
CS 528 Mobile and Ubiquitous Computing
Lecture 3b: Intents & Fragments

Emmanuel Agu

Intents

Intent

 Intent: a messaging object used by a component to request action
from another app or component

 3 main use cases for Intents

 Case 1 (Activity A starts Activity B, no result back):
 Call startActivity(), pass an Intent

 Intent has information about Activity to start, plus any necessary data

Intent: Result Received Back

 Case 2 (Activity A starts Activity B, gets result back):
 Call startActivityForResult(), pass an Intent

 Separate Intent received in Activity A’s onActivityResult() callback

Intent: Result Received Back

 Case 3 (Activity A starts a Service):
 E.g. Activity A starts service to download big file in the background

 Activity A calls StartService(), passes an Intent

 Intent contains information about Service to start, plus any necessary data

Intent Example:
Starting Activity 2

from Activity 1

Allowing User to Cheat
Ref: Android Nerd Ranch (3rd edition) pg 91

 Goal: Allow user to cheat by getting answer to quiz

 Screen 2 pops up to show Answer

Activity 1 Activity 2

User clicks here

to cheat
Ask again.

Click here

to cheat

Correct

Answer

If user

cheated

Add Strings for Activity 1 and Activity 2 to strings.xml

Create Empty Activity (for Activity 2) in Android Studio

Specify Name and XML file for Activity 2

Layout uses

activity_cheat.xml

Screen 2 Java code

in CheatActivity.java

Design Layout for Screen 2

Write XML Layout Code for Screen 2

Activity 2

Declare New Activity (CheatActivity) in AndroidManifest.xml

Activity 2 (CheatActivity)

Activity 2 (CheatActivity)

Activity 1

Starting Activity 2 from Activity 1

 Activity 1 starts activity 2
 through the Android OS

 by calling startActivity(Intent)

 Passes Intent (object for communicating with Android OS)

 Intent specifies which (target) Activity Android ActivityManager
should start

Starting Activity 2 from Activity 1

 Intents have many different constructors. We will use form:

 Actual code looks like this

Parent

Activity
New Activity 2

Build Intent

Use Intent to Start new Activity

Implicit vs Explicit Intents

 Previous example is called an explicit intent
 Activity 1 and activity 2 are in same app

 If Activity 2 were in another app, an implicit intent would have to be
created instead

 Can also pass data between Activities 1 and 2
 E.g. Activity 1 can tell Activity 2 correct answer (True/False)

Passing Data Between Activities
 Need to pass answer (True/False from QuizActivity to CheatActivity)

 Pass answer as extra on the Intent passed into StartActivity

 Extras are arbitrary data calling activity can include with intent

 To add extra to Intent, use putExtra() command

 Encapsulate Intent creation into a method newIntent()

 When user clicks cheat button, build Intent, start new Activity

Passing Answer (True/False) as Intent Extra

Intent

 Activity receiving the Intent retrieves it using getBooleanExtra()

Passing Answer (True/False) as Intent Extra

Intent

(Answer = Extra)

Calls

getIntent()

Important: Read Android Nerd

Ranch (3rd edition) pg 91

Calls

startActivity(Intent)

Implicit Intents

 Implicit Intent: Does not name component to start.

 Specifies

 Action (what to do, example visit a web page)

 Data (to perform operation on, e.g. web page url)

 Typically, many components (apps) can take a given action
 E.g. Many phones have installed multiple apps that can view images

 System decides component to receive intent based on action, data, category

 Example Implicit Intent to share data

ACTION (No receiving Activity

specified)

Data type

Implicit Vs Explicit Intents

 Explicit Intent: If components sending and receiving Intent are in
same app
 E.g. Activity A starts Activity B in same app

 Activity A explicitly says what Activity (B) should be started

 Implicit Intent: If components sending and receiving Intent are in
different apps
 Activity B specifies what ACTION it needs done, doesn’t specify Activity to do it

 Example of Action: take a picture, any camera app can handle this

Fragments

Recall: Fragments

 Sub-components of an Activity (screen)
 Reusable

 An activity can contain multiple fragments, organized differently on
different devices (e.g. phone vs tablet)

 Fragments need to be attached to Activities.

Fragments
Ref: Android Nerd Ranch (3rd ed), Ch 7, pg 123

 To illustrate fragments, we create new app CriminalIntent

 Used to record “office crimes” e.g. leaving plates in sink, etc

 Crime record includes:
 Title, date, photo

 List-detail app using fragments

 On tablet: show list + detail

 On phone: swipe to show next crime
Fragment 1
(list of Crimes)

Fragment 2
(Details of selected

Crime)

Fragments

 Activities can contain multiple fragments

 Fragment’s views are inflated from a layout file

 Can rearrange fragments as desired on an
activity
 i.e. different arrangement on phone vs tablet

 Initially, develop detail view of CriminalIntent using Fragments

Starting Criminal Intent

Final Look of CriminalIntent Start small

Develop detail view using Fragments

Starting Criminal Intent

 Crime: holds record of 1 office crime. Has

 Title e.g. “Someone stole my yogurt!”

 ID: unique identifier of crime

 CrimeFragment: UI fragment to display Crime Details

 CrimeActivity: Activity that contains CrimeFragment

Next: Create CrimeActivity

Create CrimeActivity in Android Studio

Creates CrimeActivity.java

Formatted using

activity_crime.xml

Fragment Hosted by an Activity

 Each fragment must be hosted by an Activity

 To host a UI fragment, an activity must

 Define a spot in its layout for the fragment

 Manage the lifecycle of the fragment instance (next)

 E.g.: CrimeActivity defines “spot” for CrimeFragment

Fragment’s Life Cycle

 Fragment’s lifecycle similar to activity lifecycle
 Has states running, paused and stopped

 Also has some similar activity lifecycle methods (e.g.
onPause(), onStop(), etc)

 Key difference:
 Android OS calls Activity’s onCreate, onPause(), etc

 Fragment’s onCreateView(), onPause(), etc called by
hosting activity NOT Android OS!

 E.g. Fragment has onCreateView

Hosting UI Fragment in an Activity

 2 options. Can add fragment to either

 Activity’s XML file (layout fragment), or

 Activity’s .java file (more complex but more flexible)

 We will add fragment to activity’s XML file now

 First, create a spot for the fragment’s view in CrimeActivity’s XML layout

Creating a UI Fragment

 Creating Fragment is similar to creating activity
1. Define widgets in a layout (XML) file

2. Create java class and specify layout file as XML file above

3. Get references of inflated widgets in java file (findviewbyId), etc

 XML layout file for CrimeFragment (fragment_crime.xml)

 In CrimeFragment Override CrimeFragment’s onCreateView() function

 Note: Fragment’s view inflated in Fragment.onCreateView(), NOT onCreate

Java File for CrimeFragment

Format Fragment

using fragment_crime.xml

Adding UI Fragment to FragmentManager

 An activity adds new fragment to activity using FragmentManager

 FragmentManager

 Manages fragments

 Adds fragment’s views to activity’s view

 Handles

 List of fragments

 Back stack of fragment transactions

Find Fragment

using its ID

Add Fragment

to activity’s view

Interactions with FragmentManager are

done using transactions

Examining Fragment’s Lifecycle

 FragmentManager calls fragment
lifecycle methods

 onAttach(), onCreate() and
onCreateView() called when a fragment
is added to FragmentManager

1. First create fragment

..… then wait for Activity to add fragment

1.

Examining Fragment’s Lifecycle

 FragmentManager calls fragment
lifecycle methods

 onAttach(), onCreate() and
onCreateView() called when a fragment
is added to FragmentManager

 onActivityCreated() called after hosting
activity’s onCreate() method is executed

 If fragment is added to already running
Activity then onAttach(), onCreate(),
onCreateView(), onActivityCreated(),
onStart() and then onResume() called

Android Nerd Ranch
CriminalIntent Chapters

Skipped

Chapter 8: Displaying Lists with RecyclerView

 Skipped several UI chapters

 These features are programmed
into the CriminalIntent code
you will be given for project 2

 RecyclerView facilitates view of
large dataset

 E.g Allows crimes (title, date) in
CriminalIntent to be listed

Chapter 9: Creating Android Layouts & Widgets

 Mostly already covered

 Does introduce Contraint Layout (specify widget positions using constraints)

Chapter 11: Using ViewPager

 ViewPager allows users swipe left-right between screens
 Similar to Tinder

 E.g. Users can swipe left-right between Crimes in CriminalIntent

Chapter 12: Dialogs

 Dialogs present users with
a choice or important
information

 DatePicker allows users
pick date

 Users can pick a date on
which a crime occurred in
CriminalIntent

TimePicker

also exists
DatePicker

Chapter 13: The Toolbar

 Toolbar includes actions user can take

 In CriminalIntent, menu items for adding crime, navigate up the screen
hierarchy

References

 Busy Coder’s guide to Android version 4.4

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

