
Unification and Matching Modulo Type Isomorphism

Dan Dougherty1 and Carlos C. Martı́nez2

1 Worcester Polytechnic Institute,
Department of Computer Science,
Worcester, MA 01609 USA
dd@cs.wpi.edu

2 Wesleyan University,
Department of Mathematics and Computer Science,
Middletown, CT 06459 USA
cmartinez@wesleyan.edu

Abstract. We present some initial results in an investigation of higher-order unification and matching in the presence of type
isomorphism.

1 Introduction

Two simple types S and T are isomorphic if their interpretations are isomorphic in every model of the
simply-typed λ-calculus, or equivalently, if there exist terms f : S→T and g : T →S, such that g ◦ f and
f ◦g are each βη-convertible with the identity.

The study of type isomorphism is currently an active area of research, well-represented in Roberto di
Cosmo’s book [DC95]. There are connections with logic (cf Tarski’s “high school algebra problem”), with
category theory [FCB02],and with information retrieval in software libraries [Rit90,Rit91,RT91,ZW93].

Some of the most interesting work concerns polymorphic type disciplines but our focus here will be
restricted to simple types. Indeed, in this preliminary report we consider arrow-types only. Much of com-
plexity of type isomorphism per se is avoided in this setting, but the novel issues surrounding unification
and matching still arise, as we will see. We also work only with pure terms (ie, with no constants).

It is natural to want be sensitive to type isomorphism when one is doing higher-order rewriting, in par-
ticular if we are interested in code querying or transformation. For example, suppose one wants to perform
a code transformation with a certain function-pattern of type (A→B→C). The use of standard higher-
order matching allows us to ignore the names of the arguments in a code fragment potentially matching the
pattern. But the order in which these parameters appear in the code is significant, since it determines the
code’s type. Since the types (A→B→C) and (B→A→C) are isomorphic, a code fragment of the latter type
may very well be a candidate that we want to consider. So it seems that a more refined tool than standard
higher-order matching would be useful.

Indeed, what we require is a richer notion of matching which accepts a match as long as the term being
matched is the same as the target term modulo a type isomorphism. That is, type isomorphism induces a
notion of equality on terms, more lenient than equality modulo βη, and it is this equality that we want to
guide our matching. To our knowledge this relation on terms — which we call “term isomorphism” for
want of a better phrase — has not been explored in the published literature.

Definition 1. Given s : S and t : T , we say that s and t are term isomorphic, written s ' t if there is a type
isomorphism p : S→T with ps = t.

Here and below, the equality symbol “=” denotes convertibility modulo β and η.
It is also natural to consider higher-order unification modulo type isomorphism, for example in the

context of higher-order logic programming, when λ-terms are ubiquitous as data structures, and type iso-
morphism induces a natural equivalence on this data.

In fact the problems we face and the solutions we propose arise equally in unification and in matching.
So for simplicity in this abstract we focus on unification: our goal is to explore algorithms to solve the
following problem.



Unification modulo Type Isomorphism
INPUT: Two terms s and t, of isomorphic types

OUTPUT: A substitution θ such that θs ' θt

2 An easy algorithm

We first note that the consideration of type isomorphism does not have any consequences as to decidability.
Dezani [DC76] defined the notion of finite hereditary permutation, which is a term of the following

form:

λzx1 . . .xn .z(p1xπ(1)) . . . (pnxπ(n))

where π is a permutation of [1..n] and each pi is a finite hereditary permutation, and proved that a normal-
izable untyped term p is invertible iff it is a finite hereditary permutation.

Any finite hereditary permutation is typable. So, as observed in [BCL92], a term p : A→B is a type
isomorphism iff it is a finite hereditary permutation.

It is not hard to see that at any type A→B there are only finitely many finite hereditary permutations.
So we have the following

Proposition 2. For each pair of types S and T there are finitely many type isomorphisms p : S→T, and
these can be effectively generated given S and T .

In this way we can reduce any unification/matching problem modulo type isomorphism to finitely many
similar standard problems.

Definition 3 (Naive algorithm). Given s and t as an instance of the problem of unification (or matching)
modulo type isomorphism, the naive algorithm for the problem is:

For each type isomorphism p from S to T , generate the standard problem s = pt. If any of these
problems is solvable, return that solution; otherwise return failure.

Proposition 4. The algorithm of Definition 3 is sound and complete relative to the soundness and com-
pleteness of the standard algorithms used.

In particular, at any type where the classical higher-order matching is decidable, the problem of match-
ing modulo type isomorphism is decidable. Also, unification of higher-order patterns [Mil91] modulo type
isomorphism is decidable.

This is reassuring, but since there can be exponentially many finite hereditary permutations at a given
pair of types, such a generate-and-test algorithm is clearly not practical. We want to “build-in” (in the sense
of [Plo72]) type isomorphism to the matching algorithm.

3 Building in type isomorphism

Consider a set of standard transformations for pure higher-order unification, such as described in [GS89]:
Imitation, Projection, Variable Elimination, and Decomposition. The idea here is to enhance this set of
transformations so that in addition to gradually building up an answer substitution as a problem is solved,
we also build up a finite hereditary permutation that serves as part of the witness to the problem’s solution.

The main work in unification transformations is the “guessing” component, where substitutions are
generated and propagated. These are represented in higher-order unification by the Imitation, Projection,
and Variable Elimination transformations. There is another transformation — Decomposition — which
breaks a problem into subproblems or recognizes that the current problem is not solvable and reports failure.

2



(Standard) Decomposition

E ; (λx .xe
−→t

.

= λyx .xd
−→u )

E ; (λx . t1
.

= λx .u1) ; . . . ; (λx . tk
.

= λx .uk)
if e = d, else fail

Perhaps surprisingly, with a little work one can see that in defining transformations for higher-order
unification modulo type isomorphism Imitation, Projection, and Variable Elimination need not be changed
at all. The complexity of considering type isomorphism is completely reflected in the need for a refinement
of the Decomposition transformation.

This is because the Decomposition transformation is the embodiment of a basic fact about equality
between terms: by the Church-Rosser theorem λx .xe

−→t and λyx .xd
−→u are βη-equal if and only if e = d and

corresponding immediate subterms are equal. This is false when the equality in question is '.
So we see that the essence of building in type isomorphisms to the unification algorithm is to have a

good characterization of when a equation is valid (as opposed to unifiable) modulo type isomorphism. That
is, we are led to seek an incremental analysis of term isomorphism.

4 Characterizing term isomorphism

4.1 Labelled trees

In order to analyze the combinatorics of term isomorphism it is convenient to abstract away from variable
binding and work with ordinary labelled trees.

As a data structure for manipulating types and terms, trees are typically implemented as “ordered trees”
in the sense that for each node x there is an ordering on the children of x. The notion of tree mapping
below could be defined more simply just by saying that a tree mapping is required to respect the roots of
the trees and the child-parent relationships, but not the ordering on the children of a node. The equivalent
(more tedious) definition we give, in terms of explicit permutations on addresses, is necessary in order to
subsequently define the key notion of labelled tree mapping.

We work with partial functions between trees in anticipation of needing to construct functions incre-
mentally in unification algorithms.

Definition 5. Let T and U be tree domains. A partial tree mapping Φ : T →U is a pair (Φa
,Φp) such that

– Φa is a partial function from the addresses of T to the addresses of U whose domain is a subtree of T ,
– for each α ∈ domain(Φa), Φp(α) is a permutation of [1..arity(α)], and
– Φa maps the i-th child of α to the Φp(α)(i)-th child of Φa(α). That is, Φa(α · i) = Φa(α) ·Φp(α)(i).

Definition 6. Let L be a set of labels together with an arity function arity : L →N. A labelled tree is an
tree domain T and a partial map label : T →L labelling some of the nodes of T such that if label(α) is
defined then the number of children of α is arity(label(α)). Furthermore, a labelled tree comes with an
arity-consistent equivalence relation ≈ defined on its set of labels.

If T and U are labelled trees, a partial labelled tree mapping from T to U is a partial tree mapping
Φ : T →U satisfying

– if label(α) = label(β) then label(Φa(α)) = label(Φa(β))
– if label(α) ≈ label(β) then Φp(α) = Φp(β).

The labelled trees T and U are isomorphic as labelled trees if there is a labelled tree homomorphism
Φ from T to U with Φa a bijection between the nodes of T and U.

Example 7.
a

b a

c d

a’

a’

d’ c’

b’

a’

a’

c’ d’

b’

The first and second labelled trees above are isomorphic; the first and third labelled trees are not isomorphic.

3



4.2 Labelled trees for terms

We first need some notation allowing us to track relationships among bound-variable occurrences in a Böhm
tree.

Definition 8. Let t : T be a pure term. We let BT(t) denote the Böhm tree for t. In BT(t) we make the
following definitions.

If the node at address α has binder λx1 . . .xn and head variable y then we say that y has an occurrence
at address α and for each i we say that bound variable xi is introduced at address α, at index i.

We assume that in BT(t) no name is used for both a free and bound variable, and no bound variable
name is introduced in more than one place.

Note the distinction between the introduction of a bound variable and an occurrence of a variable
(in particular an introduction is not an occurrence). Note also that a variable may have any number of
occurrences, but it is only introduced at one address and index.

Now, given a term t, we define LT(t), the labelled tree associated to t, essentially by forgetting the
binders in the Böhm tree for t (so that LT(t) will fail to have a label at those tre addresses with free
variables). The precise definition is Definition 9 below. By using bound-variable names from BT(t) as
our labels we are of course not determining the labels of LT(t) uniquely. But since we have adopted a
convention that Böhm trees always obey our strong variable conventions about not reusing variable names,
the differences in labelled trees we obtain for a term are identical up to renaming of labels. Indeed it will
often be convenient to be able to assume that the labels of a given pair of trees are disjoint.

Definition 9. The underlying tree of LT(t) is the underlying tree of BT(t). If there is a bound-variable
occurrence at α in BT(t) the label in LT(t) at address α is that bound variable name.

The relation ≈ is the smallest equivalence relation satisfying: x ≈ y if

– x is introduced in BT(t) at address αa, index i
– y is introduced BT(t) at address α′a, index i, and
– label(α) ≈ label(α′)

Theorem 10. Let t : T and u : U be terms of isomorphic type. Then t ' u if and only if LT(t) and LT(u) are
isomorphic labelled trees.

5 The transformations

Theorem 10 allows us to define transformations for higher-order unification under type isomorphism; as
described earlier the key is defining a sound Decomposition transformation.

A system E B Λ | σ is given by a set E of equations, a partial mapping Λ on labels, and a substitution
σ. Λ and σ denote the label mapping and answer substitutions computed “so far”. Transformations are
presented as inference rules for deriving systems. If e is an equation, the notation E;e is shorthand for
E ∪ e.

In this short abstract we only present the transformations which are different from the standard ones.

Fail
E ; (λx .xe

−→t
.

= λy .yd
−→u ) B Λ | σ

Fail

if the type of xe is not isomorphic to the type of yd .
We note that using the techniques of [ZGC03], failure can be detected in constant time, after a linear-

time preprocessing step on the types of the original terms.

4



Decomposition

E ; (λx .xe
−→t

.

= λy .yd
−→u ) B Λ | σ

E ; (λx . t1
.

= λy .uπ(1)) ; . . . ; (λx . tk
.

= λy .uπ(k)) B Λ+ | σ
if Λ+ is a valid label mapping

where Λa
+ is Λa ∪{xe 7→ yd}, and Λp

+ is Λp ∪{xe 7→ π}. The condition “Λ+ is a valid label mapping” is : if
a ≈ b and a and b are in the domain of Λa

+ then Λp
+(a) = Λp

+(b)
It is possible that no permutation π allows Λ to be extended by mapping xe to yd . In this case the

procedure fails at this point. The decomposition can succeed either because Λ itself determines the decom-
position π, or because some label ≈ with xe or with yd was already bound by Λ, or that no label was ≈ with
either xe or yd and so we had freedom to extend Λ by {xe 7→ yd} and π.

Theorem 11. Replacing the traditional Decomposition transformation by the Decomposition and Fail
transformations above yields a sound and complete set of transformations for higher-order unification
and matching modulo type isomorphism.

In fact the result of a successful sequence of transformations also yields the finite hereditary permutation
witnessing the term-isomorphism between the instantiated terms.

6 Ongoing work

This is a preliminary report, most of the interesting work remains to be done.
Of course we need to incorporate product types into our setting. We do not anticipate any conceptual

challenges here, but the algorithmic complexity of working with the types is known to increase due to the
fact that products allow more succinct representations of types.

The most important task before us is to derive efficient algorithms to guide the Decomposition trans-
formation defined above. We need to explore the problem of determining when two labelled trees are iso-
morphic and in particular we require a top-down algorithm (an “online algorithm” in algorithms parlance)
in order to be applicable to trees that are being generated during the unification process. Inspired by the
results of Zibin, Gil and Considine in [ZGC03] we hope to find algorithms which will ultimately lead to
unification and matching procedures which incur only a modest performance penalty for treating the more
flexible notion of equality modulo type isomorphism.

It will be important to derive complexity results and to do empirical studies of the performance of our
algorithms in cases known to be decidable, such as matching at low orders and unification of patterns.

References

[BCL92] Kim B. Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable isomorphisms of types. Mathematical Structures in
Computer Science, 2(2):231–247, 1992.

[DC76] Mariangiola Dezani-Ciancaglini. Characterization of normal forms possesing an inverse in the λβη-calculus. Theoretical
Computer Science, 2:323–337, 1976.

[DC95] Roberto Di Cosmo. Isomorphisms of types: from λ-calculus to information retrieval and language design. Progress in
Theoretical Computer Science. Birkhauser, 1995. ISBN-0-8176-3763-X.

[FCB02] Marcelo Fiore, Roberto Di Cosmo, and Vincent Balat. Remarks on isomorphisms in typed lambda calculi with empty
and sum types. In Logic in Computer Science, pages 147–156, Los Alamitos, CA, USA, July 22–25 2002. IEEE Com-
puter Society.

[GS89] J. H. Gallier and W. Snyder. Higher-order unification revisited: complete sets of transformations. Journal of Symbolic
Computation, 8:101–140, 1989.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction, function variables, and simple unification. Journal
of Logic and Computation, 1(4):497–536, 1991.

[Plo72] Gordon Plotkin. Building in equational theories. In B. Meltzer and D. Mitchie, editors, Machine Intelligence, volume 7,
pages 73–90. Edinburgh University Press, 1972.

[Rit90] M. Rittri. Retrieving library identifiers via equational matching of types. In M. E. Stickel, editor, 10th International
Conference on Automated Deduction, pages 603–617. Springer, Berlin, Heidelberg, 1990.

[Rit91] Mikael Rittri. Using types as search keys in function libraries. Journal of Functional Programming, 1(1):71–89, 1991.
[RT91] C. Runciman and I. Toyne. Retrieving re-usable software components by polymorphic type. jfp, 1(2):191–211, 1991.
[ZGC03] Yoav Zibin, Yossi Gil, and Jeffrey Considine. Efficient algorithms for isomorphisms of simple types. In Proceedings of

the 30th ACM Symposium on Principles of Programming Languages (POPL 2003), pages 160–171. ACM Press, 2003.
[ZW93] Amy Moormann Zaremsky and Jeannette M. Wing. Signature matching: a key to reuse. In First ACM SIGSOFT

Symposium on Foundations of Software Engineering, pages 182–190, 1993. ISBN:0-89791-625-5.

5


