
CS 528
Ubiquitous and Mobile Computing

Tech Talk: Flutter

Yijie Yan, Qinlun Luan,

Wei Xiong, Zinan Yue

Computer Science Dept.

WPI

Made by

Contents

Background

Specific Problems

Use Case

Real World Examples

How it Works

Code Snippet

Background

is Google’s UI toolkit for building beautiful,
natively compiled applications for mobile,
web, and desktop from a single codebase.

Platform

Flutter
Engine

Foundation
Library Design

Widgets

Flutter apps are
written in Dart
language and

make use of the
language's
advanced
features

Written
primarily in C++,

provides low
level rendering
support using

Google's
graphics library

Written in Dart,
provides basic

classes and
functions which

are used to
construct

applications

Material Design
widgets

implement
Google's design
language, and

Cupertino
widgets

implement iOS
design

https://flutter.dev/docs
https://flutter.dev/web
https://flutter.dev/desktop
https://en.wikipedia.org/wiki/Dart_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Rendering_(computer_graphics)
https://en.wikipedia.org/wiki/Dart_(programming_language)
https://en.wikipedia.org/wiki/Material_Design
https://en.wikipedia.org/wiki/IOS

Specific Problems & Use Case

Fast
Development

Expressive,
Beautiful UIs

Native
Performance

Specific Problems & Use Case

Fast
Development

Expressive,
Beautiful UIs

Native
Performance

Flutter's hot reload helps
you quickly and easily
experiment, build UIs, add
features, and fix bugs
faster.

Specific Problems & Use Case

Fast
Development

Expressive,
Beautiful UIs

Native
Performance

Flutter's built-in beautiful
Material Design and
Cupertino (iOS-flavor)
widgets, rich motion APIs,
smooth natural scrolling,
and platform awareness.

Specific Problems & Use Case

Fast
Development

Expressive,
Beautiful UIs

Native
Performance

Flutter’s widgets
incorporate all critical
platform differences such
as scrolling, navigation,
icons and fonts to provide
full native performance on
both iOS and Android.

Real World Examples

How it Works
Platform Engine Framework Rendering Pipeline

Starting at the platform level

Flutter provides a Shell, that hosts the Dart VM.

Shell gives access to the native platform APIs.

Shell hosts the establishing platform and relevant canvas.

How it Works
Platform Engine

The engine is the next layer up

Provides Dart Runtime

Provides Skia

Provides Platform Channels

Framework Rendering Pipeline

How it Works
Engine Framework

Framework is the
most relevant to
the developer.
It contains
everything you will
interact with,
when developing
your app.

Platform Rendering Pipeline

How it Works
Framework Rendering Pipeline

App is composed of
Widgets, that are

rendered onto a Skia
canvas.

The platform shows the
canvas, and sends

events back as
required.

Flutter works more like a gaming engine.
The UI is built and rendered on a Skia Canvas as it changes.

Flutter updates the UI at 60fps, and uses the GPU for most of the work.

EnginePlatform

Code Snippet
Dart

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 // This widget is the root of your application.
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Demo',
 theme: ThemeData(
 // This is the theme of your application.
 //
 // Try running your application with "flutter run". You'll see the
 // application has a blue toolbar. Then, without quitting the app, try
 // changing the primarySwatch below to Colors.green and then invoke
 // "hot reload" (press "r" in the console where you ran "flutter run",
 // or simply save your changes to "hot reload" in a Flutter IDE).
 // Notice that the counter didn't reset back to zero; the application
 // is not restarted.
 primarySwatch: Colors.blue,
),
 home: MyHomePage(title: 'Flutter Demo Home Page'),
);
 }
}

class MyHomePage extends StatefulWidget {
 MyHomePage({Key key, this.title}) : super(key: key);

 // This widget is the home page of your application. It is
stateful, meaning
 // that it has a State object (defined below) that
contains fields that affect
 // how it looks.

 // This class is the configuration for the state. It holds
the values (in this
 // case the title) provided by the parent (in this case the
App widget) and
 // used by the build method of the State. Fields in a
Widget subclass are
 // always marked "final".

 final String title;

 @override
 _MyHomePageState createState() =>
_MyHomePageState();
}

Code Snippet
Dart

class _MyHomePageState extends
State<MyHomePage> {
 int _counter = 0;

 void _incrementCounter() {
 setState(() {
 _counter++;
 });
 }

 @override
 Widget build(BuildContext context) {
 // This method is rerun every time setState is called,
for instance as done
 // by the _incrementCounter method above.
 return Scaffold(
 appBar: AppBar(
 // Here we take the value from the MyHomePage
object that was created by
 // the App.build method, and use it to set our
appbar title.
 title: Text(widget.title),
),
 body: Center(
 // Center is a layout widget. It takes a single child
and positions it
 // in the middle of the parent.

 child: Column(
 // Column is also a layout widget. It takes a list of
children and
 // arranges them vertically. By default, it sizes
itself to fit its
 // children horizontally, and tries to be as tall as its
parent.
 mainAxisAlignment: MainAxisAlignment.center,
 children: <Widget>[
 Text(
 'You have pushed the button this many
times:',
),
 Text(
 '$_counter',
 style: Theme.of(context).textTheme.display1,
),
],
),
),
 floatingActionButton: FloatingActionButton(
 onPressed: _incrementCounter,
 tooltip: 'Increment',
 child: Icon(Icons.add),
), // This trailing comma makes auto-formatting nicer
for build methods.
);
 }
}

Demo

