
IEEE Communications Magazine • July 199826

Mobile Software Agents: An Overview

0163-6804/98/$10.00 © 1998 IEEE

he term mobile agent contains two separate and
distinct concepts: mobility and agency.1 Mobile

agents refer plainly to self-contained and identifiable comput-
er programs that can move within the network and act on
behalf of the user or another entity [1]. The idea of a self-con-
trolled program execution near the data source has been pro-
posed as the next wave to replace the client-server paradigm
as a better, more efficient and flexible mode of communica-
tion (Fig. 1). Some authors classify mobile agent as a special
case of an agent, as in [2]; others separate the agency from
mobility, as in [3]. Despite the difference in definition, most
research examples of the mobile agent paradigm as reported
in the literatures currently have two general goals: reduction
of network traffic and asynchronous interaction. The goals of
mobility are surprisingly close to those of the well-researched
process migration concept, although at a different level of
abstraction. These are reduction of network traffic, load bal-
ancing, fault resilience, asynchronous interaction, and data
access locality. Some authors [4, 5] have suggested that agents
can be used to implement network management by delegation
[6, 7] and to deliver network services [8]. The mobile agent
paradigm proposes to treat the network as multiple agent-
“friendly” environments and the agents as programmatic enti-
ties that move from location to location, performing tasks for
users. Agents can function independent of each other or
cooperate to solve problems. The merit of the mobile agent as
a viable technology is still a contentious issue among various
researchers. However, even if this merit issue is resolved
today, researchers have yet to come up with optimal solutions
to the issues facing the design and implementation of mobile
agent system architecture, which includes (but this list is not
exhaustive):
• Agent transfer mechanisms
• Naming, addressing, and locating a mobile agent
• Control of the mobile agent

•Exporting mobile agent states
•Mobile agent data transfer
•Transparent communication
•Security
•Secrecy and privacy
•Coordination
•Communication language, ontology
•Stability, performance
•Scalability
•Portability
•Resource management and discovery
•Authority
•Legality
•Ethics

Some of these issues have roots in
the fields of process migration and distributed operating sys-
tems; others come from the field of artificial intelligence (AI).
The first 12 have technical connotations, while authority (who
owns agents and agent resources), legality (who is ultimately
responsible for an agent’s action), and ethics (in what context
should agents be used) are social issues regarding the use of
an agent and thus will not be discussed in this article. It is also
worth noting that not all of these issues are dealt with in cur-
rent mobile agent systems. In some areas, such as security,
secrecy, privacy, coordination, communication, and control,
the current solutions are far from optimal or even adequate.
In others, such as stability, scalability, and performance,
research efforts have yet to begin.

At the time of this writing, there are 20 academic, pri-
vate, and organizational projects with a mobile agent system
as the central theme, involving well-known institutions such
as the University of Ottawa, MIT, University of Stuttgart,
UMBC, OGRI, and GMD FOKUS. Private firms large and
small also have active mobile agent research projects; they
include IBM, General Magic, ObjectSpace, Mitsubishi,
Hitachi, British Telecom, and Crystaliz Inc. Also, various
standardization efforts are underway [9], one of which is the
addition of a mobile agent facility (MAF) to CORBA [10].
The momentous research interest from the academic sector
shows that the mobile agent paradigm is conceptually
sound, and the interest from private firms shows that the
technology is rapidly passing the purely scientific research
stage. In fact, several firms have deliverables in the product
testing stage (IBM, General Magic, ObjectSpace, and Mit-
subishi).

THE MOBILE AGENT IN TELECOMMUNICATIONS
The agent concept is already being used heavily as a part of
the service architecture of next-generation networks such as
the Telecommunications Information Networking Architec-
ture (TINA) [11]. Moreover, the mobile agent concept is
also being considered by the TINA Consortium (TINA-C) in
a broadening effort to leverage these new technologies [8,
12]. A number of industry-sponsored projects that investi-

Vu Anh Pham and Ahmed Karmouch

University of Ottawa, Ontario

T

The anticipated increase in popular use of the Internet will cre-
ate more opportunities in distance learning, electronic com-

merce, and multimedia communication, but it will also create more challenges in
organizing information and facilitating its efficient retrieval. From the network perspective,
there will be additional challenges and problems in meeting bandwidth requirements and
network management. Many researchers believed that the mobile agent paradigm (mobile
object) could propose several attractive solutions to deal with such challenges and prob-
lems. A number of mobile agent systems have been designed and implemented in aca-
demic institutions and commercial firms. However, few applications were found to take
advantage of the mobile agent. Among the hurdles facing this emerging paradigm are
concerns about security requirements and efficient resource management. This article
introduces the core concepts of this emerging paradigm, and attempts to present an
account of current research efforts in the context of telecommunications. The goal is to
provide the interested reader with a clear background of the opportunities and challenges
this emerging paradigm brings about, and a descriptive look at some of the forerunners
that are providing experimental technologies supporting this paradigm.

ABSTRACT

1 The term agency is used here to denote “having the characteristics of an
agent.” Maybe a more appropriate word will be found in the future. In the
meantime, this is the meaning of the word agency as used in this article.



IEEE Communications Magazine • July 1998 27

gate the use of mobile agent technology to provide network
services and network management include the Hitachi pro-
ject [13] (sponsored by Hitachi Corp.) and the NEC project
[13] (sponsored by NEC). The MAGNA project (GMD
FOKUS) aims directly at investigating mobile agent services
to be proposed for consideration as part of TINA [13]. With
the network playing a pivotal role in present and future
information systems, it is easy to understand the growing
interest in using mobile agents as part of the solution to
implement more flexible and decentralized network architec-
ture. In this section, the potential applications of mobile
agents in network services and network management avail-
able in the general literature are presented and discussed.
The aim is to provide starting points for further research and
investigation interests.

MOBILE AGENT IN NETWORK SERVICES
The current network environment is based on international
standards such as the telecommunication management net-
work (TMN) and intelligent network (IN). IN and TMN rely
on the traditional client/server paradigm to provide services
via centralized nodes known as service control points (SCP).
During execution of a service, the distributed exchanges
known as service switching points (SSP) will ask the SCP for
control services so that the SSP can carry out the actual pro-
cessing. SCPs and SSPs communicate via a remote procedure
call (RPC)-based protocol (the IN Application Protocol,
INAP). To install IN services, specific service management
systems (SMS) will download the necessary IN service compo-
nents into the IN network elements.

A Mobile Agent to Enhance IN Services — A centralized
SCP and the necessary usage of INAP represent potential bot-
tlenecks in the case of an increase in the number of IN ser-
vices. Therefore, the realization of services will have to be
distributed as close to the customer premises as possible. The
incorporation of the mobile agent concept within the IN for
its enhancement has been suggested for the medium term [8].
Mobile agents used in IN would be responsible for the dynam-
ic downloading of customized service scripts (i.e., dynamic
migration of service intelligence from the SCP to SSP), ulti-
mately allowing the provision of service intelligence on demand
[4, 8] (Fig. 2).

Magedanz et al. [4] identified two general approaches for
agent-based service architecture: smart network and smart
message. In the smart network approach, agents are static
entities in the network, able to perform tasks autonomously
and asynchronously. These agents can also communicate

with other agents and be dynamically configured. The issue
raised by this kind of architecture is the dynamic download-
ing and/or exchange of control scripts; thus, intelligence
resides mostly at the network devices. The control scripts
can be simple or complex and represent “lightweight” mobile
agent(s). In the smart message approach, agents are mobile
entities that travel between computers/systems to perform
tasks. Agents are received and executed in an agent execu-
tion environment (AEE) (Fig. 2). With this approach, intelli-
gence is partitioned in a balance between the AEE and the
agent. The smart message agent can serve as an asyn -
chronous message carrier for its owner (e.g., retrieve e-mail
asynchronously and forward to the current location of the
owner), or as a broker that requests and sets up all require-
ments for services (e.g., establishes a real-time connection
for media delivery).

With these agent-based approaches, services can be provid-
ed instantly, customized, and distributed. However, the
approaches aim to replace IN components with mobile agents
and thus are not consistent with IN’s goal of centralizing ser-
vice control. If IN does move toward this approach, it would
evolve into architecture such as TINA.

MOBILE AGENTS IN TINA
TINA is the current target architecture for future telecommuni-
cations and management services [11]. Considered an evolution

from IN and TMN, TINA allows flexible and
transparent distribution of computation
objects that are supported by distributed pro-
cessing environments (DPEs). The mobile
agent concept is not yet part of TINA; how-
ever, the TINA-C is working to expand the
specification to accommodate relatively new
concepts such as intelligent and mobile agents
as extensions to TINA’s support for the con-
cept of agents. TINA has identified the follow-
ing agent dimensions [8]:
•Act on behalf of someone
•Persistent
•Adaptive
•Mobile
•Communicating
•Reasoning
•Environmentally aware
•Socially aware

■ Figure 1. A mobile agent can optimize network bandwidth usage.

Server

Request

Response

Request

Response

Client/server communication

Mobile agent communication

Server

Client

Client

Mobile agent

■ Figure 2. How a mobile agent can enhance IN services.

Service control
point (SCP)

IN Application
Protocol (INAP)

Service switching
point (SSP)

IN without a mobile agent IN with a mobile agent

Service control
point (SCP)

"Lightweight"
agent-delivered
control or
service scripts

Service switching
point (SSP)

"Smart network"

AEE

Mobile agents
roam network
nodes and
perform services

AEE AEE

"Smart message"



IEEE Communications Magazine • July 199828

• Planning
• Negotiating

To support such agent capabilities, considerable work has
to be done to extend the DPE to support the AEE in one
form or another. The MAGNA project aims to cover some
groundwork in this area, through extending and refining
GMD FOKUS’s mobile agent architecture.

MOBILE AGENTS IN NETWORK MANAGEMENT
Proposals and serious efforts have been initiated to use
mobile agents to transform current client/server-based net-
work management practices into a distributed and decentral-
ized one [4, 5, 8]. This section elaborates some of the issues
in network management and how mobile agents can help
solve them.

NETWORK MANAGEMENT APPROACHES
The most popular approach to manage networks comes
from the Internet Engineering Task Force (IETF) and is
based on the Simple Network Management Protocol
(SNMP). Closely related in structure is the approach based
on the Common Management Information Protocol (CMIP)
proposed by the International Organization for Standards
(ISO) for application within open systems interconnection
(OSI) networks.

Both approaches assume the presence of management sta-
tions (MSs) that interact with management agents running on
network nodes. The agents in these protocols are computa-
tional entities responsible for collecting and storing manage-
ment information local to the node and responding to
requests for this information from the MS via a management
protocol that specifies the packet format for a set of basic
operations. The MS interacts with the agents using
client/server architecture. Yemini anticipated that this cen-
tralization in network management seriously limits its scala-
bility, leading to poor performance or, worse, an inability to
cope with the dimension of the network [14]. Recognizing
these limitations, the IETF and ISO have taken steps to
decentralize and relieve the bottleneck around the MS.
These efforts include complex notification agents (ISO),
proxy agent (SNMP v2, IETF), and remote monitoring
(RMON, IETF) (Fig. 3a, b).

A clean design for decentralization is the management
by delegation (MBD) approach proposed by Yemini [6]

and Meyer [7]. In MBD, the management architecture still
includes a management protocol and agents; however, elas-
tic process runtime support is assumed to be present at each
device. In the traditional way (SNMP, CMIP) the MS does
all  the computation and sending of the results  to the
devices via client/server messages. On the other hand, the
MS in MBD packs a task (code and data) to agents and
sends it to be executed at the devices, thus delegating to
them the actual execution of the tasks. The executions
would be asynchronous, freeing the MS to perform other
tasks and thus enabling a higher degree of parallelism in
the management architecture. In this way, a large portion
of the functionality of the MS would be delegated to the
devices (Fig. 3c). As an additional feature, codes are not
statically bound to any devices; therefore, the MS can cus-
tomize and dynamically enhance the services provided by
the agents on any device [6].

MOBILE-AGENT-BASED NETWORK MANAGEMENT
The research field of mobile agents in network management is
still young. Although projects such as Hitachi, MAGNA, and
NEC have posted homepages, little technical information is
available. From the general information, all projects have a
similar scope of using in-house mobile agent architecture to
provide telecommunications services and management. Until
now, all projects use the term agent to denote a mobile exe-
cuting unit (EU) [11] or mobile agent. Baldi et al. introduce
yet another term, mobile code paradigm, and proposes that
decentralization of network management services can be
implemented using one or a combination of three design
paradigms: code on demand (COD), remote evaluation
(REV), and mobile agent (Fig. 4) [5].

COD is similar in concept to the use of a mobile agent.
COD is proposed by Baldi et al. to allow dynamic configura-
tion and functionality of network devices (dynamic, active
patching) [5]. The ISO approach (CMIP) is amenable to this
kind of application. However, the authors noted that the man-
agement agent in the IETF approach (SNMP) is too rigid to
be considered for implementing COD.

In REV, a small code fragment is moved to the devices
where it is allowed to invoke other codes to complete the ser-
vice. The authors noted that this approach subsumes MBD,
because MBD has fixed functionality (only the distribution is
implemented), whereas REV also provides the benefit of
dynamic configuration change obtained with COD. As an

■ Figure 3. Approaches to decentralization of network management.

Management station (MS)

Management station (MS)

Elastic runtime support

Dynamic
agent

Management
station
(MS)

Management agent

Network device
Proxy agent

SNMP

RMON agent

Standalone probe

(a) SNMPv2 proxy agents (b) RMON probes (c) Management by delegation



IEEE Communications Magazine • July 1998 29

example, the manager can pack a series of commands to be
sent by an REV mechanism; these commands then invoke and
execute built-in functionalities at the device. One such func-
tionality is the search for routing table entry now being car-
ried out at the MS.

In the mobile agent approach, the authors argue that suffi-
cient intelligence of the agent allows it to travel from node to
node to collect information and carry out device control tasks.
The authors only cited two drawbacks: how to define an
agent’s intelligence, and complexity which may increase the
agent’s size.

To explore the effectiveness of the mobile code paradigm,
the authors are currently implementing “near device” net-
work management experiments, where agent-hosting envi-
ronments are created at machines located near the network
devices. Agents can then move among these machines and
conduct client/server sessions with network devices using
SNMP or CMIP. The implementation system used was
Agent Tcl. The primary obstacle to direct device interaction
was the lack of embedded support for an agent. Once this is
a reality, Baldi et al. have plans to test all three design
paradigms [5]. Their work is promising but incomplete as the
authors concluded. The issue of complexity is only barely
touched on; discussion on security and scalability was absent,
perhaps delegated to researchers of Agent Tcl. However, the
work of these authors represents a strong argument for the
potential of mobile code (and mobile agents) in network
management.

Research data on the application of mobile agent tech-
nology are still appearing, but much more is needed. As
such, a survey of some typical current mobile agent systems
is needed to generate more interest in experimenting with
mobile agents in applications. This is the subject of the rest
of this article.

A SURVEY OF MOBILE AGENT SYSTEMS
There are several research activities that are related to mobile
agent (MA) technology and many more centering on MA
issues, which can be found in [9]. These cannot all be dis-
cussed due to the larger scope it would entail. In general,
there are three targets for MA system design and implemen-
tation: using or creating a specialized language, as operating
system (OS) services or extensions, or as application software.
In the first approach, language features provide the require-
ments of MA systems. The second approach implements MA
system requirements as OS extensions to take advantage of
existing OS features. Lastly, the third approach builds MA
systems as specialized application software that runs on top of

an OS to provide MA functionalities. Currently, there is not
enough information to assess with certainty the most suitable
approach. For comparative purposes, this article chooses to
limit the discussion to nine current projects:
• Aglet™ from IBM [16]
• Agent Tcl from Dartmouth College [17, 18]
• Agents for Remote Access (ARA) from the University of

Kaiserslautern [19, 20]
• Concordia™ from Horizon Systems Laboratory, Mit-

subishi Company [21, 22]
• Mole from the Institute for Parallel and Distributed

Computer Systems (IPVR) [23]
• Odyssey™ from General Magic [24]
• TACOMA from Cornell University [25, 26]
• Voyager™ from ObjectSpace [27]
• Secure and High Performance Mobile Agent Infra-

structure (SHIP-MAI) from the Multimedia and Mobile
Agent Research Laboratory, University of Ottawa [28]
These systems are selected because they are representative of

strategies currently employed in MA research. Language-based
MA systems such as WAVE [29] and Obliq [30] are consciously
excluded because these represent a different philosophical
approach than MA support by software architecture.

MOBILE AGENT MODELS
An agent model is a conceptual view that MA system archi-
tects embed in their designs. In the following sections, descrip-
tions of the MA models of Aglet, Agent Tcl, ARA, Concordia,
Mole, Odyssey, TACOMA, Voyager, and SHIP-MAI will be
presented.

AGLET
Aglet models the MA to closely follow the applet model of
Java. It is a simple framework where the programmer over-
rides predefined methods to add desired functionality. An
Aglet is defined as a mobile Java object that visits Aglet-
enabled hosts in a computer network. Aglet runs in its own
thread of execution after arriving at the host, so it is attribut-
ed as autonomous. It is also reactive because it responds to
incoming messages. The complete Aglet object model includes
additional abstractions such as context ,  proxy ,  message ,
itinerary, and identifier. These additional abstractions provide
Aglet the environment in which it can carry out its tasks.
Aglet uses a simple proxy object to relay messages and has a
message class to encapsulate message exchange between
agents. However, group-oriented communication is not avail-
able, and the choice of using a proxy to relay a message may
not be a scalable solution in a high-frequency transport situa-

■ Figure 4. Mobile code paradigms [5].

Runtime support
(e.g., virtual machine) Server resources

(e.g., existing services)

Code server

Code fragment

Host

(a) Code on demand (COD) (b) Remote evaluation (REV)

Host

Mobile code

Agent execution
environment

(AEE)

Mobile agent

Host

(c) Mobile agent



IEEE Communications Magazine • July 199830

tion. Nevertheless, by modeling the MA as a Java object, the
designers of Aglet leverage the existing Java infrastructure to
take care of platform dependent issues and to use existing
mobile code facility of Java.

AGENT TCL
The designers of Agent Tcl do not formally specify an MA
model. Instead, MA is understood as a program that can be
written in any language and that accesses features that sup-
port mobility via a common service package implemented as
a server. This server provides MA-specific services such as
state capture, transfer facility, and group communication, as
well as more traditional services such as disk access, screen
access, and CPU cycle. The philosophy was that all function-
alities an agent ever wants are available in the server. Agent
mobility then only concerns closure, which is the Tcl script
(or scripts). There are no additional codes to load (i.e., no
external references). In Agent Tcl, the state capture of an
agent is handled automatically and transparently to the pro-
grammer. However, it was unclear what this state capture
includes. Since Tcl is a script language, a frequent example
given was that the executing script resumes after the instruc-
tion for mobility has been executed. There is also a plan to
introduce process-migration-like behavior such that the states
of the agent would continue to evolve as it moves from place
to place. However, this trend could have adverse effects in
areas such as the complexity of the transfer mechanism and
cost, adverse effects that are still being dealt with in the more
traditional process migration.

ARA
The Agent for Remote Action (ARA) system is similar in
concept to Agent Tcl in that it has a core service layer sup-
porting multiple languages through interpreters. ARA aims
for seamless incorporation of “mobile programming” to the
existing world of programming practice. In ARA, “the mobile
agent is a program that is able to move at its own choice and
without interfering with its execution, utilizing various estab-
lished programming languages.” The ARA agent moves
between and stays at places where it uses services provided by
the host or other agents. ARA agents are considered normal
programs in all other aspects, working with file system, user
interface, network interface, and other well-known computing
facilities. In addition, ARA also formulates the concept of
server agents, the services with which the MA would interact,
as static compiled objects located at network nodes. ARA
agents run within an interpreter, interfacing with a core lan-
guage-independent set of services. The core services include
resource management, mobility, and security, to name a few.
The language-dependent features, such as how state capture is
handled and correctness checking, are the responsibility of the
interpreter, whereas providing access to the underlying OS
services and other MA-specific services is the responsibility of
the core. ARA agents are executed in parallel threads, while
some of the internal ARA core functions can be executed as
separate processes for performance reasons.

CONCORDIA
Concordia is another MA framework built on Java. In Con-
cordia an agent is regarded as a collection of Java objects. A

Concordia agent is modeled as a Java program that uses ser-
vices provided by a collection of server components which
would take care of mobility, persistence, security, communi-
cation, administration, and resources. These server compo-
nents would communicate among themselves and can run in
one or several Java virtual machines; the collection of these
components forms the AEE at a given network node. Once
arriving at a node, the Concordia agent accesses regular ser-
vices available to all Java-based programs such as database
access, file system, and graphics, as in Aglet. Like ARA,
Concordia specifies a service bridge to provide access to
legacy services.

A Concordia agent is considered to have internal states
as well as external task states.2 The internal states are val-
ues of the objects’ variables, and the external task states
are the states of an itinerary object that would be kept
external to the agent’s code. This itinerary object encapsu-
lates the destination addresses of each Concordia agent
and the method that each would have to execute when
arriving there. The designers of Concordia claim that this
approach allows greater flexibility by offering multiple
points of entry to agent execution, as compared to always
executing an “after-move” method as in Agent Tcl, Aglet,
or ARA. This concept of an externally located itinerary is
similarly supported in Odyssey via Odyssey’s task object.
However, the infrastructure for management of these
itinerary objects was not clear from the publicly available
literature on Concordia.

MOLE
In Mole, the agent is modeled as a cluster of Java objects, a
closure without external references except with the host sys-
tem. The agent is thus a transitive closure over all the objects
to which the main agent object contains a reference. This
island concept was chosen by the designers of Mole to allow
simple transfer of agent without worrying about dangling ref-
erences. Each Mole agent has a unique name provided by the
agent system, which is used to identify the agent. Also, a Mole
agent can only communicate with other agents via defined
communication mechanisms, which offer the ability to use dif-
ferent agent programming languages to convert the informa-
tion transparently when needed.

A Mole agent can only exist in a host environment call
location that serves as the intermediate layer between the
agent and the OS. Mole also supports  the concept of
abstract location to represent the collection of distributed
physical machines. One machine can contain several loca-
tions, and locations may be moved among machines. Mole
limits the abstract location to denote a configuration that
would minimize cost due to communication. Thus, a col-
lection of machines in a subnet is an acceptable abstract
location, whereas a collection of machines that spans cities
is not. As in ARA, Mole directly proposed the concept of
a system agent (server agent in ARA), which has full
access to the host facilities. It is through interacting with
these system agents that a given Mole agent (mobile)
achieves tasks. A Mole MA can only communicate with
other agents (systems and MAs) and has no direct access
to resources.

The uniqueness of the Mole agent model is its requirement
for closure of objects, whereas other facilities such as static
agent and communication are similar conceptually to other
systems. What is unclear is how the Mole system enforces the
closure requirement, and whether there are mechanisms to
handle closure management automatically. The concept of
closure is technically convenient, but without helping tools it
can be error-prone and limiting.

2 The use of the term “task state” is confusing because these objects keep
information about where to go and what to do at a site. This is analogous
to where to go and what button to push when one gets there. It does not
mean what the agent still has to do until its objective has been achieved,
which is the meaning of task.



IEEE Communications Magazine • July 1998 31

ODYSSEY

The Odyssey project shares (or rather inherits) many features
from a previous General Magic product: Telescript. However,
the amount of open documentation on the Odyssey system is
rather terse; therefore, its description will be limited. The
Odyssey MA model also centers on a collection of Java
objects, more similar in concept to Aglet than to Concordia or
Mole. The top-level classes of the Odyssey system are Agent,
Worker, and Place. Worker is a subclass of Agent and repre-
sents an example of what a developer can do with the Agent
class. An Odyssey Place class is an abstraction of where an
Odyssey agent exists and performs work. A special facility
such as directory service is associated with Place.

Odyssey agents communicate using simple method calls,
and Odyssey does not support high-level communication.
However, Odyssey agents can form and destroy meeting
places to exchange messages. There is also an undocument-
ed feature regarding global communication to a “published”
object, but this feature is not officially supported. The dis-
tinctive feature of Odyssey is its design to accommodate
multiple transport mechanisms. Currently, Odyssey supports
Java Remote Method Invocation (RMI), Microsoft Dis-
tributed Component Object Model (DCOM), and CORBA
Internet Inter-ORB Protocol (IIOP). However, the current
release of Odyssey does not add new or distinctive features
from its Telescript predecessor, and the MA model is not
yet stable.

TACOMA
The TACOMA (Tromsø and Cornell Moving Agents) project
represents an early attempt to build an MA system. In TACO-
MA the agent is modeled as a migrating process that moves
through the network to satisfy client requests. The TACOMA
project focuses on OS support for MA and how MA can help
solve problems traditionally addressed by operating systems.

TACOMA proposes abstractions such as briefcase, folder,
and file cabinet as extensions to the OS to provide mecha-
nisms for data transfer and broker agent for scheduling agents.
Brokers are expected to communicate among themselves and
with service providers; they also serve as matchmakers between
agents and service providers. TACOMA also proposes the
concept of a rear guard agent that serves as a checkpoint in
case of failure.

In the first prototype Tcl was used as the implementation
language and Horus, a lightweight group communication
system, for interagent communication. The first TACOMA
agent was a Tcl procedure (script) that used data available
in briefcase and folder. The TACOMA MA model suffers
from a number of weaknesses, including a weak execution
model (no arbitrary entry point), OS specificity, and a weak
security mechanism. At the current stage, the runtime sys-
tem consists of interpreters for Tcl and C that provide
access to TACOMA features (similar to fundamental fea-
tures of ARA and Agent Tcl but much weaker). The pro-
grammer also has to take care of state.3 Overall, it is unclear
how far this approach can progress, since TACOMA is the
only project that conducts investigation on implementing
MA at the OS level.

VOYAGER
It would seem that the general acceptance of Java as the de
facto Internet programming language gives rise to acceler-

ated research in MA. Thus far four projects have taken
advantage of Java language features to implement MA sys-
tems (Aglet, Concordia, Mole, and Odyssey), and more are
coming [25, 28, 29]. However, none has yet represented a
state of tight integration with Java like Voyager. Pro-
claimed as an agent-enhanced object request broker (ORB)
in Java, Voyager offers several advanced mechanisms that
could be used to implement MA systems. The Voyager
agent model is also based on the concept of a collection of
Java objects; it does have an Agent class that developers
can subclass to implement Voyager-style MA. However, the
product goes one step beyond to provide arbitrary remote
object construction, a facility for moving objects (not just
agents), and a host of other communication and infra-
structure services that can be used to implement arbitrary
MA systems.

The Voyager agent is designed to take advantage of the
Voyager ORB features which make extensive use of Java’s
reflection mechanism. A Voyager agent can communicate by
calling methods or using Voyager Space™ technology, a
group event and message multicast facility that ObjectSpace
claims to be more scalable than simple communication
mechanisms in Aglet or Concordia. Like Aglet, Concordia,
and Odyssey, the Agent class in Voyager also encapsulates a
control model. However, Voyager supports a more extensive
set of control mechanisms, such as more flexible instruc-
tions on how the agent should terminate itself than the fixed
or explicit instructions on termination as in Aglet, Concor-
dia, or Odyssey. As in Agent Tcl or ARA, interagent and
high-level communication is reserved as application-level
features indirectly supported with more primitive mecha-
nisms provided.

The Voyager agent model is essentially the same in con-
cept as in Mole, Aglet, Concordia, and Odyssey systems,
which is a collection of Java objects. The designers of Voy-
ager also leave the decision on the complexity of an agent to
users, as do other systems that have been discussed. There
are no metrics to suggest how the complexity of a mobile
program would break the system; instead, the user is led to
believe that arbitrary complexity of any degree can be
achieved. This is a point worth noting since the user of a sys-
tem should not have to experiment to find out what the sys-
tem’s limits are.

SHIP-MAI
Work on SHIP-MAI began from using existing MA technolo-
gy for the transport and distribution of multimedia docu-
ments [31]. However, as research and experimentation
progressed, it was realized that a number of enhancement
requirements to MA systems in terms of high-bandwidth data
transport, performance, and security began to emerge [32].
At completion, SHIP-MAI will include framework support
for agents and agent task generation, agent task manage-
ment, agent system management, and deployment. As in
Aglet, Voyager, Mole, and Concordia, a SHIP-MAI agent is
also modeled as a collection of related Java objects; hence,
the SHIP-MAI system also uses Java for portability. Howev-
er, SHIP-MAI includes two distinct and complementary parts
in support system: an agent execution control server (AEC)
and an agent execution server (AE) [32]. The AEC focuses
on security aspects of establishing a security policy for incom-
ing agents, while the AE focuses on enforcing this security
policy and the actual resource allocation for agent execution.
The AEC also acts as a command and control center for a
collection of related AEs, where it manages the lifecycles of
the agents running in this AE collection and provides exter-
nal agent transport. The designers claim that this partition

3 State is used here in a general sense and can be a combination of local
and process states.



IEEE Communications Magazine • July 199832

strategy allows more efficient use of resources and more flex-
ibility in security configuration. Ongoing work focuses on
efficient management of mobile agents to increase agent
sharability, system scalability, and manageable fault toler-
ance. The work is motivated by the lack of an adequate solu-
tion for high load transfer of an agent’s data; safeguarding an
agent’s data against possible loss due to system failure or a
hostile host; application of MA in a high availability situa-
tion; and system features to deal with the issues in MA sys-
tem management. Concurrent experiments to collect
requirements needed to validate SHIP-MAI design are dis-
cussed in [33].

MOBILE AGENT SYSTEM REQUIREMENTS
AND DESIGN FORCES

In summary, MA systems consist of either Java class libraries
(Aglet, Concordia, Voyager, Odyssey, Mole, and SHIP-MAI),
scripting language systems with interpreter and runtime sup-
port (ARA, Agent Tcl), or OS services accessible via a script-
ing language (TACOMA). Aglet, Concordia, Odyssey, and
Mole can be qualified as experimental application frame-
works. Voyager is a current commercial product that advo-
cates itself as agent-enhanced middleware. ARA and Agent
Tcl are called “strongly mobile systems” by some authors [15]
because there is tighter integration of mobility as a language
feature, compared to external classes such as in systems based
on Java. Conceptually, all approaches are similar. MA is con-
sidered a special application that requires two parts: the
mobile part (MA) and a host part that reside on a computing
device at a network node. There is also a service point or
location concept that serves as a mediator between the MA
and the services offered (called a static agent in some cases).

The environment in which an MA must function theoreti-
cally can be either uniform or heterogeneous; the latter is the
norm. Although an MA system can be built with a single com-
puting platform, such a system would have limited scope and
usefulness. Current MA systems assume that the operating
environment is heterogeneous, so the first consideration in the
design of such systems is how to deal with platform hetero-
geneity. In the same category is the difference in computing
power size and capacity, which seems to be ignored in current
designs. The second issue that is absolutely crucial for an MA
system is how to guarantee certain security levels so that the
agent is protected from the host, the host is protected from
the agent, agents are protected from each other, and hosts are
protected from each other. Security also dictates that mecha-
nisms exist to account for agents and to ensure that actions
can be audited. There are adequate solutions to satisfy the
heterogeneity constraint; however, only limited solutions are
available to deal with the security constraints. If one assumes
that adequate solutions exist for both, the remaining consider-

ations in the design would be how to deal with resource allo-
cation and discovery, how to identify and control agents, how
to handle scalability, and so forth. The requirements current
MA systems are trying to meet in supporting MA execution
generally fall into nine general categories:
• Security
• Portability
• Mobility
• Communication
• Resource management
• Resource discovery
• Identification
• Control
• Data management

These categories are treated from the viewpoint of an MA,
which may be different than from the viewpoint of a process.
In the following subsections, each of these categories will be
discussed as they are handled in some current systems.

SECURITY
Research in agent security is very active due to its crucial
importance to the general acceptance of MA systems. Howev-
er, an extensive and complete discussion on security deserves
its own article.4 Therefore, this section aims instead to pro-
vide a comprehensive survey of current security models and
solutions, and seeks to establish the initial set of security
requirements in an MA system.

The issues and requirements of security in MA systems
have been reviewed and discussed [34, 35]. A mobile object
system including MA systems consists of four components
according to [35]:
• A host—a computer and an OS
• The computation environment (CE) — the runtime system
• Mobile object systems — the computations concurrently

running on the CE
• The network or communication subsystem that interconnects

CEs located on different hosts (Fig. 5)
An agent is the third item in an MA system, while the AEE

is the second. The security problems include how to protect the
AEE from malicious agents, how to protect agents from a mali-
cious AEE, how to protect one agent from another, how to pro-
tect an AEE from another AEE, how to protect the
communication between AEEs, and how to protect the host from
the AEE. The last problem is the traditional problem of protect-
ing an OS from misbehaving programs; thus, it is not a new prob-
lem and is less important in the context of MA security. Here
one is mainly concerned with the first four problems.

Farmer et al. identify three basic security principles that an
MA system must realize [34]:
• For the most natural applications of MA, the participants

cannot be assumed to trust one another.
• Any agent-critical decisions should be made on neutral

(trusted) hosts.
• Unchanging components of the state should be sealed

cryptographically.

■ Figure 5. Mobile agent system components for security discussion [24].

Host

Computation environment (CE)

Mobile object systems (MOS)

Host

Computation environment (CE)

Mobile object systems (MOS)

Network

4 See the article by Greenberg et al. in this issue.



IEEE Communications Magazine • July 1998 33

The authors go on to propose partitioning the network into
one or more domains with a protected computer running an
interpreter (i.e., an AEE) that is trusted by all agents in that
domain. These special interpreters trust each other to various
degrees depending on the relationships between the domains.
All other interpreters are considered hostile by default and
cannot be trusted. Agents in this system require special privi-
leges to collect audit data and respond to attacks, but at the
same time must be controlled so that they will not exceed
their authority. In order to be effective, the system that dis-
penses and controls the privilege must be well protected. The
security architecture proposed by [34] suffers from problems
of securing the trusted interpreter from a rogue or mas-
querading agent, or a trusted agent that has been tricked into
performing malicious tasks. Furthermore, since this architec-
ture proposes a trusted network of hosts, additional problems
of maintaining the overall trustworthiness of all participating
hosts and ensuring that all hosts implement uniform security
measures can be a formidable task in building an infra-
structure.

Traditional security mechanisms rely on cryptographic
techniques to implement authentication, authorization, and
access control. These tools found use in traditional static dis-
tributed systems. They are also used as part of the solutions
for protecting the AEE from hostile agents or another AEE,
but there are no satisfactory solutions to prevent a hostile
AEE from doing damage. The hostile AEE can attack by not
running the agent code correctly, refusing to transfer the
agent, tampering with agent code and data, or listening into
interagent communication [34]. The problem of effectively
preventing a hostile site from tampering with an agent is a
nearly impossible task since the hosting site needs access to
all the internal code of an agent in order to execute it [34,
35]. The current direction in dealing with a hostile AEE cen-
ters on collecting irrepudiated data for execution tracing,
and providing warnings about possible attacks. The solutions
proposed to protect an agent include cryptographic tracing
of execution, duplication of computation and cross-examina-
tion, code obfuscation, and secure domains using a co-pro-
cessor [35]. Unfortunately, these solutions are either not
practical in real situations, due largely to their computing
cost, or have limited scope. As for protecting agents from
each other, solutions can be reasonably carried out by the
design of the AEE, usually by isolating the execution of
agents or providing a facility for agents to authenticate each
other (Aglet, Mole, ARA, Odyssey), providing a secure
object space, or using cryptographic techniques to protect
objects from tampering. Protecting the host from malicious
agents currently has the most solutions. These include vari-
ous schemes for access control, various authorizations and
authentications using digital signatures and other crypto-
graphic techniques, and proof-carrying code [34, 35]. The
most promising areas are achieving flexible access control
and a recursive protection domain [35]. With these results,
flexible protection solutions can be designed according to
the level of trust.

In most systems the AEE and host are assumed to be
trustworthy and would carry out operations such as helping
the agent to protect the privacy of its results. In most sys-
tems implemented in Java, the designers choose to rely on
the Java security model and/or provide customized exten-
sions to this model. Aglet has its own implementation of the
security manager and employs the sandbox Java applet
model. Mole and Odyssey do not yet have any security
model other than the basic Java facility. Concordia took
steps to provide its own security manager and implements a
secure transport mechanism with the secure socket layer

protocol (v. 3). Voyager also has its own security manager
plus a customizable sockets interface that developers can
use to implement arbitrary socket-level security. The prob-
lem with these Java implementations is that any weaknesses
in Java also permeate to them, and the Java model was
proven in some cases to easily be broken [35]. Unlike Java,
which is scrutinized openly for security compromises and
keeps being improved, the security mechanisms in ARA and
Agent Tcl are not yet ready and could not be widely tested;
hence, they could be weaker than that of Java. Security is an
ongoing research issue and should be regarded as an ongo-
ing feature. What can perhaps be done now is to prepare
the MA architecture such that new and better security
mechanisms can easily be incorporated as they became
available.

PORTABILITY
Platform heterogeneity is currently the norm; therefore, all cur-
rent MA systems must deal with porting agent code and data to
work on multiple platforms. Before Java, systems such as Agent
Tcl and ARA depended on an OS-specific core and language-
specific interpreters for agent code and data. The problems of
these approaches are performance and scalability. After Java,
the Java virtual machine (JVM) represents a better compro-
mise because platform-neutral byte code can be compiled just
in time to adequately alleviate the performance problems.5 It
is also a matter of scale to port the supporting structure to the
various JVMs. Therefore, it is not surprising that many MA
systems choose Java as an implementation language.

The Java approach does have its advantages and disadvan-
tages. The advantages include widely accepted platform neu-
trality, ease of network programming constructs, and a
constantly evolving security model. The disadvantages include
the ongoing maturation of the language and its lack of mature
development tools, plus a common weak link if a flaw in the
language is found. However, the last weakness could be said
about the core of either ARA or Agent Tcl systems, or any
agent system in general.

MOBILITY
Agent mobility mechanisms include remote invocation (also
known as remote execution), cloning, programming language
support, middleware, and COD [11]. Most systems discussed
in this article use application protocols on top of TCP for
transport of agent codes and states. Systems based on Java
make use of the programming language features extensively,
such as support of a form of RPC (remote method invocation,
RMI), object serialization, and reflection. Often the agent
states and codes are transformed into an intermediate format
to be transported and restarted at the other end. The mecha-
nisms used are some variations of remote execution (all sys-
tems use it, since agents from all systems are restarted),
programming language support (all systems that are based on
Java6), and middleware.

Aglet has its own Agent Transfer Protocol (ATP), an
application-level protocol that communicates via a TCP
socket. Concordia also uses TCP sockets and Java object

5 A note of caution: this improvement is still mostly theoretical. The effort
to improve performance always involves risks of reducing the portability of
code. Code that is optimized for Sun’s Java environment may not even
work on another Java environment.

6 These systems have to add features to Java to support migration via RMI
or middleware (IIOP, DCOM), since Java does not have built-in features
for code and state migration and reception.



IEEE Communications Magazine • July 199834

serialization for transport mechanisms. Odyssey is the only
system that isolates the transport layer from the rest of the
system and can use RMI, Internet Inter-ORB Protocol
(IIOP), or the distributed component object model (DCOM).
Voyager uses Java object serialization and reflection exten-
sively in its transport mechanism. Mole initiates a replace-
ment for the Java code loader model by proposing a code
server and is expected to follow the same path as other sys-
tems based on Java. SHIP-MAI uses Java object serialization
and manages transport at three levels: AEC–AEC, AEC–AE,
and AE–AE. Both ARA and Agent Tcl hide the transport
details from the developer in the form of a single move or
go command and may use a number of protocols to transfer
agent code and data. The core systems of ARA and Agent
Tcl are supposed to handle decoding back to a language-spe-
cific interpreter format. Agent Tcl currently uses a TCP
socket, while ARA foresees Simple Mail Management Proto-
col (SMMP), Hypertext Transfer Protocol (HTTP), and File
Transfer Protocol (FTP) as possible routes. Note that Aglet,
Concordia, Odyssey, Voyager, and Mole also support a
transparent agent code and state transfer via a single com-
mand or method.

In the systems surveyed, execution of the agent is stopped
and all local-resource-dependent activities have to be com-
pleted before it can be moved. In Agent Tcl and ARA, the
system guarantees that execution resumes at the next state-
ment after the move statement with the local variable restored.
In Java-based systems the entry point (or points) in the form
of method calls are executed at the next destination. All Java-
based systems except Concordia have a single entry point
after transfer of an agent occurs. In Concordia, an arbitrary
entry point can be called at the destination.

COMMUNICATION
A communication model is needed so that agents can com-
municate with each other and for the system to control
agents, and this has been discussed in the context of an
agent model for each system in previous sections. In this sec-
tion the strengths and weaknesses of each approach will be
presented.

Systems based on Java mostly support event, message,
and/or RPC-based communication, while ARA supports only
client/server-style message exchange at a predefined service
point. Agent Tcl plans to support event-based communication
[21], but the description does not clearly define what this
event means. Interagent communication in any form is not
discussed in available literature on ARA. Agent Tcl has
recently added support for RPC-style communication between
agents and a message-passing model via byte streams [37].

Among the systems discussed so far, ARA and Agent Tcl
have the most traditional communication framework. Both
systems rely on a rigidly defined interface of possible proce-
dure calls to establish communication. ARA still does not
allow interagent communication, but Agent Tcl has intro-
duced an Agent Interface Definition Language (AIDL) to
allow agents in different languages to communicate [33]. The
AIDL approach is similar to CORBA IDL and is necessary
given the multiple languages that Agent Tcl supports. This
style has the advantage of interfacing matching communica-
tion that facilitates client/server bindings. However, since it is
based on RPC it also suffers from not being able to handle
RPCs automatically, so interfaces have to be set up before
proper connection is established. It also requires extra pro-
cessing steps and extra objects. Therefore, agent communica-
tion in this style is not very straightforward. However, this
approach may have benefits in establishing an exchange inter-
face to facilitate a higher-level exchange [37].

In stark contrast to ARA and Agent Tcl, systems based on
Java make use of the homogeneous language environment to
bypass the interface incompatibility issue. Most systems imple-
ment a distributed event communication and/or a message-
passing mechanism using normal Java objects. Voyager goes
one step further to make use of the Java reflection mecha-
nism to create agents remotely without resorting to an RPC-
based system. It also introduces a multicast group event
distribution called VoyagerSpace that it claims to be scalable
to enable high-traffic agent communication. With Voy-
agerSpace, distributed events and published/subscribed styles
of communication are possible. VoyagerSpace is also nestable
and allows arbitrary disconnection. This is in contrast to
AgentGroup from Concordia, where a group can be formed,
but it is not possible to join a group arbitrarily. Of course, the
disadvantage of the above approaches is language dependen-
cy. It would be advantageous to have a similar architecture
available in language- and application-neutral form. The vari-
ous CORBA services seem to fulfill this need.

RESOURCE MANAGEMENT
Agents are executing programs that may require access to low-
level system resources such as CPU cycle, disk, memory, graph-
ic subsystem and network. They may require higher-level access
such as persistence service (i.e., database), thread, and services
from static entities (i.e., back-end directory server, SQL server).
Equitable distribution of this access to resources among
requesting agents is dealt with by resource management.

Resource management is not clearly discussed in most
systems mentioned in this article. Concordia is the only
exception, explicitly providing a queue manager abstraction,
but limiting its services to managing access to transport ser-
vice. Agent Tcl and ARA seemed to vaguely specify that
resource management would be carried out by the core
layer; however, both systems did not specify where or how it
could be carried out. Aglet, Odyssey, and Voyager, as other
Java-based systems, left the low-level resource management
to the JVM (by using the Java thread facility) and provided
no other facility.

RESOURCE DISCOVERY
An agent is far more efficient if it can dynamically discover
the resource it needs to accomplish its tasks than if it is
hardwired to do work. Resource discovery covers an area
complementary to resource management. When an agent
arrives at a site, it should be able to discover the services
offered at that site or things it could do. To be more effi-
cient, this information needs to be available even before the
agent decides to go to a site. Service discovery and trading
is the fundamental premise of MA in [38]. Some authors
argue that this is the application level of an MA system [17,
19]. As in resource management, resource discovery is virtu-
ally absent in current systems. Although the concept of stat-
ic entities servicing an agent’s requests is there (ARA,
Mole), such systems assume that the agent is aware of these
services before coming to a site.  It  would be better if
schemes were designed as part of the overall architecture to
allow both prior and just-in-time discovery of services. Fur-
thermore, more research efforts are needed, particularly
those aimed at determining the optimal approach that per-
mits flexible applications to be built that offer both high
performance and scalability.

IDENTIFICATION
Agents must be identified uniquely in the environment in
which they operate. Proper identification allows control,
communication, cooperation, and coordination of agents to



IEEE Communications Magazine • July 1998 35

take place. All schemes used in the current systems are vari-
ations of generating a unique number sequence designating
the agent created. A globally unique identifier is also used in
identifying Microsoft COM components and CORBA
objects. The difference in an MA system is that it must allow
easy access for human (programmer) use, since remembering
a unique sequence of numbers is not straightforward to
human. Thus, the purpose of an identification scheme is to
generate unique identifiers and establish some infrastructure
to allow convenient and accurate access to the agents that
carry them.

Given the importance of uniquely identified agents, most
Java-based systems have at least a facility to generate
unique identifiers. Surprisingly, this issue was not discussed
at all for ARA or Agent Tcl. To facilitate access to the
agent using these identifiers, Mole suggests using DNS to
associate name to number, and Voyager has an alias facility
that a programmer can use to refer to an agent. Voyager
also supports a federated naming service that facilitates
linking of directory services to form a large logical directory
(DNS style) which Voyager claims offers a superior way to
locate an agent. In contrast, Aglet and Odyssey use a simple
table lookup to associate name string to URL, while Con-
cordia uses a directory manager to manage the naming ser-
vice for its agents.

It is clear that the approach of Aglet and Odyssey is far
from sufficient, and ARA and Agent Tcl do not discuss solu-
tions at all. Moreover, it is not clear how the Voyager or Con-
cordia approach fares in real situations where directories are
constantly updated, a common scenario with agents moving
about. SHIP-MAI currently requires the agent to report to
the AEC at the local level and then uses a hierarchical
arrangement of AECs at the global level. Some groups, such
as Mole and the Open Software Foundation (OSF) Mobile
Agent (MOA) project [36], choose to take advantage of the
current DNS infrastructure; however, it is unclear whether
such an approach is adequate.

CONTROL

The basic goal of control is simple: to provide ways in which
the agent may be created, started, stopped, duplicated, or
instructed to self-terminate. Control also covers subissues
such as how the activities during the MA lifecycle can be
coordinated. The common approach has been providing these
abilities in the root MA class and then allows the programmer
to tailor the MA responses to control-oriented events or mes-
sages (e.g., Aglet, Odyssey, Mole, Concordia, SHIP-MAI, and
Voyager). The ARA and Agent Tcl control models were not
clearly discussed, although the available information suggested
that an arbitrary method or procedure could be relayed and
invoked on an MA. The ability to respond to events has been
proposed for the future version of Agent Tcl [33], but the
solution may be a customized one instead of a de facto stan-
dard as in Java. On the other hand, Voyager allows the most
flexibility and gives a lot of freedom in terms of control. Any
methods can be called remotely, and it also has an event mul-
ticast facility to facilitate group control.

The control model is far from optimal in current systems,
particularly when dealing with a group of many MAs. Most
current solutions seem to work well with a small number of
isolated MAs; however, there is little convincing proof that
these strategies would work when dealing with a large number
of MAs. The choice of reuse by inheritance is also somewhat
limiting. A better choice would be reuse by composition,
which gives the programmer flexibility in defining how the
MA should be controlled. What is also missing is a control
framework of how different low-level facilities such as Voy-
agerSpace and Aglet Message should be used to achieve scal-
able control of the MA.

DATA MANAGEMENT
An MA can carry with it data it needs to do work. It also
needs to store itself in a persistent form for fault tolerance or
other purposes. These services are provided by the AEE and

■ Table 1. A summary of moble agent system features.

Aglet Limited, sandbox Java Aglet Transfer Protocol Event, message object Java
model

Agent Tcl Limited, sandbox Support multiple Multiple protocol RPC Yes
model language interpreters

ARA Limited, sandbox Support multiple Multiple protocol RPC Yes
model language interpreters

Concordia Limited, sandbox Java Socket and Java Event, group Yes, via the queue 
model and secure serialization server
channel

Mole Basic Java Java Enhanced Java model Event Java
with code server

Odyssey Basic Java Java Java RMI, CORBA IIOP, Event Java
DCOM

TACOMA Limited, uses None TCP Folder object Operating system
firewall agent

SHIP-MAI Sandbox model, Java Java object Event, group, room Planned
secure channel, policy, serialization object, Java syntax 
access control for method call

Voyager Limited, sandbox Java Java object Distributed event Java
model, secure channel serialization, reflection (VoyagerSpace), Java 

syntax for method call

Mobile agent Security Portability Mobility Communication Resource 
system management



IEEE Communications Magazine • July 199836

are anticipated by all nine systems. However, only Voyager
and Concordia have implemented persistent mechanisms,
whereas other systems do not discuss how data management
will be carried out at all. Furthermore, only Voyager provides
ways in which persistence can be customized, although these
still leave a lot to be desired. ARA talks about checkpoint, a
snapshot of the MA that would be stored permanently, but it
does not specify how the interface would occur or how it
would support customary solutions. SHIP-MAI provides a
repository for an agent to store data that is centrally managed
and a distributed agent cache mechanism at the AE server;
however, the details are not yet available.

Data management is important to allow an MA system to
scale and also affects performance, but not all the systems dis-
cussed have satisfactory solutions. Some researchers take a
different viewpoint and apply results in persistent language or
programming systems as a solution, along with how to imple-
ment MA systems with these tools [39].

CONCLUSION
In the traditional distributed application environment (e.g.,
cl ient/server architecture),  specialized programs are
designed to accommodate as many clients as possible. The
client processes usually run on remote machines and com-
municate with server processes to perform work. This
approach can generate a high level of network traffic and,
depending on the network design, can be susceptible to con-
gestion delay. The mobile agent paradigm proposes bringing
the requesting client closer to the source and hence reduc-
ing the necessary traffic.

This article has presented an overview of the emerging
mobile agent technology in the context of telecommunica-
tions.  It  has elaborated on some fundamental  issues
encountered in mobile agent system design and the solu-
tions offered in nine representative systems. However, as
Table 1 shows, the representative systems seem too generic
in scope, with few specific experiments involving issues of
interest to telecommunications. Demonstrations of how
these systems propose to solve network management and
services issues are not yet available. It is expected that
these systems will have to be either specialized or used to
build advanced systems. These steps are necessary to deal
with a particular application domain such as network man-
agement and services. Nevertheless,  the trend toward
decentralization of network design to cope with growth in
demand for services and the pressure for more efficient
network management seems to be well suited to the emer-
gence of this technology. MA is considered by many to be
lightweight process migration that does not depend on
operating system semantics, thus, it is less complicated to
implement than process migration. However, the other
aspect of mobile agents, agency, is relatively less well devel-
oped. Nevertheless, this limitation is only a temporary bar-
rier, since objects can be mobile and perform useful work
now without possessing all the required characteristics that
define agency.7

ACKNOWLEDGMENTS
This work was supported partly by the Telecommunication
Research Institute of Ontario and partly by the Natural Sci-
ences and Engineering Reseach Council of Canada. We
would like to also express our thanks to the anonymous
reviewers for their insightful and helpful comments.

REFERENCES
[1] K. Rothermel and R. Popescu-Zeletin, Eds., Mobile Agents, Lecture Notes

in Comp. Sci. Series, vol. 1219, Springer, 1997.

■ Table 1(continued). Summary of mobile agent systems features.

Aglet None, user- Yes, via globally Yes‹ None, user- None so far
implemented unique number implemented

sequence

Agent Tcl Limited N/A N/A Yes, in core Yes

ARA Limited N/A N/A Yes, in core None so far

Concordia None, user- N/A Yes Yes, but limited None so far
implemented

Mole None, user- DNS Yes N/A None so far
implemented

Odyssey None, user- N/A Yes None, user- None so far
implemented implemented

TACOMA None, user- N/A Yes None, user- None so far
implemented implemented

SHIP-MAI Planned Yes, use globally Yes Yes Yes, in mobility 
unique number management and 
sequence information delivery

Voyager None, user- Yes, use globally Yes Persistent interface Yes, but details not 
implemented unique number publicly available

sequence, alias, 
federated naming 
directory service

Mobile agent Resource discovery Identification Control Data management Case study in 
system telecommunication

7 On the same note, there is a growing consensus among researchers in
mobile agent systems such as those discussed in this article to replace the
term “agent” by the term “object,” to eliminate the confusion with the arti-
ficial intelligence (AI) agent.



IEEE Communications Magazine • July 1998 37

[2] H. S. Nwana and N. Azarmi, Eds., Software Agents and Soft Comput-
ing: Towards Enhancing Machine Intelligence, Lecture Notes in AI
Series, vol. 1198, Springer 1997.

[3] J. Vitek and C. Tschudin, Eds., Mobile Object Systems: Towards the Pro-
grammable Internet, Lecture Notes in Comp. Sci. Series, vol. 1222,
Springer, 1997.

[4] T. Magedanz, K. Rothermel, and S. Krause, “Intelligent Agents: An
Emerging Technology for Next Generation Telecommunications?” Proc.
INFOCOM’96, San Francisco, CA, 1996.

[5] M. Baldi, S. Gai, and G. P. Picco, “Exploiting Code Mobility in Decentral-
ized and Flexible Network Management”, K. Rothermel and R. Popescu-
Zeletin, Eds., Mobile Agents, Lecture Notes in Comp. Sci. Series, vol.
1219, pp. 13–26, Springer, 1997.

[6] Y. Yemini, “Network Management by Delegation,” Integrated Network
Management II, Krishnan and Zimmer, Eds., Elsevier, 1991.

[7] M. Meyer, “Decentralizing Control and Intelligence in Network Manage-
ment,” Integrated Network Management IV, Sethi et al., Eds., Chapman
and Hall, 1995.

[8] S. Krause and T. Magedanz, “Mobile Service Agents enabling Intelligence
on Demand in Telecommunications”, Proc. IEEE GLOBCOM ’96, 1996.

[9] http://www.agent.org
[10] http://www.omg.org/library/schedule/Technology_Adoptions.htm#Mobile_

Agents_Facility
[11] http://www.tinac.com
[12] M. Rizzo and I. A. Utting, “An Agent-Based Model for the Provision of

Advanced Telecommunication Services,” Proc. 5th Telecommun. Info.
Networking Architecture (TINA) Wksp. , Melbourne, Australia, pp.
205–18, Feb. 1995.

[13] http://www.fokus.gmd.de/ima/projects.html
[14] Y. Yemini, “The OSI Network Management Model,” IEEE Commun.

Mag., May 1993, pp. 20–29.
[15] G. Cugola et al., “Analyzing Mobile Code Languages,” J. Vitek and C.

Tschudin, Eds., Mobile Object Systems: Towards the Programmable Inter-
net, Lecture Notes in Comp. Sci. Series, 1222, Springer, 1997, pp. 93–110.

[16] http://www.trl.ibm.com/aglets
[17] R. S. Gray, “Agent Tcl: A transportable agent system,” Proc. CIKM

Wksp. Intelligent Info. Agents, J. Mayfield and T. Finnin, Eds., 1995.
[18] http://www.cs.dartmouth.edu/~agent
[19] H. Peine and T. Stolpmann, “The architecture of the ARA platform for

mobile agents,” K. Rothermel and R. Popescu-Zeletin, Eds., Mobile Agents,
Lecture Notes in Comp. Sci. Series, 1219, Springer 1997, pp. 50–61.

[20] http://www.uni-kl.de/Ag-Nehmer/Projekte/Ara/index_e.html
[21] D. Wong et al., “Concordia: An Infrastructure for Collaborating Mobile

Agents,” K. Rothermel and R. Popescu-Zeletin, Eds., Mobile Agents, Lec-
ture Notes in Comp. Sci. Series, 1219, Springer, 1997, pp. 86–97.

[22] http://www.meitca.com/HSL/Projects/Concordia
[23] http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole.html
[24] http://www.generalmagic.com/technology/odyssey.html
[25] D. Johansen, R. van Renesse, and F. B. Schneider, “Operating system

support for mobile agents,” Proc. 5th IEEE Wksp. Hot Topics in Op.
Sys., IEEE Comp., New York, 1995.

[26] http://www.cs.uit.no/DOS/Tacoma/index.html
[27] http://www.objectspace.com/voyager
[28] http://deneb.genie.uottawa.ca
[29] P. Sapaty, “Mobile WAVE technology for distributed knowledge pro-

cessing in open networks,” Proc. CIKM ’95 Wksp. New Paradigms in
Info. Visualization and Manipulation, Baltimore, MD, Dec. 2, 1995.

[30] http://www.research.digital.com/SRC/personal/Luca_Cardelli/Obliq/Obliq.html
[31] B. Falchuk and A. Karmouch, “AgentSys, A Mobile Agent System for

Digital Media Access and Interaction on the Internet,” Proc. IEEE
GLOBECOM ’97, Phoenix, AZ, Nov. 1997.

[32] A. Karmouch and V. A. Pham, “Study of a Mobile Agent-based Architecture
in a Networking Environment,” Tech. rep. TR-03, Univ. Ottawa, Aug. 1997.

[33] A. Hooda, A. Karmouch, and S. Abu-Hakima, “Nomadic Support Using
Agent-Level Communication,” to appear, Proc. 4th Symp. Internetwork-
ing, Canada, July 1998.

[34] W. M. Farmer, J. D. Guttman, and V. Swarup, “Security for Mobile
Agents: Issues and Requirements,” Proc. 19th Nat’l. Info. Sys. Security
Conf., Baltimore, MD, Oct., 1996, pp. 591–97.

[35] J. Vitek et al., “Security and Communication in Mobile Objects Sys-
tems” J. Vitek and C. Tschudin, Eds., Mobile Object Systems: Towards
the Programmable Internet, Lecture Notes in Comp. Sci. Series, vol.
1222, Springer, 1997.

[36] D. S. Milojicic, S. Guday, and R. Wheeler, “Old Wine in New Bottles:
Applying OS Process Migration Technology to Mobile Agents,” Open
Group Res. Inst., 1997.

[37] D. Kotz et al., “Agent Tcl: Targeting the Needs of Mobile Computers,”
IEEE Internet Comp., vol. 4, no. 1, Aug. 1997, pp. 58–67.

[38] B. Schulze, “Contracting and Moving Agents in Distributed Applica-
tions Based on a Service-Oriented Architecture,” K. Rothermel and R.
Popescu-Zeletin, Eds., Mobile Agents, Lecture Notes in Comp. Sci.
Series, vol. 1219, Springer 1997.

[39] M. da Silva and A. R. da Silva, “Insisting on Persistent Mobile Agent
Systems,” K. Rothermel and R. Popescu-Zeletin, Eds., Mobile Agents,
Lecture Notes in Comp. Sci. Series, vol. 1219, Springer 1997.

ADDITIONAL READING
[1] http://www.opengroup.org/RI/java/moa/index.htm
[2] http://www.sce.carleton.ca/netmanage/perpetum.shtml

BIOGRAPHIES
VU ANH PHAM is a research associate with the Multimedia and Mobile Agent
Research Laboratory, University of Ottawa, Ontario, Canada. His primary
interest is in the security, scalability, and performance issues of mobile
agent system architecture. He received his M.Sc. in system science from the
University of Ottawa in 1998.

AHMED KARMOUCH (karmouch@site.uottawa.ca) is a professor of electrical
and computer engineering and computer science at the School of Informa-
tion Technology and Engineering, University of Ottawa, Ontario. He holds
an Industrial Research Chair from the Ottawa-Carleton Research Institute
and the Natural Sciences and Engineering Research Council. He is also
director of the Ottawa Carleton Institute for Electrical and Computer Engi-
neering. Prior to joining the University of Ottawa in 1988, Karmouch was
senior manager at Bull S.A, Paris, France, were he was responsible for the
Multimedia Information System group. Karmouch has made significant con-
tributions in the areas of multimedia communications, multimedia databas-
es, and mobile software agents. He is director of the Multimedia and
Mobile Agent Research Laboratory. He leads several projects on multimedia
and mobile agent research in collaboration with Telecommunications
Research Institute of Ontario, Communication and Information Technology
of Ontario, Canadian Institute for Telecommunications Research, Nortel,
Bell Canada, Mitel, National Research Council Canada, Centre National de
Recherche Scientique in France, and TeleLearning National Center of Excel-
lence. He received M.S. and Ph.D. degrees in computer science from the
University of Paul Sabatier, Toulouse, France, in 1976 and 1979, respective-
ly. He is a member of several committees and editorial boards. His current
research interests are in interactive multimedia information systems, home
architecture and services, telelearning, and mobile software agents for
telecommunications.


