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Abstract. Access-control policies have grown from simple matricaso-trivial
specifications written in sophisticated languages. Thesaming complexity of
these policies demands correspondingly strong automatebning techniques
for understanding and debugging them. The need for thebmitpes is even
more pressing given the rich and dynamic nature of the emwiemts in which
these policies evaluate. We define a framework to reprelseighavior of access-
control policies in a dynamic environment. We then spec#yesal interesting,
decidable analyses using first-order temporal logic. Oukwltustrates the sub-
tle interplay between logical and state-based methodscpkarly in the presence
of three-valued policies. We also define a notion of policyieajence that is es-
pecially useful for modular reasoning.

1 Introduction

Access control is an important component of system secuigess-control policies
capture rules that govern access to data or program opesatiothe classical frame-
work [28], a policy maps each user, resource and action tocesida. The policy is
then consulted whenever a particular user wants to perforacéon on a resource.
The information that defines this user, resource, and afions an accesgquest

Modern applications increasingly express policies in dorspecific languages,
such as the industrially popular languagewmt [33], and consult them through a policy-
enforcement engine. Separating the policy from the prognaitis manner has several
important consequences: it allows the same policy to bewghbanultiple applications,
it enables non-programmers to develop and maintain pslieied it fosters rich mecha-
nisms for combining policy modules [9, 33] derived fronffdient, even geographically
distributed, entities. (Imacmi, a typical combiner is “a decision by one module to deny
overrides decisions by all other modules”.) A universityraistration can, for exam-
ple, author a common policy for campus building ID-card kiakach department can
individually author a policy covering its unique situat®(such as after-hours access
for undergraduate research assistants); and an appeopolity combiner can mediate
the decisions of the two sub-policies.

Access-control policies are hard to get right. Our appt&mafor the dificulty
of authoring policies stems from our experience maintgjraind debugging the poli-
cies from a highly-configurable commercial conference papanager called &-
TINUE [27]. Almost all interesting bugs in &rinue have related to access control in
some form.



1. During the submission phase, an authdr During the submission phase, an author may

may submit a paper submit a paper

2. During the review phase, reviewemay 2. During the review phase, reviewemay sub-
submit a review for papep if r is as- mit a review for papep if r is not conflicted
signed to reviewp with p

3. During the meeting phase, reviewer 3. During the meeting phase, reviewaran read
can read the scores for papeif r has the scores for papgr if r has submitted a re-

submitted a review fop view for p andr is not conflicted withp
4. Authors may never read scores 4. Authors may never read scores

Fig. 1. Two candidate policies for controlling access to reviewsso

Many sources of complexity make policiedidiult to author. Combiners are one
natural cause of dliculty. Size is another factor: policies in realistic apations can
govern hundreds of actions, resources, and classes of(aa#les! roles). Perhaps most
significantly, decisions depend on more than just the in&diom in the access request.
Consider the policy governing: member access to conference paper reviews: a re-
viewer assigned to a paper may be required to submit his owiewebefore being
allowed to read those of others. The conference managevaeftmaintains the in-
formation about which reviewers have submitted reviewsabich papers; the policy
engine must be able to consult that information when resipgrtd an access request.
Such information forms thenvironmenof the policy. As this simple example shows,
environment data may be highly dynamic arfiiéated by user actions.

What is the impact of the environment? Figure 1 shows two ickatel policies gov-
erning access to review scores for papers in a conferencagaaWhich policy should
we choose? The policiesftir syntactically only in rules 2 and 3 but, if the application
allows conflict-of-interest to change after paper assigmpikesemantichange is con-
siderable. Imagine a reviewer who is initially assignedggpand submits a review, but
therc chair later learns that the reviewer was conflicted with tapgp. By the policy
on the left, the reviewer can read the scores for the cordliséeer.

As the example shows, such leaks are not evident from theypddicument alone:
they require consideration of the dynamic environmentrigixhese, however, requires
edits to thepolicy, not the program. This suggests that analysis should fooube
policy, but treat information from the program as part of plodicy’s environment.

Whereas existing work on reasoning about access-contligigpomodels the en-
vironment only lightly, if at all, this paper presents fornaaalyses for access-control
policies in their dynamic environments. We propose a nevharaatical model of poli-
cies, their environments, and the interactions betweean th'ée then propose analyses
that handle many common scenarios, focusing on two cordgmrabgoal reachabil-
ity and contextual policy containmenBuch analyses require a combination of rela-
tional reasoning (to handle interesting policies) and terapreasoning (for the envi-
ronments). In addition, the analyses must support realitstivelopment scenarios for
policies, such as modular policy authoring and upgradinge@urring theme in this



Permit(a, submit-paperp) :— author(a) , paper(p) , phase(submission)

Permit(r, submit-review,p) :— reviewer(r) , paper(p), assigned(r, p) , phase(review)
Permit(r, read-scoresp) :— reviewer(r) , paper(p), has-reviewed(r,p) , phase(meeting)
Deny(a, read-scoresp) :— author(a) , paper(p)

Fig. 2. Formal model of policy on left in Figure 1.

work is the interplay between techniques for defining thesdyses originating from
formal verification and from databases.

2 Modeling Policies and their Dynamic Environments

The sample policies in Figure 1 require information suchhasassignment of papers
to reviewers and conflicts of interest between reviewersapers. Policies are declar-
ative statements over data from requests and over relati@sapture information
gathered by the application (such as conflict-of-interesa)d Following many other
policy models [5, 12, 23, 29, 30], we capture policies as [Datprograms.

A Datalog rule is an expression of the form

Ro(to) = Ry(dy), ..., Rn(ln)

where theR; are relation names, @redicatesand thel; are (possibly empty) tuples of
variables and constants. Theadof the rule isRy(Up), and the sequence of formulas
on the right hand side is tHeodyof the rule. Given a set of Datalog rules, a predicate
occurring only in the bodies of rules is calledtensionabnd a predicate occurring in
the head of some rule is calladentional For a set of rule®, ed(P) andidb(P) denote
the extensional and intentional predicatedPofrespectively. A policy igecursiveif
some idb appears in a rule body. Téignatureof P, 2p, is edi(P) Uidb(P). A set of
factsis a set of closed atomic formulas over a signafiire

Definition 1. Let Subjects, Actions, and Resources each be sort& beta first-order
relational signature including at least the two distineis ternary predicatéermit
andDeny of type Subjects Actionsx Resources.A policy rule overX is a Datalog
rule overX whose head is eith&ermit or Deny. A policyover is a set of policy rules
overX.

That is, a policy is a set of Datalog rules whose idb predgare amongsPermit
andDeny. We use an expliciDeny relation following thexacmr policy language [33],
rather than interpret deny as the negation of permit, tonaligolicy to not apply to
some requests. The distinction between denial and noreappity is useful for de-
composing policies into sub-policies that only cover pertit requests, as in the uni-
versity example of the Introduction. (Bertirat al. discuss implications of supporting

3 Subjects, Actions, and Resources could have more strustueh as tuples to model resources
with attributes or sets of Subjects to model joint actiongctschanges do noffect our theo-
retical foundations, so we use the atomic versions to sfynfile presentation.



negated decisions [8].) We point out the consequences fidision on our models
and analyses as they arise in the paper.

Figure 2 shows a sample policy. The policy governs the uskefttions submit-
paper, submit-review, and read-scores based on informftm the environment.

What is an environment? A principal source of environmefarimation is the pro-
gram (e.g., which reviewers have submitted papers). Soffeeniation comes from
end-users (such as credentials). The run-time system edsdps information (such
as the current time), and some information comes from they&amework itself
(in role-based access control, for example, policies dpamder assignments of users
to roles and under hierarchies of permission inheritancergmoles). These diverse
sources suggest that (i) the environment must be a tramsgistem, to model the pro-
gram’s execution and the passage of time, and (ii) eachrstageconsist of an instance
of the edb relations referred to by the policy. This modehisréfore in the family of
recent work on representing programs as transitions olatiaes [2,13, 41, 44]. Be-
cause our model is general enough to handle most forms ofoemaent information,
we focus on the general model and ignore finer distinctiorkérrest of this paper.

Concretely, consider the policy in Figure 2. The predidads-reviewed tracks
which reviewers have submitted reviews for which paperseli reviewer submits
a review for papep, the tuple(r, p) is added tchas-reviewed in the policy environ-
ment. Thephase predicate tracks the current phase of the reviewing pros&#een
therc chair ends the review phase and starts the program commiteéng, the fact
phase(review) is removed from the set of current facts ahdse(meeting) is added.

Semantically, at any given time the detof facts in the environment relevant to
the policy rules constitute an instance over the edb relatadP. Evaluation of access
requests, such @ermit(s,a,r), can thus be viewed as asking for the truth of the sen-
tencePermit(s,a,r) in this structure. More constructively, it is well-knowhat a set
P of Datalog rules defines a monotone operator on the instanvegg’p. In this vein,

P inductively defines instances of idb names in term&pés follows. Treak as an
instance oveZp by adding empty relations for the idb names, and take th¢ fixasl-
point of the operator determined Bystarting withE. The idb relations in the resulting
instance are the defined relations. We call the generatefaalb theaccess tablesf

P with respect toE (denotedP(E)). Negation can be introduced into the framework
with some conceptual and computational cost [1].

Transitions in the policy’s environment are triggered byimas conditions. Some
arise from the passage of time (such as the passing of theissibmdeadline moving
the conference into the review phase). Others arise fromarg@ogram actions (once
an author submits a review, for example, he can read othmwsyor the same paper).
We use the generic tereventfor all of these conditions, and assume a signature of
events that can label transitions in the environment:

Definition 2. Given an event signatutg-y, aneventis a closed instance of one pred-
icate or constant ittgy. An environment modebver a signature’ relative to event
signatureXgy is a state machin®’ whose states are relational structures aveand
whose transitions are labeled with events frbgy.

A policy interacts with its dynamic environment by consutifacts in the environment
and potentially constraining certain actions in the enwinent. The latter captures the
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Fig. 3. Combining an environment model and a policy into a dynamézas model.
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influence of policy decisions on an application that useeeitdll that the policy’s en-
vironment includes the model of the application). We modehsinteractions through
events that share the same names as actions in policy regeesexample, a transition
labeledsubmit-review(Alice,paperl) would correspond to a request sent to thieypol
Not all events need to be governed by the policy. To avoid gmityi, we require that
all predicates that appear in baflky and the Actions sort of the policy have the type
Subjects< Resources idgy.

A policy and an environment model for the policy’s dynamigiemnment combine
to form a state machine over access tables, as shown in figukede “decs” is short
for “decisions”). Intuitively, the access tables arisenfrapplying the policy to the facts
at each state of the environment model. The transitions swbset of those in the envi-
ronment model. Transitions whose event labels are politgrasare kept if the request
defined by that event yield2ermit in the source state of the transition, and removed if
the request yieldBeny. Some transitions may be labeled with policy actions foralhi
their source state yields neitheermit nor Deny. Applications must determine whether
to permit or deny such actions. Rather than fix an interpoetatve assume that an
application specifies which transitions should be treatedemied in the absence of a
policy decision. This expectation is reasonable becauapplication queries the policy
engine for decisions and acts on the responses. We userthpdbcy contexfor a pair
containing an environment model and a subset of its tramsitidenoted = (V,&),
whereé€ is the set of transitions that the application treats asuliixfig to deny.

Definition 3. Let P be a policy,V be an environment model ov&p andC = (V,E)
be a policy context. Thdynamic access modir P, V, and€& is the state machin®
obtained by

— augmenting each statpof V with the access tables from evaluatifgtg; then

— eliminating transitions that are labeled with policy actions such thatifloes not
yield Permit, and (ii) eitherP yieldsDeny ortis in &, and

— eliminating unreachable states.

We use the term(, P)-accessiblefor states inD. We say “accessible” rather than
“reachable” to connote the influence of the policy: state®Dirare reached only by
securing the permission of the accesstrol policy.



Dynamic access models satisfy the definition of environmawrdels. This allows in-
cremental construction of dynamic access models from asefipolicy modules. The
definition assumes that the policy will not yield batarmit andDeny for any request
considered in the second clause. If this assumption isteid)ave say the policy has no
model. The subsequent results in this paper assume theigsdiiave models.

The following remark will be useful later.

Remark 4.Let C = (V,0) be a policy context with an empty set of default-deny tran-
sitions and letP and P’ be policies. Then any state which i8,P U P’)-accessible is
(C,P)-accessible.

Ideally, environment models would be at least partiallyivat from applications.
Standard techniques such as abstract interpretation ddreas this problem. Such
techniques are commonly used in software verification, aadat discussed further
in this paper. In general, we expect that finite models opgraximate their original
infinite models, so that all sets of facts reachable in thgiimai model remain reachable
in the abstracted model.

3 Analyzing and Comparing Policies

Formal analyses can answer many useful questions abougtgmlifwo fundamental
analyses arsafety(does a policy prohibit users from doing something undes#)eand
availability (does a policy permit a user to do something that they aravaticdo do).
Both of these depend on the dynamic environment and reseamigperties common to
model checking.

Policy authors also need the ability to compare policiehadbsence of formal
properties. Policies require upgrades and revisions gigragrams do. Authors need
to know that their policies implement expected changespiare importantly, that the
change did not yieldinanticipatedcchanges to decisions. Property-based verification is
of limited use for this problem as it would require the polaythor to write proper-
ties expressing the unanticipated changes. Analysesdhgare policies and provide
insights into the requests on which they yieldtelient decisions are therefore crucial.
This section formalizes analyses both on single-policiesfar comparing policies.

3.1 Goal Reachability

The analyses for safety and availability (a form of liver)edsare a similar structure:
they ask whether there is some accessible state in the dgreooéss model which
satisfies some boolean expression over policy facts. Chgetdnether a policy allows
authors to read review scores, for example, amounts to firatiraccessible state satis-
fying the formula

Axz Xo.(Permit(xz, read-scorex,) A author(xy) A paper(xz)).

We use the terngoal reachabilityfor this common analysis problem, where a goal is
formally defined as follows:



Definition 5. An n-ary goalis a sentence of the forAx; ... X, . A, whereAis a Boolean
combination of atomic formulas oveip. A goal isconjunctivef Ais a conjunction of
edbs. A goal is@, P)-reachabldf it is satisfied in a C, P)-accessible state.

The formulas that capture goals do not interleave quardified temporal opera-
tors. When formulas do interleave these, the logic gets tioatpd if the domains of
the structures at fierent states are allowed to vary (this phenomenon is fanfiitian
predicate modal logic). For problems that require such fdas ro-ur. is a sublan-
guage of linear predicate temporal logic that avoids ttigcdity with varying-domain
models, yet is rich enough to express many properties afdst§¢l3, 41].

Goal reachability combines database query evaluation aeadhability analysis.
The body of a goal is precisely a database query: to evalhatgdal at a particular
state in a model is to evaluate the associated Boolean queheadatabase of facts at
that state. Model checking algorithms for first-order tenaptogics subsume this prob-
lem [13, 41]. Given that goal reachability is a very useful apecial case of first-order
model checking, however, it is worth understanding the derity of goal checking.
Although checking the truth of an arbitrary first-order semte in a finite model is
PSPACE-complete, the result of any fixed Datalog query cacobgputed in polyno-
mial time in the size of the database, and the result of angl figajunctivequery over a
databas®) can be computed in spac¥log|Q|) [42]. Strategies forf&cient evaluation
of Datalog queries have been much-studied [1], particupiatthe case of of conjunctive
queries, resulting in many fast evaluation techniques.[16]

The following theorem records an upper bound on the asymptomplexity of
deciding goal reachability in models with fixed domains.

Theorem 6. Let D be a finite dynamic access model with n states, each of whigh ha
the same finite domain of size d. Reachabilitgimf a fixed goal G can be checked in
time polynomial in n and d. If G is a conjunctive goal then tealgility can be checked

in nondeterministic logspace in the sizefof

Proof.Each statej of D can be considered as a datab@s#ver the schema given by the
signature of the policy. For a fixed signature the siz€ad$ bounded by a polynomial
in d. Hence the satisfiability of a goal formula at a given state lsa computed in
polynomial time ind. We then use the fact that reachability between nodes ireateid
graph is in NLOGSPACE [24] and so requires time polynomiahirwhen the goal
is conjunctive, we require NLOGSPACE to check satisfiapilif a goal formula at a
given state. Hence, the entire goal reachability test cadobe in NLOGSPACE. O

3.2 Contextual Policy Containment

Intuitively, policy containment asks whether one policyisre permissive than another.
For example, we could say that poli®g¢ subsumes the decisions of poliey if every
permitted request undé, is permitted undeP, and every denied request underis
denied undeP;. Whether a request is permitted or denied in a policy, thodghends
on the set of facts that might support the request. We camixypir environment model
to restrict attention to those sets of facts that are addessi the environment. This
gives rise to the following formal definition of contextuallizy containment:



Definition 7. Let P(Q)(Permit) denote thePermit table defined by policyP over a
set of factsQ (and similarly forP(Q)(Deny)). P2 contains R in contextC, written
Py <€ P,, if for all instancexQ of edb and idb facts in, P1)-accessible states,

P1(Q)(Permit) € P>(Q)(Permit) and P»(Q)(Deny) C P1(Q)(Deny).
P, andP, arecontextually equivalerit Py <¢ P, andP, <€ Py.

A subtlety in comparing the semantics of two polices arises t the fact that
changing policies can result in a change in the accesgibdliation in a dynamic access
model: which states should we examine? The following lemustfjes the choice made
in Definition 7.

Lemma 8. If P1 <€ P,, then every(C, P1)-accessible state &, P,)-accessible.

Proof.We induct over the length of a shortest path from the state $tea givenC, P1)-
accessible state. It flices to show that at any such state the set of actions enabled
underP; is a subset of those enabled unéerBut this is clear from an examination of
Definition 3. ]

Ideally, we would like to use contextual containment to ceaabout relationships
betweerfragmentf policies, as well as entire policies. Reasoning aboutéteion-
ships between policy fragments is critical for policiestaured across multiple entities
(as in our university example in the Introduction). Modygaticy reasoning is subtle,
however, in the presence of requests to which the policy doeapply. In our model,
the context determines how such requests are handled. W paiey fragment permits
a request that defaulted f@eny in the context, new states could become accessible;
these states would have not been tested for containmestréhdering policy reason-
ing unsound.

Modular reasoning is sound, however, if policy combinatannot make additional
states accessible. If the containment check between twoniats occurs in a context
in which all non-applicables default teermit, for example, policy containment and
accessibility lift to modular policy reasoning, as we nowsh

Lemma 9. LetC = (V,0) be a policy context with an empty set of default-deny transi-
tions. If P, <€ P, then for all policies P(PUP;) <¢ (PUPy).

Proof. Let q be a state which is(, PuU Pj)-accessible and lef be the associated
database of edb and idb factgiaBy Remark 4qis (C, P1)-accessible, so the inclusions
in the definition ofP; <€ P, apply atQ. Letting T denote the operator constructing the
idb relations for a Datalog program, note that the fixed pofritpup, is the same as
that of Tp, o Tp. By hypothesis, at each iteratiorof the fixpoint construction starting
with Q, we have Tp, o Tp)"(Q) C (Tp, o Tp)"(Q). The lemma follows. o

Contextual containment under an empty set of defRelty transitions is analo-
gous to uniform containment as defined for Datalog progrdr@s3s] (which is itself
a generalization of the standard homomorphism-baseddesization of containment



for conjunctive queries). Correspondingly, we use the temform contextual con-
tainmentfor this scenario. Such preservation under context is dsckey feature of
observational equivalence in programming language th&anythe same reasons that
observational equivalence is the canonical notion of etyuaktween programming
language expressions, we feel that uniform contextuaMatpnce should be viewed as
a fundamental notion of policy equivalence.

Uniform contextual containment supports the following lgeas, none of which
require a policy author to write formal properties:

— A new policy P neither removes any permissions nor adds any denials if alyd o
if the newfragmentof P uniformly contextually contains the fragment it replaced.
If the replaced fragment also contains the new fragmentpleepolicies yield
precisely the same decisions.

— A new policy P’ adds a specific set of permissionso an old policyP if PU I
(wherel is a set of idb facts) is uniformly contextually equivalem#t .

Lemma 9 over-approximates the set of accessible statestimgseto 0. Such over-
approximation is inherent to an open system setting, whereamnot make assump-
tions about the behavior of other modules. Naturally, thisi@sult in irrelevant failures
to prove containment. Thidlect can be mitigated: the degree of over-approximation is
controlled entirely by the value &, which is a parameter to the containment check.

Checking Contextual Policy Containment

We now discuss how to implement a test for contextual polaytainment. The most
straightforward approach is to rename the predicates irvibbepolicies so they are
disjoint (we use subscripts in the formula below), take theon of the two policies,
and use model checking to verify the temporal logic sentence

AG V¥x1X2X3 . ((Permity (X1, X2, X3) — Permita(X1, X2, X3))
A (Deny; (X1, X2, X3) — Denyy (X1, X2, X3))).-

The universal quantification over requests makes this agprpotentially expensive to
evaluate at each state of the dynamic access model.

We can improve the situation by focusing on the relationslgifveen policies and
single rules. Roughly speaking we will reduce the policytagrment question to con-
sideration of whether individual rules are contained in @leh policies. It is natural
to consider a single rule as a policy in its own right. But tledion of accessibility is
different depending on whether a rule is considered in isolaticas part of a larger
policy. We will thus want to explore containment betweenla pufrom policy P1 and a
whole policyP, but restricting attention to states accessible under glbbity P;. This
motivates the following refinement of contextual contaimme

Definition 10. Let P; and P, be policies and lep be a rule. Thep 5% P, if for all
instance® of edb and idb facts in{, P1)-accessible states(Q)(R) ¢ Pz(lQ)(R), where
Ris the predicate at the headf



Analyzing contextual containment in terms of individualesiwill be sound as-
suming a rather natural constraint on rules: thaPaomit rule has théDeny predicate
occurring in its body and nDeny rule has thePermit predicate occurring in its body.
We will call such policeseparatedThis restriction is naturally satisfied in most poli-
cies. Furthermore, note that if only one kind of violatiorcors, for example if some
Permit rules depend obeny but not vice versa, then the policy can be rewritten to be
separated simply by expanding thi&emding occurrences @feny by their definitions.

Lemma 11. Let P, and P be separated policies and I€tbe a policy context. Then
P, <€ P, if and only if for eachPermit rule p; of Py, p1 5g1 P,, and for eachDeny

rule P2 of Py, P2 ﬁgl Pq.

Proof. SupposeP; <€ P,, and letp; be aPermit-rule of P1. SinceP; is separated, at
any statey with associated databa€e p1(Q)(Permit) € P1(Q)(Permit); it follows that
r1 ﬁgl P>. A similar argument shows thap 5,632 P, for eachDeny-rule p, from Ps.

For the converse we consider without loss of generality aFaamit(t) in P1(Q)
for Q associated with aJ, P1)-accessible statg and argue thaermit(d) is in P2(Q)
by induction on the number of stages in the Datalog comprtatf this fact undeP;.
SinceP; is separated this computation relies only on edb facts fy@mdPermit-facts
generated in fewer steps By, so the result follows. O

We now focus on the problem of testing containments of thenfor <g P> (from

Definition 10). While it is tempting to treat this as a purebgical problem this is in-
suficient because it might miss relationships among the edbaetabeing maintained
in the dynamic access model. Consider an example in whicHieymathor wants to
replace the following rulg; for reviewers’ access to paper reviews with rpje

p1: Permit(r, read-scoresy) :— reviewer(r) , has-reviewed(r,p) , phase(meeting)
p2: Permit(r, read-scores) :— reviewer(r) , assigned(r,p) , phase(meeting)

Suppose the the dynamic access model maintains an invénamnteviews have only
been submitted by reviewers who were assigned to a papergih€ p; as single-rule
policies since at every stateas-reviewed(r,p) impliesassigned(r,p).

A related semantic phenomenon is the following. If everyj8ctt(for example) in
a model's domain were named by a constant, it could happéemhhaTect of a given
rule was subsumed by finitely many rules of a policy in a “narifarm” way.

Such examples illustrate why syntactic analysis is in garesuficient for check-
ing contextual containment. The following algorithm wordisectly with the policy
contextC to check containment.

Algorithm 12 Let C be a policy contextP; and P, be policies, ang = Ry(Up) -
Ri(Th), ..., Ra(tn) be a rule fronPy. To test whethep <§ P>:

For each ¢, P1)-accessible statg and for each valuation mapping the variables
of p into g which makes eacR;(7U;) true, letQ* be the database whose edb facts are
those ofg and whose idb facts are thoRgnU;) whereR; is an idb predicate from. If
nup € P2(Q*)(Rp) for each sucl®@*, return success; if this fails for son@¥, fail.



Lemma 13. Algorithm 12 is sound and complete for testjrmgg1 Py.

Proof. Suppose 5gl P2 holds. Letq be a C, P1)-accessible state, |16 be the associ-
ated database instance and supR{gis in p(Q), whereR s the predicate at the head
of p; we want to show thaR(d) is in P2(Q). The fact thaR(d) is in p(Q) is witnessed
by an instantiation of the body gfwith elements frong that comprise edb facts from
g and idb facts derived from evaluatipgas a policy oven. But those latter idb facts
are part of the instand®@* as constructed in Algorithm 12, as are the edb facts fqjom
So the algorithm will report success. The argument that ldp@rshm correctly reports
failures is similar. O

The dfect of a rule will often be captured by a policy in the sensengfdal entail-
ment, without appealing to the semantics of the applicatiaquestion. Such relation-
ships can be uncovered by purely symbolic computationigtdssentially the notion of
uniform containment between Datalog programs. In ourrsgttiis takes the following
form. First note that a collectioB of atomic formulas can be considered as a database
of facts by viewing the variables as values and the formwdatedining tables.

Definition 14. Let P be a policyo = Ry(ug) :— Ri(u), ..., Ra(un) be a rule, and be
the database instance derived from the body. & simulate if ug € P(B)(Ro).

Lemma 15. Let C be a policy context, let Pand B be policies, and lep, be a rule
from Py. If P, simulates rule; thenp; 5g1 P.

Proof. It is easy to see that whd® simulates;, the computation in Algorithm 12 will
succeed at any statp O

Checking rule simulation requires time polynomiapinvhen the schema is consid-
ered fixed: the complexity i©(d¥) wherek is the maximum arity of a predicate i
andd is the number of distinct variables B

The following algorithm summarizes how we can combine ruteutation and di-
rect checking of a policy context to test contextual contaent.

Algorithm 16 (Improved containment checking) Let C be a policy context and let
P, andP, be separated policies. To test whetReg<C P,:

(i) Consider eaclPermit rule p1 of Py:
Test whetheP, simulatesp:. If so continue with the next rule. If not,
use Algorithm 12 to directly test whethpg 5,@1 P,. If so continue
with the next rule; if not halt and return failure.

(ii) Proceed similarly with eacbeny rule of P».

(iii) If no failure is reported above, return success.

Theorem 17. Algorithm 16 is sound and complete for testing<£* Ps.

Proof. This follows from Lemmas 11, 13, and 15. |

Algorithm 16 can produce counterexamples when the con&mcheck fails. The
check in Algorithm 12 identifies both a request that violatestainment (formed from



the head of the rule causing failure) and a path through thamiyc access model to a
set of facts that fail to support the request. Counterexasgle important for creating
useful analyses, as experience with model checking hasrshow

Ideally, however, we would like to go beyond mere containmArpolicy author
would benefit from knowing theemantic dferencebetween two policies, given as the
set of all requests whose decisions changed from one pdlittyetother. Furthermore,
these diterences should be first-class objects, amenable to queayidgerification
just as policies are. The ability to analyzéfdiences matters because authors can often
state precise expectations of changes even if they caratetglbbal system properties,
as Fisleret al. [14] discuss. This is therefore an important problem faoufe work.

4 Related Work

Using state transition systems to model programs guardeatbgss control policies
goes back to Bell and LaPadula [6] and Harrigbal. [18]. More recent works support
state transitions over richer models of access control angepties beyond safety [3,
17,25, 31, 32, 36]. Our model is unique in separating thécgpaticy from its dynamic
environment. This enables us to consider analyses sucimasifie diferencing that can
meaningfully be applied to the policy alone. This separatitso reflects the growing
practice of writing policies in a dierent (domain-specific) language from applications.

Role-based access contrakfc) [37] offers one form of support for a dynamic
environment. The role abstraction allows users to charigs waithout having to modify
the policy. In that sense it does illustrate the principla afynamic environment, but it
is simply not rich enough to model the multitude of sourcestainge.

Bertinoet al’s treac model captures time-sensitive, role-based access cqutiol
cies [7].TrBac views time in concrete units such as hours and days and sisppide
enabling and disabling based on concrete times (such as tigévnight nurse permis-
sion to check charts at 5pm”). This concrete-time modelieiiy elides other aspects
of the dynamic environment, such as the passage of time @uog program events,
and is thus unsuitable for reasoning about interactionsdst programs and policies.

Guelevet al. reduce access control policies to state machines oveopitams
by encoding each first-order relational term as a separafgopition [17]. They pro-
vide propositional temporal logic verification, but do nonsider policy comparison.
Abiteboul et al. verify ro-LrL properties against web services modeled as graphs over
relational facts [2, 13]. Our work includes a model of thet$amver time whereas theirs
assumes that the facts are arbitrary (within a given sche®péglmann’s work on veri-
fying e-commerce systems has similar limitations relativeur project [41].

Alloy [22] supports reasoning about relational data. Saversearchers, including
the authors, have tried building policy analysis tools atpy [14, 21, 39], but these all
assume non-dynamic environments. Alloy’s support for terapreasoning is limited
to properties of small bounded-length paths. Fegal’s DynAlloy tool extends Alloy
to handle dynamic specifications [15], but retains Alloyssihded path restrictions.

Datalog is the foundation for many access-control and edladtameworks [5, 12,
23,29, 30, 34]. These works support only non-temporal geeajuation, while we are
targeting richer analyses. Our use of uniform containme&ispired by results in the



database literature. Shmueli [40] showed that simple aomgant of Datalog programs
is undecidable while Sagiv [35] showed that uniform contant of programs is de-
cidable, building on ideas of Cosmadakis and Kanellaki$.[10

Several researchers have also built access-control riegsimols atop Prolog [17,
26, 38], but their work does not address policy comparisoaisgvan and Halpern
model policies using the full power of first-order logic [43heir criticisms of Datalog-
based models for capturing request denial do not apply tormdel with an explicit
Deny predicate. Verifying a property against a static policyheit model reduces to
checking validity of first-order logic formulas; policy cgrarison would reduce to com-
puting the set of first-order models that satisfy one fornilinot another. We thus
believe our model provides a better foundation for buildiisgble verification tools.

Given that our model involves both relational terms and aditéoon system, our
analyses require logics that integrate predicate logidamgoral operators. Hodkinson
et al. have shown [19, 20] that such logics have very bad decitiapiloperties, even
when the first-order components are restricted to decidedgienents. For example, the
monadic fragment of first-order linear temporal logic is ecidable, even restricted to
the 2-variable case. (The one-variable fragment is detadaBor branching-time log-
ics, even the one-variable monadic fragment is undecidablese results suggest that
checking validity or satisfiability (conventional theorgmoving tasks) to reason about
first-order properties of dynamic policies would face sedifficulties. This paper uses
models of policy environments to yield decidable analysisggions.

Backeset al. [4] propose refinement relations as a means for determinfregher
one policy contains another, but their work focuses solalpalicies and does not ac-
count for the impact of the dynamic environment. Figeal [14] have implemented
both verification and semanticftirencing for role-based policies, but their work han-
dles only weaker (propositional rather than relationaljgyomodels and ignores the
impact of the dynamic environment.

5 Perspective

This work has demonstrated the importance of analyzingssecentrol policies in the
dynamic context in which they evaluate requests. A greal afehe subtlety in this
work arises because policies are are not two-valued (hey, thay respond with “not-
applicable”), but as we explain in the Introduction, thisngdexity is crucial to enable
policies to be modular and to properly separate concernspmeres of influence. This
paper routinely employs results and insights from both titalthse and computer-aided
verification literature, and thus highlight synergies begw the two; however, the def-
initions and lemmas relating policy containment and adbéisg under policies and
contexts demonstrate the subtle ways in which these raatatact within a common
model. We believe that the notions of uniform contextualtaosnment and equivalence
defined in this paper are fundamental concepts for a thegglafies. The work in this
paper can be used to analyze any situation where a prograectstion is governed by
a logical policy, but we have not explored applications othan access control.
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