Ubiquitous and Mobile Computing
CS 528: Kotlin and NFC

Matthew McMillan, JP Bulman,

Matthew Kaminski,
Weixi Liu, Chao Wang

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Kotlin s

. History
. First released in 2011
. Developed by JetBrains

. Motivation

- JVM is great
Runs everywhere! (no recompiling)
Android apps run on the JVM
A lot of libraries written for Java/JVM

. Java syntax is verbose, repetitive
. Want to leverage power and libraries of the JVM but
use a cleaner and safer syntax

Kotlin: Issues Solved :

Kotlin is null-safe, any nullable variables must be
explicitly marked

Type inference means that types don’t have to be
explicitly written out if it’s clear from context

Data classes automatically implement some methods
You can specify default arguments to functions

You can provide named arguments to functions that
take many parameters
Many more small features N

Kotlin-Typical use case :

Tooling

. Android studio

. Eclipse % eCIIpse

. IntelliJ IDE g

Kotlin-Typical use case :

P
Wechat % Expedia eqeio

Lyft m Airbnb @
American I'é')\(’! Pinterest @
Express

Kotlin-Typical use case

Kotlin vs Java

. Completely interoperable with Java

. More concise with fewer lines of code

. Safety prevents common programming mistakes
. Better support for functional programming

. Reduces errors and bugs

. Smarter and safer compiler

N

Kotlin

Basic Features

&

Comparison with Java

Kotlin - Key word Val & Var

val means an immutable value that does not change its
value. However, var means variable, the value of a variable

can change at any time.

package com.cwdoh.devfest2017

class Session {
val | speaker = "cwdoh"
val | title: String
= "Kotlin: How it works"
var | room: In= null

fun description()

= |"$speaker's talk: '$title’

at room $room"

Kotlin - Var

var member itself can be read and modified by its class, i.e.
there are getter & setter methods associated with it.

class Session {
var name = '

by

=
J_/

Java

Property: var

'cwdoh"

public final class Session {

b

@NotNul

private

@NotNull
public f
retur

4

public f
Intri
this.

}

String name = "cwdoh";

inal String|getName() |{
n this.name;

inal void |setName(@NotNull String varl) {

nsics.checkParameterIsNotNull(varl, "<set-7>");

name = varl;

I &

Kotlin - Val :

val member itself only can be read by its class, i.e. there is
getter method associate with it but not setter method.
PS: we can modify subfields of a val member if the
subfields are var type.

Property: val &g--
class Session {
val name = "cwdoh"
¥
public final class Session {

(é @NotNull

g — private final String name = "cwdoh";
e ———
Java @NotNull

public final String {

return this.name;
b
b

Kotlin - Key word “open”

Unlike other languages, Kotlin’s classes are limited to
inherit by default.

Keyword open

class NotOpenedClass
open class OpenedClass

/ public |final| class NotOpenedClass {
<D ¥
)

—

Java public class OpenedClass {
b

Kotlin - String Templates

String templates allow you to include variable references
and expressions into strings.

val greeting = "Kotliner"

println("Hello $greeting") // 1
println("Hello ${greeting.toUpperCase()}") // 2

Hello Kotliner
Hello KOTLINER

Kotlin - Nullable & NotNull s

Kotlin is null-safe. Variable types in Kotlin don’t normally
allow the assignment of null.

® var neverNull: String = "This can't be null" // 1 >

® neverNull = null // 2

® Null can not be a value of a non-null type String

Kotlin - Nullable & NotNull s

What if we need a variable can be null?

Declare it nullable by add “?” at the end of its type

O var nullable: String? = "You can keep a null here" 77 3| >

® nullable = null // 4

Why Kotlin? — e

public String toString() {
return name +" - "+ email +" - " + age;

}

@Override

public int hashCode() {
intresult=17;
result = 31 * result + name.hashCode();
result = 31 * result + email.hashCode();
result = 31 * result + age;
return result;

public class Person {
private String name;
private String email;
private int age;

public Person(String name, String email, int age) {
this.name = name;
this.email = email;
this.age = age;
} }
@Override
public boolean equals(Object obj) {
if (obj != null && obj.getClass() == this.getClass()) {
Person castObj = (Person) obj;

public String getName() {
return name;

}

public String getEmail() {

return email; if (this.name.equals(castObj.getName())) return

} false;
if (this.email.equals(castObj.getEmail())) return
. false;
| A ’
pu;;z;:tag:t. ge() { if (this.age != castObj.getAge()) return false;
} }

return false;

}
}

Why Kotlin?

data class
Person(val name: String,
val email: String,

val age: Int)

Near Field
Communication

(NFC)

What is NFC?

® Near-field Communication or NFC is a short-range radio
technology that operates with data transfers of up to 424
kilobits per second.

® NFC communication is triggered when two NFC-compatible
devices are brought within close proximity, around four
centimeters.

https://www.oracle.com/technical-resources/articles/javame/nfc.html
https://www.oracle.com/technical-resources/articles/javame/nfc.html

What is NFC?

e AAD e [kewdth

Set —up time

Range

Usability

Selectivity

Use cases

Consumer
experience

<0.1ms

Up to 10cm

Human centric

Easy, intuitive,
fast

High, given,
security
Pay, get access,

share, initiate
service, easy set

up
Touch, wave,
simply connect

<0.1ms

Up to 3m

Item centric
Easy

Partly given

Item tracking

' Get
_information

~0.5s

Up to 5m
'Data

centric

Easy

Line of
sight

Control &
exchange
data

Easy

-6 sec

Up to 30m

Data centric
Medium

Who are you?

Network for
data exchange,
headset

Configuration
needed

What is NFC?

e The NFC Standard defines three types of communication:
Peer-to-peer mode which allows two NFC-enabled
devices to exchange information between each other.
Read/write mode is a one way data transmission
commonly used for passive NFC devices like NFC tags
Card emulation allows the NFC device to be used like a
smart or contactless credit card in order to make
payments or tap into public transport systems.

https://www.androidauthority.com/what-is-nfc-270730/

NFC - History

Inspired by RFID
. Charles Walton - 1983

First appearance in 2002
. Sony and NXP semiconductors

2004

- Rise of mobile phones

. Companies start putting in NFC chips
. Doesn’t have much use yet

. Mostly unidirectional

NFC - History (cont’d) :

. 2006

. Usage and abilities increase
. Users can now receive music, photos, media, etc.

. 2009

. Peer to peer (P2P) communication

. Bidirectional transmissions
Users can now receive and send data with NFC

NFC - Issues that it solves :

. The need to transfer sensitive data quickly,

securely, and wirelessly over short distances
- Swiping cards/entering PIN’s have visibility risks
. Much more room for error
Forgotten PIN, broken magnetic strip, etc e or o
. Better proof of purchase

- Receipts are not reliable
Can be forged, easily lost, destroyed, etc.

00

%) i

000

NFC - Typical use case

. Making payments with a phone

. Sharing images

. Certain fitness devices

. Finding your location more precisely

NFC - Real world example :

. Google Pay &
. Apple Pay a Pa
. YubiKey 2FA

. Android Beam File share

. Nike NFC jerseys

NFC Demo

NFC

e How it works

e Peer-to-peer NFC Messages are structured in the NDEF
format (NFC Data Exchange Format)
e Command-response and read-write NFC messages are

use the APDU format (application protocol data unit)

Some APDU messages are compatible with devices
using the NDEF specification

Command APDU
Command APDU Header e | Dat | T
CLA | INS | P1 | P2

CLA: Class byte (command-ID), INS: Instruction,
P1, P2: Parameter, Lc: Length of command data,
Data: Command data, Le: Length of expected data

Response APDU

Data

SW1

SW2

Data: Response data, SW1, SW2: Status Word

NFC

e Use android.nfc.NfcAdapter to facilitate communications
supports NDEF and APDU message transmission
e Depending on what you are planning on doing, code may be
vastly different
Peer to peer, card reading, and read-write modes have
inherently different security, device, and data
requirements

NFC

e Different operations require different levels of programming
Many high-level libraries are available for simple NFC tag
communication

Peer-to-peer large file transfer can be done using the
middle-level Android Beam API

Complex NFC tab interactions, such as YubiKey OTP and
HMAC-SHA1 require low-level manually-crafted nfc
commands

https://github.com/Rgghgh/NfcActivity
https://developer.android.com/training/beam-files
https://developers.yubico.com/OATH/YKOATH_Protocol.html
https://developers.yubico.com/OATH/YKOATH_Protocol.html

NFC .

. Code Example for Android Tag communication
using com.rgghgh.nfcactivity:

import com.rgghgh.nfcactivity.NfcActivity;
import com.rgghgh.nfcactivity.NfcConnection;
import com.rgghgh.nfcactivity.NfcTester;

public class MainActivity extends NfcActivity
2 {

https://github.com/Rgghgh/NfcActivity

NFC

@Override
protected void onStart()

{

super.onStart();
runNfcTest () ;

NFC

public void runNfcTest()
g

1

}

)

if(!tester.isNfcEnabled()) {

. Toast.makeText(getApplicationContext(),
LENGTH_LONG) .show() ;

}

NfcTester tester = new NfcTester(this);
if(!tester.hasNfc()){

. Toast.makeText(getApplicationContext(),
LENGTH_LONG) .show() ;

return,;

@Override
public void onNfcStart(NfcConnection conn)

{
try

{

String id = conn.getTagld();
String data = conn.read();

conn.writeUri(

conn.makeReadOnly();

}

catch (Exception e)
{
? Toast.makeText(getApplicationContext()

,e.toString(),Toast.LENGTH_LONG) .show();

Questions?

References -

https://qgithub.com/Rgghgh/NfcActivity
https://developer.android.com/training/beam-files
https://developers.yubico.com/OATH/YKOATH Protocol.html
https://www.androidauthority.com/what-is-nfc-270730/
https://www.oracle.com/technical-resources/articles/javame/nfc.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-nfc-protoc
ol-v1.2-ps-20170411.html
http://www.nfcnearfieldcommunication.org/history.html
https://www.quora.com/\WWhat-are-the-best-use-cases-of-NFC
https://www.nike.com/us/en us/c/connected-jerseys
https://medium.com/til-kotlin/explanation-hey-kotlin-how-it-works-c98da63c
59b0

https://github.com/Rgghgh/NfcActivity
https://developer.android.com/training/beam-files
https://developers.yubico.com/OATH/YKOATH_Protocol.html
https://www.androidauthority.com/what-is-nfc-270730/
https://www.oracle.com/technical-resources/articles/javame/nfc.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html
http://www.nfcnearfieldcommunication.org/history.html
https://www.quora.com/What-are-the-best-use-cases-of-NFC
https://www.nike.com/us/en_us/c/connected-jerseys
https://medium.com/til-kotlin/explanation-hey-kotlin-how-it-works-c98da63c59b0
https://medium.com/til-kotlin/explanation-hey-kotlin-how-it-works-c98da63c59b0

