
Ubiquitous and Mobile Computing
CS 528: Group 3 Ted Talk

Team 3
Alyssa Herz, Ryan Johnson, Natalia Carvajal Erker, Nicholas Delli Carpini

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Android NDK
Native Development Kit

What is the NDK?

● A way to write native C/C++ code for
Android phones, and use it within your
Java code!

● Allows access to advanced and
performance-critical APIs

Background & Motivation

● Initially Released in 2009 for Android 1.5 (NDK Rev 1,
now Rev 21d as of June)

● Developers wanted to be able to run code outside of
Dalvik (now Android Runtime)

● Why not just use Java?
● There is existing code that isn’t written for Java
● Performance in C/C++ can be much higher for

computationally-intensive code
● Deep integration with custom hardware

Android Runtime
(previously Dalvik)

Native Runtime

Your App

NDK

Phone Hardware

Problems it Solves

● Creates standard way to add native code in Android apps
○ Toolchain makes portability easier with automatic cross-compiling

● Reuse existing standard/custom libraries, makes porting
non-android (and non-java) code to android faster

Problems it Solves

● Performance with computationally-intensive tasks
○ Performance characterization tools (systrace, simpleperf)
○ Lets you gain more performance and/or save battery due to increased

efficiency

● Low-level APIs for use with apps with NDK:
○ High Performance Audio
○ OpenGL ES
○ Vulkan
○ Neural Network API
○ Image decoding
○ Camera
○ etc.

Real World Examples

Overview

Development workflow
1. Write your native C or C++ code, and use Android native APIs (if needed).
2. Add JNI bindings, and make Java JNI class
3. Set up a CMake build system to target a shared object
4. Link build to gradle
5. Run the build, CMake and clang will automatically build native
6. Resulting APK file will hold all native / java code

JNI
C / C++ compiled

shared objects
(.so)

Java JNI classes

Android Libraries Android APIs

Main Java App

Code snippet

package com.example.hellojni;

import android.app.Activity;

import android.widget.TextView;

import android.os.Bundle;

public class HelloJni extends Activity

{

 @Override

 public void onCreate(Bundle savedInstanceState)

 {

 super.onCreate(savedInstanceState);

 TextView tv = new TextView(this);

 tv.setText(stringFromJNI());

 setContentView(tv);

 }

 public native String stringFromJNI();

 static {

 System.loadLibrary("hello-jni");

 }

}

#include <string.h>

#include <jni.h>

jstring

Java_com_example_hellojni_HelloJni_stringFromJNI(JNIEnv* env,

 jobject thiz)

{

 return (*env)->NewStringUTF(env, "Hello from JNI");

}

Java JNI class C native code

Java package path

Class & method name

Load JNI shared object

cmake_minimum_required(VERSION 3.4.1)

add_library(hello-jni SHARED

 hello-jni.c)

Include libraries needed for hello-jni lib

target_link_libraries(hello-jni

 android

 log)

CMake Build Directives

