Activity Recognition using Cell Phone Accelerometers

Raghu Rangan

Computer Science Dept. Worcester Polytechnic Institute (WPI)

Introduction

- Today's mobile devices are filled with a number of sensors
 - i.e. GPS, audio sensors, light sensors, accelerometers
- These sensors open up new opportunities
 - Especially in data mining research and applications

Accelerometers

- All modern smartphones contain accelerometers
 - Specifically tri-axial accelerometers (x,y,z)
- Accelerometers are capable of detecting device orientation
- Accelerometers included in devices initially to support:
 - Advanced game play
 - Automatic screen rotation
- But there are a number of other applications for this sensor

Goal

- Create a system which uses this data to perform activity recognition
 - Using the commercially available accelerometer in smartphones

Related Work

- Accelerometer-based activity recognition is not new
- Earliest works (i.e. Bao & Intille) use multiple accelerometers
 - Used 5 bi-axial accelerometers worn by each user
 - Found that sensor on thigh was the most powerful
- Another work (Krishna et. al.) claim that multiple accelerometers necessary for activity recognition

Related Work

- Combination of accelerometers and other sensors
 - Use heart monitor data (Tapia et. al.)
 - Parkka et. al. created system using 20 different sensors
 - Combination of accelerometer, angular velocity sensor, and digital compass (Lee and Mase)
 - "eWatch" devices
- These systems are not very practical

Related Work

- Focus of this work is on using a single accelerometer
 - Some work has been done on that
- Work has been done to use the smartphones
 - Some work just used the phone as a data collector from external sensors (i.e. "MotionBands")
 - Others have used multiple phone sensors
 - Various degrees of accuracy
 - Model is trained for a specific user, not universal

Methodology (Data Collection)

- Data collected from 29 subjects
- Phone was carried in the front pant leg pocket
 - For all activities
- Accelerometer data collected every 50ms
 - 20 samples/second

Methodology

- Raw time-series data cannot be used with classification algorithms
- Data divided into 10-second segments
 - Chose duration because it captured repetitions of motion
- Generated features based on the 200 readings in each segment

Methodology (Feature Generation)

- <u>Average[3]</u>: Average acceleration (for each axis)
- <u>Standard Deviation</u>[3]: Standard deviation (for each axis)
- <u>Average Absolute Difference</u>[3]: Average absolute difference between the value of each of the 200 readings within the ED and the mean value over those 200 values (for each axis)
- <u>Average Resultant Acceleration[1]</u>: Average of the square roots of the sum of the values of each axis squared $\sqrt{(x_i^2 + y_i^2 + z_i^2)}$ over the ED
- <u>Time Between Peaks</u>[3]: Time in milliseconds between peaks in the sinusoidal waves associated with most activities (for each axis)
- <u>Binned Distribution[30]</u>: We determine the range of values for each axis (maximum – minimum), divide this range into 10 equal sized bins, and then record what fraction of the 200 values fell within each of the bins.

- Six activities considered
 - Walking, jogging, ascending stairs, descending stairs, sitting, and standing
- Repetitive motions should make activities easier to identify

Figure 1: Axes of Motion Relative to User

Results

- 3 classification techniques using WEKA
- Able to achieve high accuracies (>90%) for most activities
- Stair climbing activity difficult to identify

Table 2: Accuracies of Activity Recognition

	% of Records Correctly Predicted						
	J48	Logistic Regression	Multilayer Perceptron	Straw Man			
Walking	89.9	<u>93.6</u>	91.7	37.2			
Jogging	96.5	98.0	<u>98.3</u>	29.2			
Upstairs	59.3	27.5	<u>61.5</u>	12.2			
Downstairs	<u>55.5</u>	12.3	44.3	10.0			
Sitting	<u>95.7</u>	92.2	95.0	6.4			
Standing	<u>93.3</u>	87.0	91.9	5.0			
Overall	85.1	78.1	<u>91.7</u>	37.2			

Closer Look at Results

Table 3: Confusion Matrix for J48

Table 4	Confusion	Matrix	for	Logistic	Regression
Table 4.	Contrasion	IVI atl IA	101	Lugistic	Regression

		Predicted Class						
		Walk	Jog	Up	Down	Sit	Stand	
S	Walk	1513	14	72	82	2	0	
Actual Clas	Jog	16	1275	16	12	1	1	
	Up	88	23	323	107	2	2	
	Down	99	13	92	258	1	2	
	Sit	4	0	2	3	270	3	
	Stand	4	1	2	7	1	208	

		Predicted Class					
		Walk	Jog	Up	Down	Sit	Stand
8	Walk	1575	14	53	36	2	3
Actual Class	Jog	15	1294	6	6	0	0
	Up	277	36	150	77	1	4
	Down	259	6	136	57	3	4
	Sit	1	0	4	11	260	6
	Stand	3	1	7	3	15	194
			-				

Table 5: Confusion Matrix for Multilayer Perceptron

		Predicted Class					
		Walk	Jog	Up	Down	Sit	Stand
	Walk	1543	5	73	60	1	1
Actual Class	Jog	3	1299	16	3	0	0
	Up	84	24	335	98	2	2
	Down	108	10	136	206	2	3
	Sit	0	2	4	1	268	7
4	Stand	1	0	5	4	8	205

Results

- To limit confusion between ascending and descending
 - Combine both activities together
- Results are much better
 - But stair climbing is still difficult to identify

			Accur.							
		Walk	Jog	Stairs	Sit	Stand	(%)			
Actual Class	Walk	1524	7	148	2	2	90.6			
	Jog	10	1280	31	0	0	96.9			
	Stairs	185	33	784	4	4	<u>77.6</u>			
	Sit	4	0	2	272	4	96.5			
	Stand	3	1	10	0	209	93.7			

Table 6: Confusion Matrix for J48 Model (Stairs Combined)

Conclusion

- Demonstrated that activity detection can be highly accurate using smart phone accelerometers
 - Most activities recognized over 90% of the time

Future Work

- Platform and data to be available to public
- Activity recognition improvements
 - Recognize bicycling and car-riding
 - Obtain more training data
 - Additional and more sophisticated features
 - Look at impact of carrying phone not in pant pocket
- Look at possibility of displaying results in realtime

References

- Bao, L. and Intille, S. 2004. Activity Recognition from User-Annotated Acceleration Data. *Lecture Notes Computer Science 3001*, 1-17.
- J48 Classification
 - http://monkpublic.library.illinois.edu/monkmiddleware/public /analytics/decisiontree.html
- Logistic Regression, Wikipedia, <u>http://en.wikipedia.org/wiki/Logistic_regression</u>
- Multilayer Perceptron, Wikipedia, http://en.wikipedia.org/wiki/Multilayer_perceptron

QUESTIONS?

