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Abstract

We report on a verified implementation of two (well-known) algorithms for unification modulo the
theory of Boolean rings: Lowenheim’s method and the method of Successive Variable Elimination.
The implementations and proofs of correctness were done in the Coq proof assistant; we view this
contribution as an early step in a larger project of developing a suite of verified implementations of
equational unification algorithms.

1 Introduction

There is a significant emerging body of work devoted to formalizing mathematics and to specifying
and verifying algorithms and systems using proof assistants such as Coq, Isabelle, HOL, and others. In
this paper we report on first steps in a project of developing—in the proof assistant Coq—a library of
verified E-unification algorithms. Our long-term goal is to build a resource of reusable data structures,
algorithms, and theorems that will be a resource to researchers in mathematics and computer science.

Boolean unification is an attractive choice for a first theory to formalize. Boolean rings arise in
many contexts, in connection with satisfiability, with circuit synthesis, and with logic programming,
[BS87], and play a role in general topology, algebra, lattice theory. Boolean unification has a well-
behaved theory (it is decidable and unitary) and there are interesting algorithms suitable for “native”
implementation (as opposed to, for example, AC-unification, which naturally involves passing to
reasoning about Diophantine equations).

To date we have implemented and proved correct two well-known algorithms for unification modulo
the theory of Boolean rings, in the absence of free function symbols: Lowenheim’s method and the
method of Successive Variable Elimination. The code comprises about 1600 lines of definitions (of
concepts and algorithms) and about 2900 lines of proof. It is available at http://web.cs.wpi.
edu/~dd/unif.pdf. We have not made the Coq source available because, as described below, our
development is being actively refined.

Our main goal in the present paper is to generate feedback from the unification community about
the usefulness of a project like this and a discussion about future directions to pursue.

2 Related Work

There have been several verified implementations of syntactic unification, too many to attempt to list
here. But we do note that in last year’s UNIF (2018) Kasper Fabach Brandt, Anders Schlichtkrull, and
Jgorgen Villadsen present [BSV 18] an Isabelle coding of syntactic unification, with a formal proof of
termination though not of correctness. The related work section of that paper cites a selection of other
verified developments of syntactic unification in various tools. The problem of formalizing unification
modulo theories has received much less attention. A notable exception is the Coq formalization of
associative-commutative matching by Evelyne Contejean in [Con04].

There are many examples of formal development of algebraic theories, again, far too many to
summarize here, but there are relatively few treatments of equational logic in a general, universal-algebra
sense.
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Two early examples are [Cap99, Dom08], but the example most relevant to the current project is the
CoLoR system [BK11], part of a family of tools also including CiME [CCF " 11] and Coccinelle [Con].
CoLoR is primarily a (Coq) library for analyzing termination of rewrite relations. Although it does not
treat semantic unification, it has an extensive infrastructure for reasoning about term-rewriting generally,
and has been a valuable resource for the current project.

During the 2018-19 academic a WPI undergraduate project team (Spyridon Antonatos, Matthew
McDonald, Dylan Richardson, and Joseph St. Pierre) worked on Boolean unification in parallel with the
author, with some differences in data structures and outcomes.

3 Preliminaries

We assume familiarity with standard notions of equational logic and unification [BSO1, BN98].
A Boolean ring is a ring in which every element x is idempotent, that is, x> = x. The specific set B
of axioms we use in our development is the following.

O+x=x lxx=x (x+y)+z=x+(y+z)
(xxy)xz=x%(y*2) x+y=y+x x#(y+2z) = (x*y) + (x*2)
(y+2z)*x = (y*x)+ (z%x) x+x=0 X*kX =X

In what follows we will use s =p ¢ to mean that s and ¢ are provably equal modulo B; we use s = ptto
denote a unification problem modulo B.

The axioms other than the last are precisely the axioms for a ring, with the omission of an additive
inverse and the inclusion of the axiom x+x = 0. But in the presence of an additive inverse, the
omnipotence axiom x> = x entails x+x = 0, and so the additive inverse operator is in fact the identity.
[Proof: expand x + x as (x+ x)(x+x) =p xx +xx + xx +xx =g x + x + x +x. Cancellation yields
0 =p x+x. ] Presenting the theory as above, with x4+ x = 0 as an axiom, rather than using a separate
additive inverse operator, thus simplifies a formal development: there is one fewer function symbol in
the signature.

Two easy but significant consequences of the axioms are (i) commutativity of multiplication:
xy =g yx [Proof: x+y=p (x+y)(x+y) =p xx+xy+yx+yy =g x+xy+yx+y. Cancellation yields
0 =p xy+ yx] and (ii) the fact that every element is a O-divisor [since x(1 +x) =p x+xx =g x+x =p 0].

Since an equation u =p v is equivalent to the equation u +v =p 0,

As usual in the presence of a “inverse” operator, unification problems u :?B v reduce to matching
problems of the form t =p 0. So in the rest of the paper, instead of speaking of unifying two terms u and
v, we will often speak of solving a term ¢, meaning finding a substitution ¢ such that 6 =p 0.

There is a well-known translation between Boolean rings and Boolean algebras, under which
multiplication corresponds to conjunction and addition to exclusive-or. Any field of sets yields a
Boolean ring under intersection and symmetric difference. In fact, by the Stone Representation Theorem
(and the relationship between Boolean rings and Boolean algebras) every Boolean ring is isomorphic to
a field of sets [Sto36].

Unification Of course unification modulo the theory of rings is undecidable (by reduction to Hilbert’s
10th problem). By contrast, there are several well-known algorithms for B-unification. The decision
problem for B-unification (without free constants) is essentially the satisfiability problem, and so NP-
complete, since, as noted in [BN98], s =p ¢ under B if and only if s and ¢ are equal terms over the boolean
ring B,. The decision problem for B-unification is ITT5-complete for a signature with free constants and
is PSPACE-complete for a signature with free non-constant function symbols [Baa98] (by reduction to
the validity of sentences of quantified boolean formulas).
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Space considerations preclude a full discussion here of the history of algorithms for B-unification
(see [BNOg] for an introduction) but we do note that B-unification over the basic signature even in the
presence of free constants is unitary; it is finitary when arbitrary free function symbols are allowed.
Algorithms for constructing unifiers in the basic case can be found in [Low08, BS87]; Martin and
Nipkow [MN89] treat the case of free constants. Our formalizations treat the methods of Lowenheim
[Low08] and of Variable Elimination [Boo47, BS87]. It is not hard to show that simultaneous B-
unification reduces to B-unification of single equation, even in the absence of auxiliary function
symbols.

4 The Development

Coq is simultaneously a functional programming language and an environment for constructing proofs.
The programming language of Coq closely resembles OCaml; the chief differences are the richer type
system and the requirement that every function be terminating.

We do not have space here to discuss both algorithms in detail, and even so we can only hint at what
the implementation and verification look like.

We represent terms by the following inductive data type. TO, T1, A, and M denote O, 1, addition, and
multiplication, respectively.

Inductive bterm : Type =
| TO : bterm | T1 : bterm | V : var — bterm
| A :bterm — bterm — bterm | M : bterm — bterm — bterm

Using Coq’s Notation facility we use x +'y and x %’y as syntactic sugar for Axy and M x y and (the
quotes are added because symbols + and * have standard-library meanings in Coq).

The equational theory B is captured by the inductive relation eqv below; we introduce a Coq
Notation (s ==t) as infix syntactic sugar for (eqv s t). To save space, only a selection of the axioms
are given here.

Inductive eqv : bterm — bterm — Prop :=
| assocA :forallxy z, x +'y ==y + X

|eqv_ref : forall x , x == x

| A.compat : forall x X', x ==X — forallyy’, y ==y = x+' y ==X +"Y’

The cases not shown capture the other rules of B and a set of equations expressing that eqv is an
equivalence relation compatible with respect to the ring operations.

4.1 Lowenheim’s Method

The algorithm has two stages. To solve ¢ :?B 0, (i) first search for any substitution ¥ with y(¢) = 0; (ii) if
such a yis found, return the substitution

def

6 = {v:i=0+1)xv+(r)xy(v) | v € Vars(t)}.

Remarkably, this will be a most general solution. To ensure that part (i) terminates, we search through
the finitely many substitutions y defined on Vars(¢) that only take on values 70 or T'1. Of course, a key
part of the verification is that this restriction is complete. If no such vy is found we report that ¢ is not
solvable.



For example, to solve xy ~ 5 0, we can start with Y = [x := 0;y := 1]; then o is, after simplification,
X:i=Xxy+x yi=y

Note that ¢ is more general than v, indeed, Yo ¢ = 7. It is, perhaps, not obvious that ¢ is actually most
general.

Lowenheim’s method in Coq The most we can do in this limited space is to show three functions
that correspond to the algorithm outlined above, and the corresponding shape of the correctness proof.
The functions below, respectively (i) compute an initial solution (returning “None” if none found); (ii)
build a new substitution, the “lowenheim lift,” out of a given substitution and a given term, and (iii)
bundle these together as a constructive decision procedure.

Definition ground_soln (t: bterm) : option sub :=
find (fun s = eqvb (s’ t) TO) (all_01subs_bterm t).

Definition lowenheim_lift (t: bterm) (tau: sub) (x: var) : bterm :=
if inb x (vars_bterm t)
then ((t+ T1) %" (V x) +' t %" (apply_sub tau (V x)) )
else (V x).

Definition solve_lowenheim (t: bterm) :=
option_map (lowenheim_lift t) (ground_soln 1).

To prove correctness we must show that if ground_solnt returns None then ¢ is not solvable,
and otherwise, lowenheim_lift constructs a most general solution from the substitution returned by
ground_soln t. The structure of the correctness claim is the same as the structure of solve_lowenheim
itself.

Theorem lowenheim_correct (t: bterm) :
match (solve_lowenheim t) with

| None = ~(solvable t)

| Some sigma =- mgu_strong sigma t
end .

4.2 Successive Variable Elimination

This algorithm depends the fact that for any bterm ¢ and any variable x we can compute quotient term
g and remainder term r such that (t =p gx+r). Using this, the variable elimination algorithm for
solvability of a term 7 is as follows:

1. choose a variable x from among the variables of 7, and compute ¢ and r such thatt==q x +r.
2. sett’ tobe (g+ 1)r
3. compute a most general substitution ¢’ solving ¢’

4. then the following substitution is a most general solution for ¢

def

o={x—xx((c'q)+1)+(or) | xEvarst}



Correctness Argument The correctness argument proceeds by induction on the number of variables
in the original term 7. Then each of the claims below is captured by a lemma in the formalization.

e Any ground term can be reduced to either 1 or 0, and so is either unsolvable or has the identity as
a most general solution.

e As we go from ¢t down through the recursive calls, if ¢ is solvable then each derived bterm
1 &ef

t' = (g + 1)r is solvable.
e If ¢ is a most general solution for a derived bterm ¢/, then the updated substitution computed from
o’ is a most general solution for the original bterm .

A few words about the factorization of a term ¢ into the form gx + r give some glimpse into the
kind of considerations that arise in a formalization in a proof assistant. The construction as described in
[BN98] relies on the fact that any term can be represented in polynomial form, as a set of monomials,
each of which is a set a variables. Extracting g and r from ¢ is very simple under this representation.
But as described in the next section, polynomial form is not the most convenient representation for us.
So we construct recursive functions to compute g and » given x and the standard representation of 7. For
example when ¢ is t1f, (the most interesting case) and is recursively factored as g;x+ r; and gox + 12,
then

titr =g (q1x+r1)(qox+12)
=B q192XX+qi1rnx+qrix+rir
=g (q192+q1 +q2)x+ (ri1r2)

This is mathematically straightforward, and as a programming task it is easy to code a pair of mutually
recursive functions handling cases on the form of 7. But there is a wrinkle: in Coq all functions must
provably terminate, and Coq’s automatic techniques for verifying termination do not suffice for the
mutual recursion suggested by the above. There are techniques for supplying Coq with a termination
justification developed by the user, though this is sometimes a non-trivial task. But luckily in the present
case, we can disentangle the calculations: a function computing the remainder r of a term ¢ after division
by x can be computed directly, first, and then used in computing the quotient q.

S Design Choices and Lessons Learned

B-equality as an Inductive Predicate 'We might have, naively, captured each of the B-equations as a
Cog Axiom, such as Axiom invA : forall X, x +' x = TO

where we have used the primitive Coq equality predicate = instead of eqv. But this would be a mistake:
the resulting theory would be logically inconsistent. A fundamental principle of inductively defined
data (such as terms) is that if C| and C; are distinct constructors (such as +' and TO0), then any equation
C15 = C,f entails falsehood.

This is why we represent equality under B as a Inductive Predicate. When eqv is defined inductively
it means that (eqv s t) holds precisely when it follows from the rules in the inductive definition. (And
Coq provides tactics, such as inversion, to exploit this fact.) It follows that eqv really does precisely
capture provable equality under B.

By the way, this inductive-predicate approach differs from systems such as CoL.oR or treatments
of algebraic structure in, e.g., the Mathematical Component Library. The difference is that we are not
interested in deriving just those theorems that hold in all B-structures, we are interested in one particular
structure, the term model for B. So for example, we can prove the proposition ~(T0 == T1), which is
not a theorem of B.



Terms and Polynomials (The discussion in this paragraph is specific to the theory B.) For any term ¢
there is a B-equivalent term p in polynomial form: monomials are sets of variables and polynomials are
set of monomials. If we totally order variables and—then, lexicographically—monomials, every term
can be reduced to a unique polynomial normal form modulo B. This is very convenient theoretically, and
is exploited in several places in [BN98], and so it suggests a representation for terms in the formalization.
But as my undergraduate team grew to realize, this is not a particularly easy representation to work with.
Arithmetic operations are not easily directly described as operations on these sets-of-sets; there is post-
processing to be done to restore the required invariants. In turn, these repairs must be proven correct,
for each operation, and the verification effort grows burdensome out of proportion with the intellectual
convenience of having unique normal forms. Eschewing this approach meant that certain techniques
and results, such as (i) the fact that s =p ¢ is B-provable if and only if s and ¢ are equal polynomials over
2-element Boolean rings, and (ii) the factoring lemma crucial to the Variable Elimination algorithm, had
to be defined and verified without recourse to the most mathematically-natural data structure, which is
polynomial form.

Terms as a Signature-specific Inductive Data Type The data structure shown in Section 4 is what
the current development uses, and it has much to recommend it. It is direct, it supports programming
by pattern-matching, and Coq automatically computes an induction principle that makes tactic-based
reasoning convenient. But a significant drawback to this approach is the fact that it is not generic across
signatures. Much of the infrastructure of the verification effort comprises standard results about variable
occurrences, substitutions, and so forth. Conceptually the definitions of, and proofs about, these notions
are the same for any signature, but with the signature-specific approach this infrastructure would, in a
formal development, have to be constructed anew for each signature. To see a very simple example of
this lack of robustness, note that for a theory £ we often want to explore E-unification between terms
that may have free function symbols, symbols not occurring in the signature of E. Specifying terms as
a signature-specific type obviously precludes anything but an ad-hoc approach to such an analysis.

A Generic Inductive Data Type for Terms A better approach, the object of the work on the project
at the time of this writing, is to work with a single definition of term that can be parameterized by
signatures. Indeed this is the approach taken by Coccinelle and CoLoR.

Given a definition of Signature (a set of function symbols with arities) and a declaration of Sig, a
variable of type Signature, the following (taken from the CoLoR distribution) is the definition of term:

Inductive term : Type :=
| Var : variable — term
| Fun : forall f : Sig, vector term (arity f) — term .

A term is given a function symbol f from Sig and a vector of terms whose length is the arity of
f. In fact there is a design choice reflected here: Coccinelle, for example, uses a /list of terms to hold
the arguments to f. Lists have better library support than do vectors in Coq, but we then incur either
the stain of accepting that ill-formed terms can be built or the burden of maintaining and verifying
well-formedness after each operation, reminiscent of the polynomial-form discussion above.

One small cost to this choice is that, because term occurs recursively inside the vector data structure,
the induction principle automatically generated by Coq for these terms is not as strong as it could be.
(This drawback applies to the list-based approach as well.) This is a remark about the current strength
of Coq’s algorithm for constructing induction principles, not about the existence of a useful induction
principle. In fact it is straightforward to generate by hand the proper induction principles and tell Coq
to use these: this is exactly what Coccinelle and CoLoR do. A slightly greater cost to this approach is
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simply that dependent types such as vectors can be awkward to work with and reason about compared
to direct inductive types.

6 Future Work

The current development is rather naive, from a Coq perspective: there are doubtless many unrealized
opportunities for proof automation (including an adaptation of Coq’s built-in ring tactic to incorporate
Boolean-ring specific simplifications). The most immediate future, indeed ongoing, work is to address
the challenge described in Section 5 of finding the best data structure for terms. This will be crucial
to maintaining a flexible set of libraries that admit free function symbols and work across a variety
of equational theories. Coq has facilities for extraction of functional programs; we expect this to be
straightforward to incorporate into our libraries. Of course the most significant goal for the future is
to treat other equational theories. Any number of specific theories E are natural candidates but it will
perhaps be even more interesting to formalize “generic” E-unification approaches such as those based
on transformations, combining algorithms, and narrowing (see [Mes18] for a discussion)
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