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Abstract. Access-control policies have grown from simple matrices tonon-trivial
specifications written in sophisticated languages. The increasing complexity of
these policies demands correspondingly strong automated reasoning techniques
for understanding and debugging them. The need for these techniques is even
more pressing given the rich and dynamic nature of the environments in which
these policies evaluate. We define a framework to represent the behavior of access-
control policies in a dynamic environment. We then specify several interesting,
decidable analyses using first-order temporal logic. Our work illustrates the sub-
tle interplay between logical and state-based methods, particularly in the presence
of three-valued policies. We also define a notion of policy equivalence that is es-
pecially useful for modular reasoning.

1 Introduction

Access control is an important component of system security. Access-control policies
capture rules that govern access to data or program operations. In the classical frame-
work [28], a policy maps each user, resource and action to a decision. The policy is
then consulted whenever a particular user wants to perform an action on a resource.
The information that defines this user, resource, and actionforms an accessrequest.

Modern applications increasingly express policies in domain-specific languages,
such as the industrially popular language [33], and consult them through a policy-
enforcement engine. Separating the policy from the programin this manner has several
important consequences: it allows the same policy to be usedwith multiple applications,
it enables non-programmers to develop and maintain policies, and it fosters rich mecha-
nisms for combining policy modules [9, 33] derived from different, even geographically
distributed, entities. (In, a typical combiner is “a decision by one module to deny
overrides decisions by all other modules”.) A university administration can, for exam-
ple, author a common policy for campus building ID-card locks; each department can
individually author a policy covering its unique situations (such as after-hours access
for undergraduate research assistants); and an appropriate policy combiner can mediate
the decisions of the two sub-policies.

Access-control policies are hard to get right. Our appreciation for the difficulty
of authoring policies stems from our experience maintaining and debugging the poli-
cies from a highly-configurable commercial conference paper manager called C-
 [27]. Almost all interesting bugs in C have related to access control in
some form.



1. During the submission phase, an author
may submit a paper

2. During the review phase, reviewerr may
submit a review for paperp if r is as-
signed to reviewp

3. During the meeting phase, reviewerr
can read the scores for paperp if r has
submitted a review forp

4. Authors may never read scores

1. During the submission phase, an author may
submit a paper

2. During the review phase, reviewerr may sub-
mit a review for paperp if r is not conflicted
with p

3. During the meeting phase, reviewerr can read
the scores for paperp if r has submitted a re-
view for p andr is not conflicted withp

4. Authors may never read scores

Fig. 1. Two candidate policies for controlling access to review scores.

Many sources of complexity make policies difficult to author. Combiners are one
natural cause of difficulty. Size is another factor: policies in realistic applications can
govern hundreds of actions, resources, and classes of users(called roles). Perhaps most
significantly, decisions depend on more than just the information in the access request.
Consider the policy governing member access to conference paper reviews: a re-
viewer assigned to a paper may be required to submit his own review before being
allowed to read those of others. The conference manager software maintains the in-
formation about which reviewers have submitted reviews forwhich papers; the policy
engine must be able to consult that information when responding to an access request.
Such information forms theenvironmentof the policy. As this simple example shows,
environment data may be highly dynamic and affected by user actions.

What is the impact of the environment? Figure 1 shows two candidate policies gov-
erning access to review scores for papers in a conference manager. Which policy should
we choose? The policies differ syntactically only in rules 2 and 3 but, if the application
allows conflict-of-interest to change after paper assignment, thesemanticchange is con-
siderable. Imagine a reviewer who is initially assigned a paper and submits a review, but
the  chair later learns that the reviewer was conflicted with the paper. By the policy
on the left, the reviewer can read the scores for the conflicted paper.

As the example shows, such leaks are not evident from the policy document alone:
they require consideration of the dynamic environment. Fixing these, however, requires
edits to thepolicy, not the program. This suggests that analysis should focus on the
policy, but treat information from the program as part of thepolicy’s environment.

Whereas existing work on reasoning about access-control policies models the en-
vironment only lightly, if at all, this paper presents formal analyses for access-control
policies in their dynamic environments. We propose a new mathematical model of poli-
cies, their environments, and the interactions between them. We then propose analyses
that handle many common scenarios, focusing on two core problems:goal reachabil-
ity and contextual policy containment. Such analyses require a combination of rela-
tional reasoning (to handle interesting policies) and temporal reasoning (for the envi-
ronments). In addition, the analyses must support realistic development scenarios for
policies, such as modular policy authoring and upgrading. Arecurring theme in this



Permit(a, submit-paper,p) D author(a) , paper(p) , phase(submission)
Permit(r, submit-review,p) D reviewer(r) , paper(p), assigned(r, p) , phase(review)
Permit(r, read-scores,p) D reviewer(r) , paper(p), has-reviewed(r,p) , phase(meeting)
Deny(a, read-scores,p) D author(a) , paper(p)

Fig. 2. Formal model of policy on left in Figure 1.

work is the interplay between techniques for defining these analyses originating from
formal verification and from databases.

2 Modeling Policies and their Dynamic Environments

The sample policies in Figure 1 require information such as the assignment of papers
to reviewers and conflicts of interest between reviewers andpapers. Policies are declar-
ative statements over data from requests and over relationsthat capture information
gathered by the application (such as conflict-of-interest data). Following many other
policy models [5, 12, 23, 29, 30], we capture policies as Datalog programs.

A Datalog rule is an expression of the form

R0(~u0) D R1(~u1), . . . , Rn(~un)

where theRi are relation names, orpredicates, and the~ui are (possibly empty) tuples of
variables and constants. Theheadof the rule isR0(~u0), and the sequence of formulas
on the right hand side is thebodyof the rule. Given a set of Datalog rules, a predicate
occurring only in the bodies of rules is calledextensionaland a predicate occurring in
the head of some rule is calledintentional. For a set of rulesP, edb(P) andidb(P) denote
the extensional and intentional predicates ofP, respectively. A policy isrecursiveif
some idb appears in a rule body. Thesignatureof P, ΣP, is edb(P)∪ idb(P). A set of
factsis a set of closed atomic formulas over a signatureΣ.

Definition 1. Let Subjects, Actions, and Resources each be sorts. LetΣ be a first-order
relational signature including at least the two distinguished ternary predicatesPermit
andDeny of type Subjects×Actions×Resources.3 A policy rule overΣ is a Datalog
rule overΣ whose head is eitherPermit or Deny. A policyoverΣ is a set of policy rules
overΣ.

That is, a policy is a set of Datalog rules whose idb predicates are amongstPermit
andDeny. We use an explicitDeny relation following the policy language [33],
rather than interpret deny as the negation of permit, to allow a policy to not apply to
some requests. The distinction between denial and non-applicability is useful for de-
composing policies into sub-policies that only cover pertinent requests, as in the uni-
versity example of the Introduction. (Bertinoet al. discuss implications of supporting

3 Subjects, Actions, and Resources could have more structure, such as tuples to model resources
with attributes or sets of Subjects to model joint actions. Such changes do not affect our theo-
retical foundations, so we use the atomic versions to simplify the presentation.



negated decisions [8].) We point out the consequences of this decision on our models
and analyses as they arise in the paper.

Figure 2 shows a sample policy. The policy governs the use of the actions submit-
paper, submit-review, and read-scores based on information from the environment.

What is an environment? A principal source of environment information is the pro-
gram (e.g., which reviewers have submitted papers). Some information comes from
end-users (such as credentials). The run-time system also provides information (such
as the current time), and some information comes from the policy framework itself
(in role-based access control, for example, policies operate under assignments of users
to roles and under hierarchies of permission inheritance among roles). These diverse
sources suggest that (i) the environment must be a transition system, to model the pro-
gram’s execution and the passage of time, and (ii) each statemust consist of an instance
of the edb relations referred to by the policy. This model is therefore in the family of
recent work on representing programs as transitions over relations [2, 13, 41, 44]. Be-
cause our model is general enough to handle most forms of environment information,
we focus on the general model and ignore finer distinctions inthe rest of this paper.

Concretely, consider the policy in Figure 2. The predicatehas-reviewed tracks
which reviewers have submitted reviews for which papers. When a reviewerr submits
a review for paperp, the tuple〈r, p〉 is added tohas-reviewed in the policy environ-
ment. Thephase predicate tracks the current phase of the reviewing process. When
the  chair ends the review phase and starts the program committeemeeting, the fact
phase(review) is removed from the set of current facts andphase(meeting) is added.

Semantically, at any given time the setE of facts in the environment relevant to
the policy rules constitute an instance over the edb relations ofP. Evaluation of access
requests, such asPermit(s,a, r), can thus be viewed as asking for the truth of the sen-
tencePermit(s,a, r) in this structure. More constructively, it is well-known that a set
P of Datalog rules defines a monotone operator on the instancesoverΣP. In this vein,
P inductively defines instances of idb names in terms ofE, as follows. TreatE as an
instance overΣP by adding empty relations for the idb names, and take the least fixed-
point of the operator determined byP starting withE. The idb relations in the resulting
instance are the defined relations. We call the generated idbfacts theaccess tablesof
P with respect toE (denotedP(E)). Negation can be introduced into the framework
with some conceptual and computational cost [1].

Transitions in the policy’s environment are triggered by various conditions. Some
arise from the passage of time (such as the passing of the submission deadline moving
the conference into the review phase). Others arise from user or program actions (once
an author submits a review, for example, he can read other reviews for the same paper).
We use the generic termeventfor all of these conditions, and assume a signature of
events that can label transitions in the environment:

Definition 2. Given an event signatureΣEV, aneventis a closed instance of one pred-
icate or constant inΣEV. An environment modelover a signatureΣ relative to event
signatureΣEV is a state machineV whose states are relational structures overΣ and
whose transitions are labeled with events fromΣEV.

A policy interacts with its dynamic environment by consulting facts in the environment
and potentially constraining certain actions in the environment. The latter captures the
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Fig. 3.Combining an environment model and a policy into a dynamic access model.

influence of policy decisions on an application that uses it (recall that the policy’s en-
vironment includes the model of the application). We model such interactions through
events that share the same names as actions in policy requests. For example, a transition
labeledsubmit-review(Alice,paper1) would correspond to a request sent to the policy.
Not all events need to be governed by the policy. To avoid ambiguity, we require that
all predicates that appear in bothΣEV and the Actions sort of the policy have the type
Subjects×Resources inΣEV.

A policy and an environment model for the policy’s dynamic environment combine
to form a state machine over access tables, as shown in figure 3(where “decs” is short
for “decisions”). Intuitively, the access tables arise from applying the policy to the facts
at each state of the environment model. The transitions are asubset of those in the envi-
ronment model. Transitions whose event labels are policy actions are kept if the request
defined by that event yieldsPermit in the source state of the transition, and removed if
the request yieldsDeny. Some transitions may be labeled with policy actions for which
their source state yields neitherPermit norDeny. Applications must determine whether
to permit or deny such actions. Rather than fix an interpretation, we assume that an
application specifies which transitions should be treated as denied in the absence of a
policy decision. This expectation is reasonable because anapplication queries the policy
engine for decisions and acts on the responses. We use the term policy contextfor a pair
containing an environment model and a subset of its transitions, denotedC = 〈V,E〉,
whereE is the set of transitions that the application treats as defaulting to deny.

Definition 3. Let P be a policy,V be an environment model overΣP andC = 〈V,E〉
be a policy context. Thedynamic access modelfor P,V, andE is the state machineD
obtained by

– augmenting each stateq ofV with the access tables from evaluatingP at q; then
– eliminating transitionst that are labeled with policy actions such that (i)P does not

yield Permit, and (ii) eitherP yieldsDeny or t is in E, and
– eliminating unreachable states.

We use the term (C,P)-accessiblefor states inD. We say “accessible” rather than
“reachable” to connote the influence of the policy: states inD are reached only by
securing the permission of the access-control policy.



Dynamic access models satisfy the definition of environmentmodels. This allows in-
cremental construction of dynamic access models from a series of policy modules. The
definition assumes that the policy will not yield bothPermit andDeny for any request
considered in the second clause. If this assumption is violated, we say the policy has no
model. The subsequent results in this paper assume that policies have models.

The following remark will be useful later.

Remark 4.Let C = 〈V,∅〉 be a policy context with an empty set of default-deny tran-
sitions and letP andP′ be policies. Then any state which is (C,P∪P′)-accessible is
(C,P)-accessible.

Ideally, environment models would be at least partially derived from applications.
Standard techniques such as abstract interpretation [11] address this problem. Such
techniques are commonly used in software verification, and are not discussed further
in this paper. In general, we expect that finite models over-approximate their original
infinite models, so that all sets of facts reachable in the original model remain reachable
in the abstracted model.

3 Analyzing and Comparing Policies

Formal analyses can answer many useful questions about policies. Two fundamental
analyses aresafety(does a policy prohibit users from doing something undesirable) and
availability (does a policy permit a user to do something that they are allowed to do).
Both of these depend on the dynamic environment and resembleproperties common to
model checking.

Policy authors also need the ability to compare policies in the absence of formal
properties. Policies require upgrades and revisions just as programs do. Authors need
to know that their policies implement expected changes, butmore importantly, that the
change did not yieldunanticipatedchanges to decisions. Property-based verification is
of limited use for this problem as it would require the policyauthor to write proper-
ties expressing the unanticipated changes. Analyses that compare policies and provide
insights into the requests on which they yield different decisions are therefore crucial.
This section formalizes analyses both on single-policies and for comparing policies.

3.1 Goal Reachability

The analyses for safety and availability (a form of liveness) share a similar structure:
they ask whether there is some accessible state in the dynamic access model which
satisfies some boolean expression over policy facts. Checking whether a policy allows
authors to read review scores, for example, amounts to finding an accessible state satis-
fying the formula

∃x1x2.(Permit(x1, read-scores, x2)∧author(x1)∧paper(x2)).

We use the termgoal reachabilityfor this common analysis problem, where a goal is
formally defined as follows:



Definition 5. An n-ary goalis a sentence of the form∃x1 . . . xn .A, whereA is a Boolean
combination of atomic formulas overΣP. A goal isconjunctiveif A is a conjunction of
edbs. A goal is (C,P)-reachableif it is satisfied in a (C,P)-accessible state.

The formulas that capture goals do not interleave quantifiers and temporal opera-
tors. When formulas do interleave these, the logic gets complicated if the domains of
the structures at different states are allowed to vary (this phenomenon is familiar from
predicate modal logic). For problems that require such formulas,- is a sublan-
guage of linear predicate temporal logic that avoids the difficulty with varying-domain
models, yet is rich enough to express many properties of interest [13, 41].

Goal reachability combines database query evaluation and reachability analysis.
The body of a goal is precisely a database query: to evaluate the goal at a particular
state in a model is to evaluate the associated Boolean query on the database of facts at
that state. Model checking algorithms for first-order temporal logics subsume this prob-
lem [13, 41]. Given that goal reachability is a very useful and special case of first-order
model checking, however, it is worth understanding the complexity of goal checking.
Although checking the truth of an arbitrary first-order sentence in a finite model is
PSPACE-complete, the result of any fixed Datalog query can becomputed in polyno-
mial time in the size of the database, and the result of any fixed conjunctivequery over a
databaseQ can be computed in spaceO(log|Q|) [42]. Strategies for efficient evaluation
of Datalog queries have been much-studied [1], particularly in the case of of conjunctive
queries, resulting in many fast evaluation techniques [16].

The following theorem records an upper bound on the asymptotic complexity of
deciding goal reachability in models with fixed domains.

Theorem 6. LetD be a finite dynamic access model with n states, each of which has
the same finite domain of size d. Reachability inD of a fixed goal G can be checked in
time polynomial in n and d. If G is a conjunctive goal then reachability can be checked
in nondeterministic logspace in the size ofD.

Proof.Each stateq ofD can be considered as a databaseQ over the schema given by the
signature of the policy. For a fixed signature the size ofQ is bounded by a polynomial
in d. Hence the satisfiability of a goal formula at a given state can be computed in
polynomial time ind. We then use the fact that reachability between nodes in a directed
graph is in NLOGSPACE [24] and so requires time polynomial inn. When the goal
is conjunctive, we require NLOGSPACE to check satisfiability of a goal formula at a
given state. Hence, the entire goal reachability test can bedone in NLOGSPACE. �

3.2 Contextual Policy Containment

Intuitively, policy containment asks whether one policy ismore permissive than another.
For example, we could say that policyP2 subsumes the decisions of policyP1 if every
permitted request underP1 is permitted underP2 and every denied request underP2 is
denied underP1. Whether a request is permitted or denied in a policy, though, depends
on the set of facts that might support the request. We can exploit our environment model
to restrict attention to those sets of facts that are accessible in the environment. This
gives rise to the following formal definition of contextual policy containment:



Definition 7. Let P(Q)(Permit) denote thePermit table defined by policyP over a
set of factsQ (and similarly forP(Q)(Deny)). P2 contains P1 in contextC, written
P1 �

C P2, if for all instancesQ of edb and idb facts in (C,P1)-accessible states,

P1(Q)(Permit) ⊆ P2(Q)(Permit) and P2(Q)(Deny) ⊆ P1(Q)(Deny).

P1 andP2 arecontextually equivalentif P1 �
C P2 andP2 �

C P1.

A subtlety in comparing the semantics of two polices arises due to the fact that
changing policies can result in a change in the accessibility relation in a dynamic access
model: which states should we examine? The following lemma justifies the choice made
in Definition 7.

Lemma 8. If P1 �
C P2, then every(C,P1)-accessible state is(C,P2)-accessible.

Proof.We induct over the length of a shortest path from the start state to a given (C,P1)-
accessible state. It suffices to show that at any such state the set of actions enabled
underP1 is a subset of those enabled underP2. But this is clear from an examination of
Definition 3. �

Ideally, we would like to use contextual containment to reason about relationships
betweenfragmentsof policies, as well as entire policies. Reasoning about therelation-
ships between policy fragments is critical for policies authored across multiple entities
(as in our university example in the Introduction). Modularpolicy reasoning is subtle,
however, in the presence of requests to which the policy doesnot apply. In our model,
the context determines how such requests are handled. If a new policy fragment permits
a request that defaulted toDeny in the context, new states could become accessible;
these states would have not been tested for containment, thus rendering policy reason-
ing unsound.

Modular reasoning is sound, however, if policy combinationcannot make additional
states accessible. If the containment check between two fragments occurs in a context
in which all non-applicables default toPermit, for example, policy containment and
accessibility lift to modular policy reasoning, as we now show.

Lemma 9. LetC = 〈V,∅〉 be a policy context with an empty set of default-deny transi-
tions. If P1 �

C P2 then for all policies P,(P∪P1) �C (P∪P2).

Proof. Let q be a state which is (C,P∪P1)-accessible and letQ be the associated
database of edb and idb facts atq. By Remark 4,q is (C,P1)-accessible, so the inclusions
in the definition ofP1 �

C P2 apply atQ. LettingT denote the operator constructing the
idb relations for a Datalog program, note that the fixed pointof TP∪Pi is the same as
that ofTPi ◦TP. By hypothesis, at each iterationn of the fixpoint construction starting
with Q, we have (TP1 ◦TP)n(Q) ⊆ (TP2 ◦TP)n(Q). The lemma follows. �

Contextual containment under an empty set of defaultDeny transitions is analo-
gous to uniform containment as defined for Datalog programs [10, 35] (which is itself
a generalization of the standard homomorphism-based characterization of containment



for conjunctive queries). Correspondingly, we use the termuniform contextual con-
tainmentfor this scenario. Such preservation under context is also the key feature of
observational equivalence in programming language theory. For the same reasons that
observational equivalence is the canonical notion of equality between programming
language expressions, we feel that uniform contextual equivalence should be viewed as
a fundamental notion of policy equivalence.

Uniform contextual containment supports the following analyses, none of which
require a policy author to write formal properties:

– A new policyP neither removes any permissions nor adds any denials if and only
if the newfragmentof P uniformly contextually contains the fragment it replaced.
If the replaced fragment also contains the new fragment, thetwo policies yield
precisely the same decisions.

– A new policy P′ adds a specific set of permissionsI to an old policyP if P∪ I
(whereI is a set of idb facts) is uniformly contextually equivalent to P′.

Lemma 9 over-approximates the set of accessible states by settingE to∅. Such over-
approximation is inherent to an open system setting, where we cannot make assump-
tions about the behavior of other modules. Naturally, this can result in irrelevant failures
to prove containment. This effect can be mitigated: the degree of over-approximation is
controlled entirely by the value ofE, which is a parameter to the containment check.

Checking Contextual Policy Containment

We now discuss how to implement a test for contextual policy containment. The most
straightforward approach is to rename the predicates in thetwo policies so they are
disjoint (we use subscripts in the formula below), take the union of the two policies,
and use model checking to verify the temporal logic sentence

AG ∀x1x2x3 . ((Permit1(x1, x2, x3)→Permit2(x1, x2, x3))

∧ (Deny2(x1, x2, x3)→Deny1(x1, x2, x3))).

The universal quantification over requests makes this approach potentially expensive to
evaluate at each state of the dynamic access model.

We can improve the situation by focusing on the relationshipbetween policies and
single rules. Roughly speaking we will reduce the policy containment question to con-
sideration of whether individual rules are contained in (whole) policies. It is natural
to consider a single rule as a policy in its own right. But the notion of accessibility is
different depending on whether a rule is considered in isolationor as part of a larger
policy. We will thus want to explore containment between a rule ρ from policyP1 and a
whole policyP2 but restricting attention to states accessible under all ofpolicy P1. This
motivates the following refinement of contextual containment.

Definition 10. Let P1 andP2 be policies and letρ be a rule. Thenρ �CP1
P2 if for all

instancesQ of edb and idb facts in (C,P1)-accessible states,ρ(Q)(R)⊆ P2(Q)(R),where
R is the predicate at the head ofρ.



Analyzing contextual containment in terms of individual rules will be sound as-
suming a rather natural constraint on rules: that noPermit rule has theDeny predicate
occurring in its body and noDeny rule has thePermit predicate occurring in its body.
We will call such policesseparated. This restriction is naturally satisfied in most poli-
cies. Furthermore, note that if only one kind of violation occurs, for example if some
Permit rules depend onDeny but not vice versa, then the policy can be rewritten to be
separated simply by expanding the offending occurrences ofDeny by their definitions.

Lemma 11. Let P1 and P2 be separated policies and letC be a policy context. Then
P1 �

C P2 if and only if for eachPermit rule ρ1 of P1, ρ1 �CP1
P2, and for eachDeny

rule ρ2 of P2, ρ2 �CP1
P1.

Proof. SupposeP1 �
C P2, and letρ1 be aPermit-rule of P1. SinceP1 is separated, at

any stateq with associated databaseQ, ρ1(Q)(Permit) ⊆ P1(Q)(Permit); it follows that
ρ1 �

C
P1

P2. A similar argument shows thatρ2 �CP2
P1 for eachDeny-ruleρ2 from P2.

For the converse we consider without loss of generality a fact Permit(~u) in P1(Q)
for Q associated with a (C,P1)-accessible stateq and argue thatPermit(~u) is in P2(Q)
by induction on the number of stages in the Datalog computation of this fact underP1.
SinceP1 is separated this computation relies only on edb facts fromq andPermit-facts
generated in fewer steps byP1, so the result follows. �

We now focus on the problem of testing containments of the form ρ1 �CP1
P2 (from

Definition 10). While it is tempting to treat this as a purely logical problem, this is in-
sufficient because it might miss relationships among the edb relations being maintained
in the dynamic access model. Consider an example in which a policy author wants to
replace the following ruleρ1 for reviewers’ access to paper reviews with ruleρ2:

ρ1: Permit(r, read-scores,p) D reviewer(r) , has-reviewed(r,p) , phase(meeting)
ρ2: Permit(r, read-scores,p) D reviewer(r) , assigned(r,p) , phase(meeting)

Suppose the the dynamic access model maintains an invariantthat reviews have only
been submitted by reviewers who were assigned to a paper. Thenρ1�C ρ2 as single-rule
policies since at every state,has-reviewed(r,p) impliesassigned(r,p).

A related semantic phenomenon is the following. If every Subject (for example) in
a model’s domain were named by a constant, it could happen that the effect of a given
rule was subsumed by finitely many rules of a policy in a “non-uniform” way.

Such examples illustrate why syntactic analysis is in general insufficient for check-
ing contextual containment. The following algorithm worksdirectly with the policy
contextC to check containment.

Algorithm 12 Let C be a policy context,P1 and P2 be policies, andρ ≡ R0(~u0) D
R1(~u1), . . . , Rn(~un) be a rule fromP1. To test whetherρ �CP1

P2:
For each (C,P1)-accessible stateq and for each valuationη mapping the variables

of ρ into q which makes eachRi( ~ηui) true, letQ∗ be the database whose edb facts are
those ofq and whose idb facts are thoseRi( ~ηui) whereRi is an idb predicate fromρ. If
η ~u0 ∈ P2(Q∗)(R0) for each suchQ∗, return success; if this fails for someQ∗, fail.



Lemma 13. Algorithm 12 is sound and complete for testingρ �CP1
P2.

Proof.Supposeρ �CP1
P2 holds. Letq be a (C,P1)-accessible state, letQ be the associ-

ated database instance and supposeR(~a) is in ρ(Q), whereR is the predicate at the head
of ρ; we want to show thatR(~a) is in P2(Q). The fact thatR(~a) is in ρ(Q) is witnessed
by an instantiation of the body ofρ with elements fromq that comprise edb facts from
q and idb facts derived from evaluatingρ as a policy overq. But those latter idb facts
are part of the instanceQ∗ as constructed in Algorithm 12, as are the edb facts fromq.
So the algorithm will report success. The argument that the algorithm correctly reports
failures is similar. �

The effect of a rule will often be captured by a policy in the sense of logical entail-
ment, without appealing to the semantics of the applicationin question. Such relation-
ships can be uncovered by purely symbolic computation: thisis essentially the notion of
uniform containment between Datalog programs. In our setting this takes the following
form. First note that a collectionB of atomic formulas can be considered as a database
of facts by viewing the variables as values and the formulas as defining tables.

Definition 14. Let P be a policy,ρ ≡ R0(u0) D R1(u1), . . . , Rn(un) be a rule, andB be
the database instance derived from the body ofρ. P simulatesρ if u0 ∈ P(B)(R0).

Lemma 15. LetC be a policy context, let P1 and P2 be policies, and letρ1 be a rule
from P1. If P2 simulates ruleρ1 thenρ1 �CP1

P.

Proof.It is easy to see that whenP2 simulatesρ1, the computation in Algorithm 12 will
succeed at any stateq. �

Checking rule simulation requires time polynomial inρ when the schemaΣ is consid-
ered fixed: the complexity isO(dk) wherek is the maximum arity of a predicate inΣ
andd is the number of distinct variables inB.

The following algorithm summarizes how we can combine rule simulation and di-
rect checking of a policy context to test contextual containment.

Algorithm 16 (Improved containment checking) Let C be a policy context and let
P1 andP2 be separated policies. To test whetherP1 �

C P2:

(i) Consider eachPermit ruleρ1 of P1:
Test whetherP2 simulatesρ1. If so continue with the next rule. If not,
use Algorithm 12 to directly test whetherρ1 �CP1

P2. If so continue
with the next rule; if not halt and return failure.

(ii) Proceed similarly with eachDeny rule of P2.
(iii) If no failure is reported above, return success.

Theorem 17. Algorithm 16 is sound and complete for testing P1 �
C P2.

Proof.This follows from Lemmas 11, 13, and 15. �

Algorithm 16 can produce counterexamples when the containment check fails. The
check in Algorithm 12 identifies both a request that violatescontainment (formed from



the head of the rule causing failure) and a path through the dynamic access model to a
set of facts that fail to support the request. Counterexamples are important for creating
useful analyses, as experience with model checking has shown.

Ideally, however, we would like to go beyond mere containment. A policy author
would benefit from knowing thesemantic differencebetween two policies, given as the
set of all requests whose decisions changed from one policy to the other. Furthermore,
these differences should be first-class objects, amenable to queryingand verification
just as policies are. The ability to analyze differences matters because authors can often
state precise expectations of changes even if they cannot state global system properties,
as Fisleret al. [14] discuss. This is therefore an important problem for future work.

4 Related Work

Using state transition systems to model programs guarded byaccess control policies
goes back to Bell and LaPadula [6] and Harrisonet al. [18]. More recent works support
state transitions over richer models of access control and properties beyond safety [3,
17, 25, 31, 32, 36]. Our model is unique in separating the static policy from its dynamic
environment. This enables us to consider analyses such as semantic differencing that can
meaningfully be applied to the policy alone. This separation also reflects the growing
practice of writing policies in a different (domain-specific) language from applications.

Role-based access control () [37] offers one form of support for a dynamic
environment. The role abstraction allows users to change roles without having to modify
the policy. In that sense it does illustrate the principle ofa dynamic environment, but it
is simply not rich enough to model the multitude of sources ofchange.

Bertinoet al.’s model captures time-sensitive, role-based access controlpoli-
cies [7]. views time in concrete units such as hours and days and supports rule
enabling and disabling based on concrete times (such as “give the night nurse permis-
sion to check charts at 5pm”). This concrete-time model explicitly elides other aspects
of the dynamic environment, such as the passage of time induced by program events,
and is thus unsuitable for reasoning about interactions between programs and policies.

Guelevet al. reduce access control policies to state machines over propositions
by encoding each first-order relational term as a separate proposition [17]. They pro-
vide propositional temporal logic verification, but do not consider policy comparison.
Abiteboulet al. verify - properties against web services modeled as graphs over
relational facts [2, 13]. Our work includes a model of the facts over time whereas theirs
assumes that the facts are arbitrary (within a given schema). Spielmann’s work on veri-
fying e-commerce systems has similar limitations relativeto our project [41].

Alloy [22] supports reasoning about relational data. Several researchers, including
the authors, have tried building policy analysis tools atopAlloy [14, 21, 39], but these all
assume non-dynamic environments. Alloy’s support for temporal reasoning is limited
to properties of small bounded-length paths. Friaset al.’s DynAlloy tool extends Alloy
to handle dynamic specifications [15], but retains Alloy’s bounded path restrictions.

Datalog is the foundation for many access-control and related frameworks [5, 12,
23, 29, 30, 34]. These works support only non-temporal queryevaluation, while we are
targeting richer analyses. Our use of uniform containment is inspired by results in the



database literature. Shmueli [40] showed that simple containment of Datalog programs
is undecidable while Sagiv [35] showed that uniform containment of programs is de-
cidable, building on ideas of Cosmadakis and Kanellakis [10].

Several researchers have also built access-control reasoning tools atop Prolog [17,
26, 38], but their work does not address policy comparison. Weissman and Halpern
model policies using the full power of first-order logic [43]. Their criticisms of Datalog-
based models for capturing request denial do not apply to ourmodel with an explicit
Deny predicate. Verifying a property against a static policy in their model reduces to
checking validity of first-order logic formulas; policy comparison would reduce to com-
puting the set of first-order models that satisfy one formulabut not another. We thus
believe our model provides a better foundation for buildingusable verification tools.

Given that our model involves both relational terms and a transition system, our
analyses require logics that integrate predicate logic andtemporal operators. Hodkinson
et al. have shown [19, 20] that such logics have very bad decidability properties, even
when the first-order components are restricted to decidablefragments. For example, the
monadic fragment of first-order linear temporal logic is undecidable, even restricted to
the 2-variable case. (The one-variable fragment is decidable.) For branching-time log-
ics, even the one-variable monadic fragment is undecidable. These results suggest that
checking validity or satisfiability (conventional theorem-proving tasks) to reason about
first-order properties of dynamic policies would face severe difficulties. This paper uses
models of policy environments to yield decidable analysis questions.

Backeset al. [4] propose refinement relations as a means for determiningwhether
one policy contains another, but their work focuses solely on policies and does not ac-
count for the impact of the dynamic environment. Fisleret al. [14] have implemented
both verification and semantic differencing for role-based policies, but their work han-
dles only weaker (propositional rather than relational) policy models and ignores the
impact of the dynamic environment.

5 Perspective

This work has demonstrated the importance of analyzing access-control policies in the
dynamic context in which they evaluate requests. A great deal of the subtlety in this
work arises because policies are are not two-valued (i.e., they may respond with “not-
applicable”), but as we explain in the Introduction, this complexity is crucial to enable
policies to be modular and to properly separate concerns andspheres of influence. This
paper routinely employs results and insights from both the database and computer-aided
verification literature, and thus highlight synergies between the two; however, the def-
initions and lemmas relating policy containment and accessibility under policies and
contexts demonstrate the subtle ways in which these resultsinteract within a common
model. We believe that the notions of uniform contextual containment and equivalence
defined in this paper are fundamental concepts for a theory ofpolicies. The work in this
paper can be used to analyze any situation where a program’s execution is governed by
a logical policy, but we have not explored applications other than access control.
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