prior and next sample (Window of 3)

 Step 2: Dynamic Threshold Detection
 Focus on accelerometer axis with largest peak

 Would like a threshold such that each crossing is a step

 But cannot assume fixed threshold (magnitude depends on phone orientation)

 Track min, max values observed every 50 samples

 Compute dynamic threshold: (Max + Min)/2

Step Detection Algorithm
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 A step is
 indicated by crossings of dynamic threshold

 Defined as negative slope (sample_new < sample_old) when smoothed waveform crosses
dynamic threshold

Steps

Step Detection Algorithms
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Problem: vibrations (e.g. mowing lawn, plane taking off) could be counted as a step

 Optimization: Fix by exploiting periodicity of walking/running

 Assume people can:
 Run: 5 steps per second => 0.2 seconds per step

 Walk: 1 step every 2 seconds => 2 seconds per step

 So, eliminate “negative crossings” that occur outside period [0.2 – 2 seconds] (e.g. vibrations)

Step Detection Algorithms
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Previous step detection algorithm is simple.

 Can use more sophisticated signal processing algorithms for smoothing

 Frequency domain processing (E.g. Fourier transform + low-pass filter)

Estimate Distance Traveled
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Calculate distance covered based on number of steps taken

Distance = number of steps × distance per step (1)

 Distance per step (stride) depends on user’s height (taller people, longer strides)

 Using person’s height, can estimate their stride, then number of steps taken per 2
seconds

Estimating Calories Burned
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 To estimate speed, remember that speed = distance/time. Thus,

Speed (in m/s) = (no. steps per 2 s × stride (in meters))/2s (2)

 Can also convert to calorie expenditure, which depends on many factors E.g
 Body weight, workout intensity, fitness level, etc

 Rough relationship given in table

 Expressed as an equation

 First convert from speed in km/h to m/s
Calories (C/kg/h) = 1.25 × speed (m/s) × 3600/1000 = 4.5 × speed (m/s) (4)

Calories (C/kg/h) = 1.25 × running speed (km/h) (3)

x / y = 1.25

References

 Android Sensors Overview, http://developer.android.com/

guide/topics/sensors/sensors_overview.html

 Busy Coder’s guide to Android version 6.3

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

References

 John Corpuz, 10 Best Location Aware Apps

 Liane Cassavoy, 21 Awesome GPS and Location-Aware Apps for Android,

 Head First Android

 Android Nerd Ranch, 2nd edition

 Busy Coder’s guide to Android version 6.3

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

