Alchemy: Transmuting Base Alloy Specifications
into Implementations

Shriram Krishnamurthi
Brown University

Kathi Fisler
WPI

ABSTRACT

Alloy specifications are used to define lightweight models of
systems. We present Alchemy, which compiles Alloy specifi-
cations into implementations that execute against persistent
databases. Alchemy translates a subset of Alloy predicates
into imperative update operations, and it converts facts into
database integrity constraints that it maintains automati-
cally in the face of these imperative actions.

In addition to presenting the semantics and an algorithm
for this compilation, we present the tool and outline its
application to a non-trivial specification. We also discuss
lessons learned about the relationship between Alloy speci-
fications and imperative implementations.

Categories and Subject Descriptors

1.2.2 [Artificial Intelligence]: Automatic Programming;
H.2.3 [Database Management]|: Languages

General Terms

Design, Languages

Keywords

Alloy, relational specification, program synthesis

1. INTRODUCTION

Software engineering wisdom encourages developers to ex-
plore models of their systems before they commit to imple-
mentation details. An especially powerful idea, lightweight
formal methods [18] to prototype ideas and identify errors
before realization, has gained substantial traction with the
growth of corresponding tools. A leading modeling tool that
supports this philosophy is Alloy [16], which enables design-
ers to author and explore petite descriptions of systems us-
ing a first-order relational specification language. Indeed,
Alloy has become sufficiently popular that its specification
language is becoming the focus of an ecosystem of tools,
such as theorem provers to analyze specifications and test
generators to construct test suites.

Original paper appears in
ACM SIGSOFT Foundations of Software Engineering (FSE), 2008.

Daniel J. Dougherty
WPI

Daniel Yoo
WPI

Having written an Alloy specification, however, its author
is no closer to a working implementation. Our work is an
attempt to bridge this gulf. Concretely, the elements of an
Alloy specification suggest natural implementation counter-
parts. The signatures lay out relations that translate di-
rectly into persistent database schemas. The facts—those
properties that are meant to hold of all models constructed
by Alloy—correspond to the database’s integrity constraints;
maintaining these automatically is one of our contributions
(Section 5.3). Finally, a subset of the predicates in an Al-
loy specification connote state changes; these (and related
helper utilities) become the functions exported by an API.
The heart of our synthesis work (Section 5) translates these
predicates into a library of imperative functions. This work
is presented not only formally but also through a working
tool, Alchemy, which we have evaluated on a non-trivial
specification (Section 6).

In harmony with the lightweight formal methods philoso-
phy of partiality, we focus on the generation of APIs rather
than whole programs. Automatic repair further supports
this philosophy. This scope is of tremendous value because
it enables us to generate, for instance, back-ends for Web
applications. Section 8 relates our work to other program
synthesis efforts.

From another viewpoint, this work enables the prototyp-
ing of application-specific database interfaces. Whereas most
database engines exports a “one-size-fits-all” interface, we
enable authors to define their desired interface in Alloy.
Alchemy translates their specification into an API, hiding
the database scaffolding and automatically maintaining in-
tegrity. This frees developers to focus on more challenging
matters, and reduces vulnerability to some security attacks.

Besides concrete deliverables, we believe the value of this
work resides as much in what we have learned from the pro-
cess of designing Alchemy. In particular, we find a poten-
tial mismatch between a stateless, relational semantics and
the expected behavior of an imperative implementation; this
relationship needs further investigation. We discuss our de-
sign decisions, constraints, and lessons at various points, and
elaborate on the mismatch in Section 7.

This paper uses three terms that are sometimes confused—
“semantics”, “algorithm”, and “implementation”—to mean
three different things. The semantics (Section 4) tells us
what the implementation guarantees, but nothing about how
to achieve it. The algorithm (Section 5) is one particular set
of rules for realizing the semantics. Finally, the implementa-
tion (Section 6) briefly discusses some of the practical issues
that arise in realizing the algorithm.

sig Submission {}
sig Grade {}
sig Student {}

sig Course {
roster : set Student,
work : roster — Submission,
gradebook : work — lone Grade }

pred Enroll (c, ¢’ : Course, sNew : Student) {
c¢’.roster = c.roster + sNew and
no ¢’.work[sNew] }

pred Drop (¢, ¢’ : Course, s: Student) {
s not in ¢’.roster }

pred SubmitForPair (¢, ¢’ : Course, s1, s2 : Student,
bNew : Submission) {
// pre-condition
sl in c.roster and s2 in c.roster and
// update
¢’ .work = c.work + (s1 — bNew) + (s2 — bNew) and
// frame condition
¢’.gradebook = c.gradebook }

pred AssignGrade (c, ¢’ : Course, s : Student,
b : Submission, g : Grade) {
¢’.gradebook in c.gradebook + (s — b — g¢) and
¢’.roster = c.roster }

fact SameGradeForPair {
all ¢ : Course, s1, s2 : Student, b : Submission |
b in (c.work[s1] & c.work[s2]) implies
c.gradebook[s1][b] = c.gradebook[s2][b] }

Figure 1: Alloy specification of a gradebook.

2. AN OVERVIEW OF ALLOY

In this section, we use an example to give an overview
of Alloy syntax and semantics. Readers familiar with Alloy
should anyway peruse the example, as we refer to it exten-
sively in the rest of the paper. Our work supports a subset
of Alloy that includes this example; details on the subset are
given later in this section.

The example is a homework submission and grading sys-
tem, shown in Figure 1. In this system, students submit
work in pairs. The gradebook stores the grade for each
student on each submission. Students may be added to or
deleted from the system at any time, as they enroll in or
drop the course.

This example is adapted from a deployed system that the
third author developed for her department. This author
prototyped data models for the system in Alloy early in the
design phase before manually porting the models to a Web-
based implementation. Alchemy is designed to reduce the
effort in this last, manual, step by automatically creating
the database back-end. Furthermore, by construction, the
back-end will automatically maintain integrity constraints
that are encoded as system invariants in the Alloy model.

The system’s data model centers around a course, which

has three subfields: a roster (set of students), submitted
work (relation from enrolled students to submissions), and
a gradebook. Alloy uses signatures to capture the sets and
relations that comprise a data model. Each sig (Submis-
ston, etc.) defines a unary relation. The elements of these
relations are called atoms; the type of each atom is its con-
taining relation.

Fields of signatures define additional relations. The sig
for Course, for example, declares roster to be a relation
on Coursex Student. Similarly, the relation work is of type
Course X Student X Submission, but with the projection on
Course and Student restricted to pairs in the roster relation.
The lone annotation on gradebook allows at most one grade
per submission.

The predicates (Enroll, etc.) capture the actions supported
in the system. The predicates follow a standard Alloy id-
iom for stateful operations: each has parameters for the pre-
and post-states of the operation (¢ and ¢’, respectively) and
constrains the latter to reflect the change applied to the for-
mer." Facts (such as SameGradeForPair) capture invariants
on the models. This particular fact states that students who
submit joint work get the same grade.

The Alloy semantics defines a set of models for the signa-
tures and facts. Operators over sets and relations have their
usual semantics: + (union), & (intersection), in (subset), —
(tupling), and . (join). Square brackets also represent join (.
versus || is used based on the location of the common type
for the join in the respective tuples). The following relations
constitute a valid model under the Alloy semantics.?

Student = {Harry, Meg}

Submission = {hwk1}

Grade = {A, A—, B+, B}

Course = {c0, c1}

roster = ((c0, Harry), (c1, Harry), (c1, Meg))
work = {(c1, Harry, hwk1)}

gradebook = {{(cl, Harry, hwk1, A—)}

All models of a specification are, by definition, consistent
with its signatures and facts. A model of a predicate also as-
sociates each predicate parameter with an atom in the model
such that the predicate body holds. The above set of rela-
tions models the Enroll predicate under bindings ¢ = c0, ¢’
= ¢l and sNew = Meg. A model may include tuples beyond
those required to satisfy a predicate: the Enroll predicate
does not constrain the work relation for pre-existing stu-
dents, so the appearance of tuple (cI, Harry, hwk1) in the
work relation is semantically acceptable.

The relations shown do not model SubmitForPair. Un-
der bindings ¢ = ¢0 and ¢’ = c1, for example, the require-
ment c’.gradebook = c.gradebook fails because the gradebook
starting from ¢’ has one tuple while that starting from ¢ has
none. The requirement on work also fails. Similar inconsis-
tencies contradict other possible bindings for ¢ and ¢’.

The Supported Alloy Language

Alchemy supports most of the Alloy language, including all
of our running example. We omit integers and integer op-
erations, as well as Alloy’s built-in support for ordinals (via
the ordering module).

! Alloy models of stateful systems often employ the ordering
module to sequence states; we currently do not exploit this.
2For readability, we use concrete atom names rather than
Alloy’s abstract ones.

The bodies of predicates and facts are terms in the Alloy
Kernel logic (the core forms of Alloy [17, page 291]). We
support the full Kernel restricted to universally-quantified
formulas in portions of the theory. The following grammar
reproduces the Kernel language from Jackson’s book [17]
sans the expr = expr form in elemFormula:

expr ::= rel | var | none | expr binop expr | unop expr
binop ::=+ | & | —|.| —

unop =" | "

formula ::= elemFormula | compFormula | quantFormula
elemFormula ::= expr in expr

compFormula ::= not formula | formula and formula
quantFormula ::= all var : expr | formula

We assume expr! = expr2 has been rewritten into expri in
expr2 and ezpr2 in exprl. This is sound in Alloy (which
exploits explicit = in its analysis framework [17, page 292]).

The rest of the paper uses the term basic formula for el-
emFormulas or their negations. A wuniversal formula is one
in which all quantifiers are universal once the formula is con-
verted to Prenex Normal Form (i.e., all quantifiers grouped
at the uppermost level of the formula).

The signatures, predicates, and facts in Alloy specifica-
tions are relevant to our work; assertions (properties to ver-
ify) are not relevant as they have no semantic content from
the perspective of execution. Alchemy targets Alloy specifi-
cations that model stateful software systems. We recognize
such specifications through Alloy’s standard idiom for such
systems: some signature is effectively declared to represent
the “state” of the system and predicates modeling stateful
operations consume atoms representing the current and next
state. In our running example, Course is the state; each
operation takes Courses ¢ and ¢’ as inputs. We assume a
designated state signature (herein denoted state) from which
all other signatures are reachable. We view facts as integrity
constraints on system states, requiring each to quantify over
at most one state variable.

Our formal model of an Alloy specification is as follows:

Definition 1. An Alloy specification is (S, P, F, state):

e S is a set of signatures. A signature specifies its type
name Tyg, a set of fields, and an optional cardinality
constraint. Each field has a name, an optional cardi-
nality constraint, and a type specification 17 X ... x T},
where each T; is the type name associated with some
signature. The valid cardinalities are lone, some, and
one. Our running example defines type names Submis-
sion, Course, etc.; the fields are roster, etc.

e state is the type name of some signature in S.

e P is a set of predicates. A predicate has a header and
a body. The header declares a set of variable names,
each with an associated signature type name. The
body is a quantFormula in which the only free vari-
ables are defined in the header. Our model limits the
types of variables in the headers to names of signatures
rather than arbitrary expressions on signatures (as in
full Alloy). We call a predicate stateful if its header
has exactly two variables of type state that share the
same name with and without a prime (e.g., ¢ and ¢’).

e [is a set of facts. A fact is a closed formula. We
assume facts have at most one quantified variable of
type state and that this variable is unprimed; this is
consistent with our viewing them as state invariants.

There are other small restrictions (Section 5.1.1) in our
supported syntax, but these do not impact expressive power.
Our signature definition diverges slightly from Alloy’s in not
including signature constraints in the model of the signa-
tures, but most signature constraints, such as one signature
being a subset of another, can be represented as universal
facts. The exceptions are the some and one constraints,
which our model captures as explicit cardinality constraints.
We can express subtyping relationships between signatures
as facts. We also restrict the type specifications in predicate
headers to names of signatures, rather than permit arbitrary
relational expressions. Richer parameter types can, however,
be expressed as pre-conditions within the predicate body.

3. AN OVERVIEW OF ALCHEMY

Given the gradebook specification from Figure 1, Alchemy
creates a database table for each relation (e.g., Submission,
roster), a function for each predicate (e.g., Enroll), and a
function for creating new elements of each atomic signature
(e.g., CreateSubmission).

We illustrate Alchemy’s features through a sample inter-
action using these generated functions. We create a course
with two students using the following command sequence:

cs311 = CreateCourse("cs311");
pete = CreateStudent("Pete”);
caitlin = CreateStudent("Caitlin”);
Enroll(cs811, pete);
Enroll(cs311, caitlin)

Note that the Enroll function takes only one course, not two
(unlike the original Alloy predicate), since the implementa-
tion maintains only a single set of tables over time. The
second course parameter in the predicate corresponds to the
resulting updated table. Executing the Enroll function adds
the pairs (?cs311”, ”Pete”) and ("cs311”, ”Caitlin”) to the
roster table. The second clause of the Enroll specification
guarantees that the work table will not have entries for either
student. This clause is necessary in Alloy, which is free to
add arbitrary tuples that don’t violate stated constraints.
Because Alchemy does not add such tuples, the clause is
unnecessary; instead, Alchemy enforces the constraint by
removing any tuples that fail this condition.

Next, we submit a new homework for "Pete” and "Caitlin™:

hwk1 = CreateSubmission("hwk1");
SubmitForPair(cs311, pete, caitlin, hwk1)

The implementation of SubmitForPair is straightforward rel-
ative to the specification. It treats the first clause in the
specification as a pre-condition by terminating the compu-
tation with an error if the clause is false in the database at
the start of the function execution. Next, it adds the work
tuples required in the second (update) clause. Finally, it
checks that the gradebook table is unchanged, as required
by the third clause.
Assigning a grade illustrates Alchemy repair feature:

gradeA = CreateGrade("A");
AssignGrade(cs311, pete, hwkl, gradeA)

AssignGrade inserts a tuple into the gradebook relation ac-
cording to the first clause, and checks that the roster is
unchanged according to the second. If execution were to
stop here, however, the resulting tables would contradict the
SameGradeForPair invariant (which requires "Caitlin” to re-
ceive the same grade on the joint assignment). Alchemy thus
attempts to repair the database to satisfy both the predi-
cate body and the fact. It determines that adding the tuple
(?¢s3117, 7 Caitlin”, ”hwk1”, ?A”) to gradebook achieves this,
and executes this command automatically. The fact there-
fore holds of the database when the SubmitForPair function
returns. If there is no way to repair the database to respect
both the predicate and the fact, Alchemy will raise an ex-
ception. This could happen, for example, if the first clause
in AssignGrade used = instead of in (in this case, adding
the repairing tuple would violate the =).

Automatic repair supports the lightweight formal methods
philosophy. One could require that all predicate specifica-
tions were written to preserve all facts (in this case, by aug-
menting AssignGrade to add database tuples for all students
on the same assignment). Such fully-specified predicates can
get rather complicated, however, sometimes to the point of
obscuring the essence of a predicate. Alloy’s use of facts to
constrain possibly-underspecified predicates offer a powerful
lightweight modelling tool. Database repair is fundamental
for carrying that power into synthesized implementations.
Alchemy provably preserves all facts as database invariants
when its functions terminate without exceptions.

4. INTERPRETING ALLOY
IMPERATIVELY: SEMANTICS

To see the main difference between Alloy’s semantics and
an imperative one, consider the roster relation in an Alloy
model of a predicate. In the Alloy model from Section 2,
roster contains tuples for both c0 and c1; intuitively, these
resemble timestamps where c0 occurs before cf. An imper-
ative program implementing operations would instead main-
tain a single (current) Course as a set of database tables and
update the roster table over time. In other words, an im-
perative program for this specification might have a Course
named the_c and include a table

roster = ((the_c, Harry))
which, after enrolling Meg, changes to:

roster = ({the_c, Harry),
(the_c, Meg))

Our semantics represents imperative programs as transi-
tion systems over database instances. Instances of a given
Alloy specification are over a database schema derived from
its signatures and relations. Our semantics differs from
Alloy’s in modifying a database over time, whereas Alloy
comingles all these database instances in a single relation.
This has important consequences, as we discuss in Section 7.
The rest of this section derives a database schema from an
Alloy specification, then shows how to interpret predicates
and facts relative to transitions over instances.

4.1 Database Schemas

Database schemas arise naturally from Alloy specifica-
tions. Each signature defines a unary relation over atoms.
Each signature field defines a relation from atoms in that

signature to the remaining elements in the field’s specifica-
tion. Our schemas use the same mapping from specifications
to relations as in the Alloy semantics.

Definition 2. Let A = (S, P, F, state) be an Alloy speci-
fication. The database schema for A contains the following
relations for each signature s in S, where T is the type name
for s:

e a unary relation named T

e for every field (D, ¢, Th X ... X T}) in s, a relation D C
Ts x T1 X ... x T} with cardinality c.

The distinguished state relation is restricted to only one
atom (representing the current database state). An instance
of the schema is any set of actual relations that conforms to
the types in the schema. Instances must respect the cardi-
nality constraints on signatures and fields: one allows only
one tuple in a relation, lone allows at most one tuple in a
relation, and some requires at least one tuple in a relation.

These cardinality interpretations are consistent with Alloy
semantics. This definition differs from the Alloy semantics
in only one detail: the restriction of the state relation to a
single atom. This restriction lets us maintain only one active
database instance while executing a specification, just as a
programmer would expect.

4.2 Transition Systems over Instances

Each transition in our imperative model arises from the
execution of one stateful function corresponding to an Al-
loy predicate. Our semantics must therefore define when a
predicate induces a transition from database instance I (the
pre-state) to database instance I’ (the post-state).

The key to this is deciding in which state to interpret
a subexpression. Limiting individual identifiers to just the
pre- or post-state is overly restrictive. For instance, Enroll
contains ¢’.roster = c.roster + sNew. A literal reading of
primes would interpret ¢’ in the post-state and both uses of
roster in the pre-state. The roster relation in the pre-state,
however, wouldn’t include tuples that get introduced only
in the post-state. It seems clear that the entire expression
¢’.roster must be interpreted in the post-state. The right
side of the equation, however, has one expr that appears
to be from the pre-state (c.roster) and another from the
post-state (sNew, the new student who should not be in the
pre-state). This example shows that we must lift “priming”
beyond individual variables, but without pulling expressions
that are clearly in the pre-state into the post-state.

Our semantics allocates expressions to the pre-state or
post-state using a simple criterion: an expr is interpreted in
the post-state iff it contains a primed variable. We call these
primed expressions. In the body of Enroll, only ¢’.roster is a
(maximal) primed expression (and hence interpreted in the
post-state). For each variable denoting a new atom (such as
sNew), we augment the pre-state with a new atom; this lets
us interpret c.roster + sNew in the (extended) pre-state. We
will use a naming convention (suffix New) to distinguish new
variables (akin to using primes as a naming convention on
next states). Treating new variables specially, rather than
as post-state variables, yields a clean metric for determining
whether a formula reflects an update versus a post-condition.
We discuss this issue in more detail in Section 5.1.

Thus, our semantics distinguishes between three classes
of identifiers: primed (such as ¢’), new (such as sNew), and
unprimed (such as s in SubmitForPair). Since both primed
and unprimed expressions may include the New variables,
we include these variables in each of the pre- and post-states
when interpreting predicate bodies. We do not, however,
include them in the pre-state when interpreting facts.

The rest of this section simply formalizes the prose above.
Our definition covers the introduction of new variables, the
allocation of exprs to the pre- and post-states, and the han-
dling of facts. As the latter are intended to capture state in-
variants, we expect them to hold in every state. We assume
that the database is initialized with atoms and relations that
satisfy the facts.

Definition 3. Let A = (S, P, F, state) be an Alloy specifi-
cation and let I and I’ be instances of the database schema
for A. Let p = (H, B) be a stateful predicate in A (where
H is the header and B the body). Let H™~ be the subset
of H that excludes the variables of type state. Let E (the
parameter environment) bind every non-new variable in H ™~
to some atom in I of the corresponding type for that vari-
able. E also binds all variables of type state to the unique
atom in the state relation. (I,I") Eg (p, F) iff the following
conditions hold:

1. There exists a mapping Epe. from every new variable
new, of type T, in H~ to an atom new,,, in the re-
lation for T, in I’ but not in relation T}, in I. With
the exception of the atoms in the co-domain of F,ew,
all relations corresponding to signatures have the same
atoms in I and I’.

2. Let I and I'" extend I and I’, respectively, with the
new atoms in Epew. B evaluates to true (under the
standard semantics for boolean, relational, and set-
theoretic operators) when every maximal non-primed
expr is interpreted in T, every maximal primed expr is
interpreted in I’T, and every identifier takes its value
from F U Epew.

3. The facts F are true in both I and I’.

The definition of E ensures that there is only one state atom,
no matter how many state variables alias it. Condition 3
uses our assumption that facts are invariants on individual
states. If facts were allowed to have more than one state
variable, they would end up bound to the same atom as
there is only one atom for the state in the imperative model.

S. INTERPRETING ALLOY
IMPERATIVELY: ALGORITHM

Alchemy compiles stateful predicates into functions that
implement those predicates according to our imperative se-
mantics. These functions insert and delete tuples into tables
corresponding to the relations in the specification’s database
schema. The semantics, however, admits many possible
functions for each predicate. Our compilation algorithm
must choose one that implements a predicate body without
violating the facts (which constrain program states).

Rather than attempt to both implement predicates and
preserve facts simultaneously, we employ a two-phase algo-
rithm. The first phase generates insert and delete commands

to implement the body of the predicate. The second phase
generates additional commands that repair the database to
restore facts violated during the first phase. The algorithm
backtracks to find repairs or, in the worst case, even fresh im-
plementations that satisfy both the predicate and the facts.
This separation into phases has proven extremely valuable.
It supports a method for ensuring non-interference between
repair and implementation (which in turn guarantees ter-
mination). In addition, each phase can exploit a different
normal form for formulas. We explain these details after
presenting the algorithm.

5.1 Generating Commands

Generating commands to implement predicate bodies re-
quires several key design decisions, such as which formulas
should yield commands at all, whether to implement a for-
mula using insertion or deletion, and which database tables
to edit. The decisions affect not only Alchemy’s theoreti-
cal foundations, but also its usability. Alloy users employ
certain idioms and make certain assumptions about what
specifications entail. The models that Alloy generates for
specifications can surprise even seasoned Alloy users. While
this is acceptable from a model-exploration tool, such sur-
prises are generally undesirable in imperative code. Our de-
sign decisions try to strike a balance between making sense
to Alloy users and resting on sound design principles.

5.1.1 Which Formulas Yield Commands

Alloy captures different sorts of requirements on the pre-
and post-states using the same set of operators. In the
AssignGrade predicate in Figure 1, for example, the first
expression specifies an update to the gradebook relation,
whereas the second is a constraint to not change the roster
relation. The latter is a framing condition, which limits the
scope of changes. Other expressions capture pre-conditions
(the first clause of SubmitForPair) or post-conditions (the
second clause of Enroll). We distinguish among updates,
framing conditions, pre-conditions, and post-conditions us-
ing syntactic criteria.®> Only updates are compiled into com-
mands. The rest become guards that abort predicate exe-
cution and roll back to the pre-state if violated.

Our criteria classify basic formulas (outermost terms that
encompass the set-theoretic and relational operators). Given
a formula (e; in e2) or (e1 not in ez), we classify based on
patterns of primes and similarity between e; and es:

neither e; nor ez primed pre-condition

e1 and ez both primed post-condition

e1 identical to ez sans priming | framing condition
else update

The first two align Alloy idioms with the theory: if primes
denote the post-state, then prime-free formulas should not
explore the post-state (an analogous argument covers the
pre-state). The characterization of framing conditions pre-
vents these formulas from becoming no-ops (as they other-
wise suggest an update involving no change). The remain-
ing formulas become updates that must be decomposed into
specific insertions and deletions.

3We could distinguish these by other means, such as adding
explicit annotations to Alloy. Different techniques would
change some of the details of how we generate commands.
The high-level algorithms for predicate execution and repair,
however, would not be adversely affected.

Consequently, only formulas that use the primed variable
for the next state are recognized as updates. Imagine that
we extended our example system to store the date of enroll-
ment in each student object. The Enroll predicate might
require a statement like sNew.date = today. Our criteria
would mark this as a pre-condition rather than an update.
The equivalent statement (c¢’.roster & sNew).date = today
captures the intent within our criteria.

The chart also justifies our New naming idiom. If we had
reused the priming idiom for new atoms (calling the new stu-
dent s’), then the expression c.roster + s’ would become a
primed expression. This in turn would obscure that ¢’.roster
= c.roster + s’ is an update rather than a post-condition.
Altering the scope of prime lifting is an option, but finding a
coherent definition that also supports set operations nested
within tupling and joins has proven difficult.

5.1.2 Whether to Insert or Delete

Updates have one of four forms: (e in f’), (e’ in f), (e
not in f’), and (¢’ not in f), where e and f are each exprs.
Following the convention that primes denote the post-state,
our algorithm chooses to insert or delete as needed to have
the change affect the primed side. Consider (e in f7): we
could make this true by deleting from e or inserting into
f. We choose the latter since f bears the prime. By similar
reasoning, (e’ not in f) also yields insertions, while the other
two forms yield deletions.

5.1.3 What and Where to Insert or Delete

The most subtle decisions lie in determining which rela-
tions to edit when executing a command. Given the expres-
sion ¢’.roster = c.roster + sNew, we chose (in Section 4.2)
to insert into ¢’.roster. The inserted tuples therefore should
be in the set computed by expression c’.roster in the post-
state. We could do this by editing ¢’, roster, or both.

A naive reading of the primed-variable idiom suggests
editing only ¢’. The imperative semantics, however, can-
not realistically implement this strict reading. The Alloy
semantics maps ¢ and ¢’ to atoms; the portion of the model
reachable from each atom captures the overall pre- and post-
states. Relations (such as roster) appear to change because
different portions of them are reachable from the two atoms.
The imperative version, however, doesn’t define atoms for
each possible state. Even if it did (which would require an a
priori finite bound on the number of invocations of API func-
tions or a garbage collection mechanism), storing each possi-
ble state in the database would be grossly inefficient. A more
practical imperative approach would have a single Course
object and modify the roster table to implement the predi-
cate (as described at the start of Section 4). This approach is
consistent with interpreting join like object navigation: the
relation modified is a component of the primed state object.
This pun between relational- and object-notation is a design
feature of Alloy, yet one that has interesting consequences
in the context of this project (see Section 7).

In general, our algorithm may modify any relation men-
tioned in a primed expr when performing an update. It first
computes the tuples that achieve an update, then decom-
poses commands on those tuples into commands on specific
relations. The tuples and high-level commands are com-
puted according to the chart in Figure 2. Because multiple
parts of our algorithm use this table, we parameterize it
over the formula and databases in which to compute the

void GenCommands(fmla, unprimed-db, primed-db)
E = if e primed then primed-db(e) else unprimed-db(e)
F =if f primed then primed-db(f) else unprimed-db(f)

fmla Commands

ein f’ insert all tuples in £ — F' into F

e in f delete all tuples in E — F from FE

e not in f’ if £ C F delete some tuple in E from F

e’ not in f if £ C F insert some tuple not in F into

Figure 2: Command generation.

unprimed and primed expressions.

Command generation fails if there is no tuple to insert or
delete in the third and fourth rows of Figure 2. Many com-
mands could implement each formula. Removing all tuples
from f’ satisfies (e not in f’), for example, but is almost cer-
tainly not what the API user intended. The Drop predicate
in Figure 1 would ideally remove only the indicated student.
The chart attempts to minimize the changes made during an
update. Repair may, however, add or remove other tuples;
Section 5.3 discusses this in detail.

The third and fourth rows introduce non-determinism in
the choice of tuples. In practice, framing conditions, post-
conditions, and facts may constrain these cases to deter-
ministic choices. Our current algorithm accounts for these
constraints in the second (repair) phase. In the fourth row,
when choosing tuples to insert, we use only atoms that al-
ready exist in the database. Our algorithm only creates new
atoms when executing predicates with parameters that fol-
low the New naming convention.

Figures 3 and 4 decompose insertions and deletions on
relational expressions into similar commands on individual
relations. Some operations have multiple valid implemen-
tations, owing to a choice of relations to manipulate. We
choose between these non-deterministically, backtracking as
needed if a choice does not lead to a valid implementation
that can be repaired to satisfy the facts. The algorithms use
the notation poststate, to denote relation r in the post-state.

The decision to FAIL in the e; — ez case of Figures 3 and 4
reflects a design decision on our part. We could handle the
case where ¢ is in es by adding ¢ to e; and removing ¢ from
e2. Implementing abstract insertion operations with con-
crete deletions, however, has implications for termination,
as we discuss in Section 5.3. As a general rule, we prefer to
use only insertion operations to implement insertions, and
analogously for deletions.

5.2 Compiling Predicates

Figure 5 shows the pseudocode that implements a pred-
icate. We treat predicates as transactions that rollback if
they cannot be executed without violating their bodies or a
fact. If a cardinality constraint fails, or if backtracking fails
to produce a set of commands that satisfy both the predicate
and the facts, then predicate execution fails. This induces
rollback of the database state to the pre-state. The pseu-
docode assumes two variables: pre-state (for the database
contents at the start of the transaction) and Guards (for the
set of formulas to check before committing the transaction).

Our model of Alloy specifications assumed that the body
of every predicate is a universal formula. In generating code,
we convert each of these formulas into disjunctive normal

void insertTuple(t: Ty X --- X Ty, e: expr) {

match e
atom a: if a # ¢ then FAIL]
elation r: poststate, := poststate, + t]
none: FAIL]

[
[r
[
[e1 + e2: choose some e; ; insertTuple(t, e;)]
[e1 & ez: insertTuple(t, e1) ; insertTuple(t, e2)]
["e: msertTuple(t, e
[
let t = t1 — to where t; matches type of e;
wnsertTuple(t1, e1) ; insertTuple(tz, e2)]
[er — ez: if ¢ is not in ey
then insertTuple(t, e1) else FAIL]
[61 . €2:
let T be the common sig-type that joins e; and ez
if T is the type of e; then
for some a in ey, insertTuple(a — t, e2)
elseif T is the type of ez then
for some a in eq, insertTuple(t — a, e1)
else let a be any element of T
ti1= s1 —a
to = a — sy such that ¢1 . to = ¢
wnsertTuple(t1, e1) ; insertTuple(tz, e2)]
[(e1)": insertTuple(t, e1)]

Figure 3: Inserting a tuple into an expression.

form. Each predicate body therefore has the form
V(zy:r) ... V(@n i) . (@1 V... Vi)

where each (; is a conjunction of formulas of the form (e in
f) or (e not in f). Each ¢; may reference variables declared
in the header of the predicate.

The ApI function produced for a predicate takes argu-
ments for the predicate parameters other than the state
variables (implicit in the implementation) and the New vari-
ables. The function creates atoms for the New variables be-
fore attempting any updates. The bindings of new atoms to
New variables are added to the parameter bindings.

The algorithm chooses a disjunct to implement to satisfy
the predicate. If any pre-condition in the disjunct is false,
the choice fails and the algorithm backtracks to select an-
other disjunct. The function then generates commands for
each update (using Section 5.1) and applies them to the
post-state. A failed post-condition causes the algorithm to
backtrack to other command choices or to another disjunct
selection (if necessary). Framing conditions are accumulated
as guards to check after the database has been repaired to ac-
count for the facts. This ordering allows framing conditions
to cover the entire predicate implementation, as expected. A
failure when checking a framing condition would backtrack
into the repair algorithm. Cardinality constraints (arising
from one, lone and some constraints) are also checked at
the end by comparing the size of the relation in the post-
state to the size required by the constraint.

Disjunctive-normal form is natural for implementing pred-
icates because it keeps all the related pre-conditions, post-
conditions, and updates together. This can be useful in ter-
minating a search path early, as any conjunct with a failed
pre-condition can be rejected in its entirety.

The algorithm reveals a subtlety regarding New variables.

void deleteTuple(t : Th X - -+ X Ty, e: expr) {

match e
atom a: if @ = ¢ then FAIL]
elation 7: poststate, := poststate, — ¢]
none: FAIL]

[
[r
[
[er + ea: deleteTuple(t, e1) ; deleteTuple(t, e2)]
[e1 & e2: choose some e; ; deleteTuple(t €) |
["e: deleteTuple(,e)]
[
let t = t1 — t2 where t; matches type of e;
choose some e¢; ; deleteTuple (t;, e;)
[e1 — e2: if ¢ is not in es
then deleteTuple(t,e1) else FAIL]
[61 . €2:
let T be the common sig-type that joins e; and e2
if T is the type of e; then
foreach a in e1, deleteTuple(a — t, e2)
elseif T is the type of ez then
foreach a in eq, deleteTuple(t — a, e1)
else foreach a in T such that for some s1, s2
t1 = 81 — a in e; and
to =a — soines and t = t1 . to
choose some e; ; delete Tuple(t, e;)]
[(e1)": foreach (z, y1), (y1, ¥2), -+, (Yn, ¥) such that
t = (z, y) and each pair is in e;
choose some pair (ys, yi+1)
deleteTuple(y; — yiy1, €1)]

Figure 4: Deleting a tuple from an expression.

Intuitively, these variables should appear only in the post-
state. The algorithm, however, uses the pre-state as the
unprimed-db argument to GenCommands. There must be
an atom for sNew in the unprimed-db in order to add the new
student to the roster in the Enroll predicate. We therefore
add the new atoms to both pre- and post-state.

Two questions arise about the algorithm’s correctness rel-
ative to our imperative semantics. First, we have sequential-
ized the processing of updates. This suggests that the edits
from implementing one command might affect the edits re-
quired for another. Our algorithm applies edits to the post-
state but computes tuples in the pre-state, so such leakage
does not occur. Iterating the computation until a fixpoint
on the post-state ensures that the chosen edits are valid re-
gardless of ordering. Second, our algorithm seems to assume
that repair cannot violate the body of the predicate (since
repair is not within the code to iterate until fixpoint). While
this could be a problem in general, our repair algorithm op-
erates under a restriction that eliminates this issue; the next
section addresses this in more detail.

5.3 Compiling Facts into Database Repairs

The repair phase takes a set of facts and a database in-
stance and edits the database (if necessary and possible) so
that it satisfies the facts. Figure 6 presents the pseudocode.
The algorithm only repairs universal formulas. Other facts
are treated as guards that get checked after repair as shown
in the predicate pseudocode in Figure 5.

The repair algorithm assumes that all universal facts are
in conjunctive normal form. Distributing the quantifiers

Given:

pred p(s,s’ : state,vi : T1,...,v; : Ty
new-vk: Ty, ..., new-vn : T,)
{VX.(e1V...Vom)}

Generate:
list(atom) p(v1 : T ..., v; : Tj)
let newv;, = new_atom (pre-state, T;) fori € k,...,n

post-state = pre-state
let V map params to args and new-vars to new-atoms
iterate until fixpoint on post-state
foreach binding B to identifiers in X
choose a disjunct ¢;
if some pre-condition in ¢;[V U B] false then FAIL
else foreach update in ¢;[V U B]
GenCommands(update, pre-state, post-state)
// Figure 2
if some post-condition in ¢;[V U B] false then FAIL
add framing conditions in ¢;[V U B] to Guards
repair-facts() // Figure 6
if some formula in Guards false then FAIL
if some cardinality constraint false then FAIL
pre-state = post-state; return newvg, ..., newvy

Figure 5: Pseudocode for a compiled predicate. ¢[Z]
denotes ¢ substituted with all bindings in Z.

over the conjuncts yields a set of facts, each of the form
VY.(OQ/\---/\OUC) = (ﬂl\/“'\/ﬂh)

where each «; and each 3; is an elemFormula (e; in e2). This
form simply groups the positive and negative elemFormulas
on either side of the implication operator. Either side of
the implication could have no subterms, in which case the
normal logical rules apply: if there are no «;, the body is
equivalent to (81V- - -V B); if there are no f3;, it is equivalent
to =(ar A A ag).

The algorithm repeatedly selects a fact and checks whether
it is true in the post-state. If not, the algorithm must modify
the database to nullify each witness to the failure. Falsify-
ing any o; or —f; nullifies a witness. Each «a; or §; is of
the same core form (e in f) used to generate commands
for implementing predicates (Section 5.1). Once we decide
whether to nullify using insertion or deletion (a decision dis-
cussed momentarily), we reuse the table in GenCommands
(Figure 2) to generate the appropriate commands. Nullify-
ing «; via insertion uses row 1; nullifying «; by deletion uses
row 3. Nullifying (; follows row 2 (insertion) or 4 (deletion).
As when generating commands to execute predicates, com-
mand choices may induce backtracking should a choice lead
to an inconsistent database.

This algorithm raises several potential concerns:

e Termination: Repairing one fact might break an-
other. In theory, two facts could iteratively undo each
others’ repairs ad-infinitum.

e Correctness: Repairing a fact might undo the effect
of the predicate we were attempting to execute.

e Efficiency: In the worst case, we could iterate over
every possible combination of insertions and deletions
over every combination of atoms in the database.

void repair-facts ()
iterate until fixpoint on post-state
foreach fact F; =VX . (a1 A...Aag) = (b1 V...V by)
foreach solution S to 3X . a1 A ... A ar/A
=bi AL A by,

instantiate fact body with bindings from S
choose some a; or b;
GenCommands(—choice, post-state, post-state)

// Figure 2
insert all non-universal facts into Guards

Figure 6: Algorithm to repair the database.

e Predictability: The repair algorithm might modify
some relation that was not in a primed maximal expr
within the predicate body, thus affecting the database
in unexpected ways from the API user’s perspective.

Predictability isn’t a problem if the user considers the facts
as well as the predicate body. Our algorithm modifies only
those relations that are mentioned in the facts or predicate
being executed. The absence of sufficient post-conditions
and framing conditions could result in undesirable imple-
mentations, but this is inherent to underspecification, not
an artifact of Alchemy. Our implementation ameliorates un-
derspecification to a small extent, and intelligent heuristics
for this are an interesting topic for future work.

Following a simple principle mitigates the first three prob-
lems: repair insertions with other insertions and deletions
with other deletions. Consider the AssignGrade predicate
from Figure 1. Executing this predicate assigns a grade to
the given student, but not to her partner. The SameGrade-
ForPair fact is intended to assign the same grade to her part-
ner as well. From a semantic perspective, however, we could
restore the fact by removing the partner from the course
(prevented by the framing condition) or by removing the
submission from each students’ work. Repairing insertions
by insertions blocks the latter option and results in the de-
sired repair that adds the grade to the other student.

This principle guarantees that repair will terminate, since
there are at most a finite number of insertions involving
existing database atoms. It improves the efficiency of repair
by restricting the search space of commands to consider.
This is an extremely useful consequence of our two-phase
algorithm. It also identifies cases in which repair will not
undo the effect of a predicate: commands can never undo the
effect of commands of the same type (insertion or deletion).

Applying the principle at the level of an entire predicate,
however, is often too restrictive. For termination, never in-
serting to and deleting from any individual relation suffices.
We call a predicate execution homogeneous if it doesn’t in-
sert and delete from the same relation. In practice, predi-
cates often have homogeneous executions even though syn-
tactically they appear to always mix insertions and deletions.
When we expand = into two in expressions, any expression
using = yields one form that creates insertions and another
that creates deletions (by the table in GenCommands). At
run-time, however, one of these two forms often reduces to
a no-op because one side is a subset of the other (as in the
body of the Enroll predicate). A general syntactic charac-
terization of homogeneity is left for future work.

Finally, we state two theorems about the algorithm in this

section. The first says that the algorithm is faithful to the
semantics we have defined. One consequence of this theorem
is that the facts are state invariants over the API functions.
The second states conditions under which the function for
a predicate can successfully execute the predicate. We omit
both proofs for sake of space.

THEOREM 1. Let A = (S, P, F, state) be an Alloy specifi-
cation. Let I be an instance of the database schema for A
and let p be a predicate in P. Let X, be the executable func-
tion compiled for p and let E be a binding to the parameters
of Xp from atoms in I. The execution of X, on I will ter-
minate. If it succeeds, it results in a new database instance
I’ such that (I,I') EE (p, F).

THEOREM 2. Let A = (S, P, F, state) be an Alloy specifi-
cation that does not use the difference operator. Let I be an
instance of the database schema for A and let p be a predi-
cate in P. Let X, be the executable function for p. Suppose
there exists a binding E of the parameters of X, to atoms
in I such that X, has a homogeneous execution on E from
I. Then running X, on I and E results in an instance I’
such that (I,1') =g (p, F).

The restriction regarding difference arises from our decision
to FAIL in some cases when inserting into difference expres-
sions in Figures 3 and 4. Relaxing that restriction would
interfere with the homogeneity assumptions that guarantee
termination of our executable functions. Other FAIL cases
identify logical inconsistencies, rather than cut off poten-
tially sound implementations.

6. IMPLEMENTATION & EVALUATION

Our implementation (in PLT Scheme [9]) uses the Alloy
parser as a front-end and a Postgres database back-end. The
compiler produces a stand-alone library that contains a func-
tion for each stateful predicate, as well as functions for ini-
tializing a database according to the schema. With a little
additional work, Alchemy could automatically generate a
Web Service interface as well.

The implementation and algorithms differ in a few places:

e Alchemy does not generate command options to insert
or delete into an atom. For example, inserting into
c.gradebook[s1][b] (from Figure 1) generates options
to modify each of ¢, gradebook, s1, and b. All but the
option for gradebook will fail immediately in Figure 3.
This optimization significantly reduced case-explosion
on some of our examples.

e Because some cardinality constraints require existen-
tial quantification, they do not fall under the aegis of
our current repair algorithm. As a result, Alchemy can
only check cardinality; it does not repair it. Therefore,
failure of a cardinality constraint leads to transaction
failure, rather than backtracking.

We have not yet implemented two features. First, predicate
implementations don’t generate atoms for New parameters
automatically; the API user must do this manually before
invoking the function (as in Section 3). Second, all references
to predicates must be inlined. Since predicates are first-
order formulas, this does not limit expressiveness.

We have run our implementation on several examples, in-
cluding the running example from this paper and simple

examples from the Alloy book [17]. More usefully, we have
applied Alchemy to a model reflecting the features of Con-
tinue (http://continue2.cs.brown.edu/), a working sys-
tem that manages papers for academic conferences.

The Continue specification’s state object has 15 fields,
several of which have sub-structure. There are 25 other sig-
natures, of which 15 represent enumerated types. Most of
these have signature constraints that turns into facts. The
model has 22 stateful predicates, most of which have either
an update or framing condition for each of the 15 state fields.

We tested typical workflows (submission, bidding, assign-
ment, reviewing, etc.) representing small conferences (upto
40 papers and 24 reviewers). These workflows thoroughly
exercised repairs. Even though our prototype implementa-
tion lacks numerous optimizations (Section 9), each proce-
dure execution, including repair, took under a second (exe-
cuted locally, to avoid network overhead) on a laptop (Mac-
Book Pro, 2.33GHz Intel Core 2 Duo with 2Gb RAM).

Because the Alchemy compiler itself executes in mere sec-
onds, users can quickly obtain at least a prototype, and per-
haps even a small deployment, of a persistent store. This
frees them to focus on the rest of their system. Hopefully,
the existence of Alchemy thus creates additional incentive
to write lightweight formal specifications.

7. DISCUSSION: RELATING THE ALLOY
AND IMPERATIVE SEMANTICS

The astute reader will have noticed that we offer a guar-
antee about the preservation of facts, but do not formally
link the meaning of predicates in Alloy to their implementa-
tion in Alchemy. One possibility is to link statements about
the implementation with assertions validated by the Alloy
Analyzer. The Analyzer, however, validates these only over
domains with bounds, which in turn are usually chosen for
computational tractability. Thus, we must instead focus on
meaning according to the Alloy semantics. There are two
difficulties with establishing this link.

Mixing Models.

One basic property one might hope to preserve is satisfia-
bility. Therefore, consider the following claim: every satisfi-
able predicate is implementable imperatively, and vice versa.
If we could establish this property, we might be able to pro-
ceed to stronger statements that link the proof of satisfaction
of a predicate to the behavior of the implementation.

Unfortunately, we cannot establish even this claim due
to subtle yet significant differences between the relational
and imperative semantics. The following fragment shows a
satisfiable stateful predicate over state signature A that has
no implementation in our semantics:

fact { one r }

// this is satisfiable
pred change_r(a, a’ : A, bNew: B) {a’.r = a.r + bNew}

The fact on r cascades to allow only one element of signature
A. Because of the fact, a.r and a’.r can’t refer to different
elements. Thus, bNew must be in a.r, but our semantics in-
troduces a new atom for bNew. This model therefore cannot
be implemented under our semantics. (With larger exam-

ples we can remove this dependence on new variables, so
that is not at the heart of the problem.)

How about in the other direction: if a specification is im-
plementable, is it satisfiable in Alloy? Sadly, no, as another
simple example demonstrates (relative to the same signa-
tures and fact):

// this is not satisfiable
pred change_r(a, o’ : A) {a’.7 = a.r}

Since a.r and a’.r can’t refer to different elements, the pred-
icate is not satisfiable. The implementation, however, is
straightforward: the table for r has one row with different
values in the pre- and post-states.

These tiny examples point to a general problem. As we
have discussed in Section 2, an Alloy model includes all the
“states” at once, whereas the imperative implementation ex-
amines only one state at a time. A predicate that fails ac-
count for this difference—and, in particular, for the con-
flation of all states into a single model in Alloy—runs the
risk of being satisfied by Alloy but not by the imperative
semantics, or vice versa.

This does, however, raise a conjecture. It may be possible
to impose a discipline on the use of predicates in assertions
that demands they always account for the relationship be-
tween the Alloy states and what is reachable from them. It
may even be possible to automatically augment predicates
to impose this expectation. We believe that such augmented
predicates are essential to the design of a lightweight Alloy-
esque modeling language that is faithful to cross-state asser-
tions with an imperative meaning, not just to invariants.

The Prime Suspect.

A related problem is the meaning of primes in conjunction
with joins. As the multiple discussions about the roster
relation in Section 4 illustrate, the . operator—a relational
join that evokes object dereference—may be confusing in
the presence of state. In Section 4, for instance, the Alloy
user writes ¢’.roster = c.roster + sNew to update the roster
relation. Technically, however, roster is the same relation on
both sides of the equation; it is ¢’ that projects a different
portion of roster than c¢. To an object-oriented programmer,
however, ¢ remains the same (due to object identity); it
is the roster field that changes. A “stateful Alloy” must
reconcile these readings.

8. RELATED WORK

Synthesis.

Software synthesis is an elusive goal, as Rich and Wa-
ters summarize [28]. Green [12] and Waldinger and Lee [32]
are generally credited with initiating this effort. Bates and
Constable [3] discuss the relationship between constructive
proofs and programs; this connection continues to be ex-
ploited in modern theorem provers that extract programs
from proofs. Burstall and Darlington [5] instead define rules
to transform specifications into programs, which Manna and
Waldinger [19] combine with theorem-proving and induc-
tion. Some authors such as Smith [29] have instead focused
on the synthesis of particular types of algorithms rather
than programs. Unlike our work, most of these approaches
usually involve considerable human interaction, and have
tended to be applied to pure functions that generally avoid
any reference to state and mutation.

10

Executable UML [22] and other model-driven approaches
attempt to proceed from specifications to programs, but
with a significant difference in philosophy from ours: they
tend to start with large, multi-modal specifications, which
are rather unlike lightweight specifications in the style of Al-
loy. This philosophical difference has practical consequences:
Executable UML tends to be used to produce entire work-
ing systems, while Alchemy focuses on translating partial
specifications into partial programs (specifically, libraries).
In addition, Executable UML is based on an object rather
than relational language of specification.

SPECWARE [21], the current incarnation of a series of
innovative tools, is a synthesis engine that has been success-
fully applied to build several systems. It uses a refinement-
based approach to obtain programs from specifications. In
general, this involves the creation of proof-obligations that
the user must eventually discharge. In contrast, our work at-
tempts to simply find an interpretation for operations, using
various heuristics to narrow the search space.

The B-method [1] has been used to develop several signif-
icant systems. The B approach is to convert specifications
into programs through a process of applying refinements. In
particular, a specification is refined until it is determinis-
tic, at which point it can be translated directly into code.
Alchemy sits at a very different point in the design space
of synthesizers, trying to relieve developers the burden of
proceeding from a partial, non-deterministic specification to
a rapid (and hopefully usable) prototype; to instead build
large, industrial systems, Alchemy would probably have to
adopt techniques such as refinement.

Numerous tools “animate” specifications in Z and similar
languages (e.g., [15, 24]), B [31], and the Java Modeling Lan-
guage [4]. These tools typically refine a given specification
gradually into first-order logic or a language such as Prolog.
The goal of animation is to detect errors and improve com-
prehension. Unlike Alchemy, these tools use animation as
one more tool in the design and specification process (e.g.,
in this methodology one is typically not targeting Prolog
code as a final product) rather than produce code suitable
for deployment on real databases.

DynAlloy [10] is an extension to Alloy to express state
change in specifications. The authors make the same obser-
vations as we do about the intentional reading of predicates,
but choose to alter the language to reflect this explicitly.
DynAlloy supports only analysis, not code-generation.

Gheyi, Massoni, and Borba [11] recognize the difficulty in
correctly expressing framing conditions for state transitions.
They present a set of refactoring rules to translate between
the global state idiom used in our work into a local state
idiom. These rules may be of use in refining Alchemy.

Databases.

We can view Alchemy as realizing a form of the Semantic
Data Model (SDM) [14], which is an early and important
framework for describing hierarchical data models. Like Al-
loy, the SDM supports features such as object hierarchies,
data constraints, aggregation of entities, and definitions for
derived data, but it does so through separate semantic con-
cepts, which can result in more unwieldy descriptions than
those obtained thanks to Alloy’s uniformity.

Hammer and Berkowitz’s DIAL system [13] describes a
database programming language based on the SDM. The
dynamics of a system are described by procedure defini-

tions analogous to the Alloy predicates relating pre- and
post-states. Unlike Alchemy, however, DIAL does not au-
tomatically guarantee that the actions of these procedures
will agree with the static constraints of an SDM model; in-
stead, it triggers “entry procedures” that must the program-
mer must manually implement to perform repair.

The Galileo [2] programming language features a rich type
system and supports certain integrity constraints. While
Alchemy’s types are weaker, Galileo does not address our
main goal of bridging the gap between declarative specifi-
cation and implementation, and Alchemy enforces a richer
class of semantic invariants.

Stemple, Mazumdar, and Sheard [30] choose first-order
logic as their constraint language, as in Alchemy. Their
strategy, however, is very different: they use a theorem
prover to search for a proof of satisfiability; unsafe opera-
tions leave a residue of unsatisfiable subgoals that are rewrit-
ten as operations to repair a transaction.

McCune and Henschen [20] perform queries that check
the complete conditions for preserving database constraints
across transactions to avoid rollback. They apply a theorem-
proving search to establish that a transaction preserves a
constraint and, if the search fails, use the counterexamples
to generate runtime checks. In contrast to Stemple, et al.,
they concentrate on determining how to optimize away par-
ticular checks of constraints. They raise the possibility of
computing transaction repair with their work, but instead
focus on runtime checks for violation detection.

Ceri and Widom [7] describe a system for automatically
maintaining the consistency of a data model. Their main-
tenance procedures change a set of derived tables based on
Datalog-defined rules. Like Alchemy, these repair rules are
automatically generated by the system. However, their sys-
tem has access only to a set of base tables in computing
repair, so they cannot handle recursive rules. Later work by
Ceri, et al. [6] lifts these restrictions and allows fine-tuning
by the designer.

Orman [26] defines transaction repair for database up-
dates, handling constraints written in non-recursive Datalog.
The system treats a single constraint after a homogeneous
update and does not attempt to manage the difficulties aris-
ing from the presence of multiple constraints and mixed in-
sert/delete transactions. The Alloy language presents addi-
tional challenges not faced there due to the rich structure of
expressions in relational algebra.

Nentwich, Emmerich, and Finkelstein’s document consis-
tency manager [25] defines a notion of repair specialized for
XML data structures. While we treat atom creation sepa-
rately from repair, their repair semantics allows the creation
or destruction of domain elements. Their work permits user
interaction with the repair algorithm.

Demsky and Rinard [8] describe a system for automati-
cally repairing errors in program data structures from con-
straints. While their work interprets atomic data, such as
numbers, it is limited to removing or deleting single tu-
ples. Their work presents a cost function for directing repair
search, which we lack.

Melnik, Adya, and Bernstein’s work enables efficient rep-
resentation and access to relations in a relational schema
[23]. Given a constraint mapping between a conceptual
schema and a store relational schema, the paper defines an
algorithm for computing views that express one schema in
terms of the other. Its result addresses the problem of how

one can retrofit an Alloy data model on top of a pre-existing
legacy database, or between the idealized Alloy data model
and an optimized implementation.

9. CONCLUSION & FUTURE WORK

We have presented Alchemy, a program synthesizer for
Alloy specifications. Alchemy consumes partial specifica-
tions of systems and translates these into implementations
of libraries. Concretely, it (a) translates the signatures into
persistent database tables; (b) converts predicates that fol-
low a standard stateful convention of Alloy into imperative
updates over these databases; and (c) compiles Alloy facts
into state invariants, and automatically repairs the database
after each update to restore these invariants. As a result,
Alchemy is useful at least for prototyping persistent back-
ends whose data models have been explored using the Alloy
Analyzer and other tools.

In addition to our concrete offerings (the semantics, al-
gorithms, and tool), we have made observations about the
mismatch between the relational and imperative-object no-
tation and semantics (especially as discussed in Section 7),
and presented our design choices. Taken together, these im-
ply several challenges for the design of languages and tools
to capture partial specifications of stateful systems.

Naturally, a system of this scope offers numerous oppor-
tunities for future work:

e Our algorithms have much room for optimization. For
instance, the truth of all facts in the pre-state may help
identify what relations need and need not be searched
for repairs. Syntactic characterizations of conditions
such as homogeneity (Section 5.3) would help Alchemy
identify both errors and optimizations statically. In
general, moving work from run-time to compile-time
is an important area of future work.

e We can lift our restriction on universal formulas (Sec-
tion 2) by Skolemization, which has the cost of intro-
ducing additional one constraints.

e One part of the beast not used in this sausage is the
set of assertions in an Alloy specification. It would be
worthwhile to turn them into assertions about the pro-
gram that are enforced via contracts and monitoring.

e Sophisticated software synthesis tools make consider-
able use of human guidance. Alchemy was an experi-
ment in how far we can go with almost total automa-
tion, and the results have been positive. In a working
system, however, users are likely to want much greater
control over both the meaning and performance of gen-
erated code. The rich literature on synthesis and re-
finement (Section 8) will be inspirational in this regard.

e Finally, many synthesis tools employ proofs about the
specification to guide program generation. Because the
proofs from the Alloy Analyzer are both over bounded
domains and usually have little constructive content,
we have not pursued this path. In future, however, it
would be interesting to enrich our synthesizer to utilize
proof information. The semantic mismatch described
in Section 7 raises interesting challenges here.

Still, we should remember the wisdom of Alan Perlis [27]:
“When someone says ‘I want a programming language in
which I need only say what I wish done,’” give him a lollipop”.

Acknowledgments

We are grateful to William Cook and Daniel Jackson for ex-
tensive and helpful discussions. We thank Felix Chang and
Theo Giannakopoulos for comments, and Matthias Felleisen
for inspiration. Michael Butler, Ugur Cetintemel, Chuck
Rich, Jim Woodcock, and Stan Zdonik discussed related
work with us. The Spring 2006 Brown cs296-1 class, es-
pecially Jay McCarthy and Warren Schudy, helped model
Continue. This work is partially supported by the NSF,
Cisco, Google, and a GAANN Fellowship.

10. REFERENCES

[1] J.-R. Abrial. The B-Book: Assigning Programs to
Meanings. Cambridge University Press, 1996.

[2] A. Albano, L. Cardelli, and R. Orsini. Galileo: a
strongly-typed, interactive conceptual language. ACM
Transactions on Database Systems, 10(2):230-260,
1985.

[3] J. L. Bates and R. L. Constable. Proofs as programs.
ACM Transactions on Programming Languages and
Systems, 7(1):113-136, 1985.

[4] F. Bouquet, F. Dadeau, B. Legeard, and M. Utting.
Symbolic animation of JML specifications. In
International Symposium of Formal Methods Europe,
2005.

[5] R. Burstall and J. Darlington. A transformation
system for developing recursive programs. Journal of
the ACM, 24(1), January 1977.

[6] S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca.
Automatic generation of production rules for integrity
maintenance. ACM Transactions on Database
Systems, 19(3):367-422, 1994.

[7] S. Ceri and J. Widom. Deriving incremental
production rules for deductive data information
systems. Information Systems, 19(6):467—490, 1994.

[8] B. Demsky and M. C. Rinard. Automatic detection
and repair of errors in data structures. In ACM
SIGPLAN Conference on Object-Oriented
Programming Systems, Languages & Applications,
2003.

[9] R. B. Findler, J. Clements, C. Flanagan, M. Flatt,

S. Krishnamurthi, P. Steckler, and M. Felleisen.
DrScheme: A programming environment for Scheme.
Journal of Functional Programming, 12(2):159-182,
2002.

[10] M. F. Frias, C. G. Lépez Pombo, G. A. Baum, N. M.
Aguirre, and T. S. E. Maibaum. Reasoning about
static and dynamic properties in Alloy: A purely
relational approach. ACM Transactions on
Programming Languages and Systems, 14(4):478-526,
2005.

[11] R. Gheyi, T. Massoni, and P. Borba. Formally
introducing Alloy idioms. In Brazilian Symposium on
Formal Methods, 2007.

[12] C. C. Green. Application of theorem proving to
problem solving. In International Joint Conference on
Artificial Intelligence, 1969.

[13] M. Hammer and B. Berkowitz. DIAL: A programming
language for data intensive applications. In ACM
SIGMOD International Conference on Management of
Data, 1980.

[14] M. Hammer and D. McLeod. The semantic data
model: a modelling mechanism for data base
applications. In ACM SIGMOD International
Conference on Management of Data, 1978.

[15] D. Hazel, P. Strooper, and O. Traynor. Possum: An
animator for the SUM specification language. In
Asia-Pacific Software Engineering and International
Computer Science Conference, 1997.

[16] D. Jackson. Automating first-order relational logic. In
ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, 2000.

[17] D. Jackson. Software Abstractions. MIT Press, 2006.

[18] D. Jackson and J. Wing. Lightweight formal methods.
IEEE Computer, Apr. 1996.

[19] Z. Manna and R. Waldinger. A deductive approach to
program synthesis. ACM Transactions on
Programming Languages and Systems, 2(1):90-121,
January 1980.

[20) W. W. McCune and L. J. Henschen. Maintaining state
constraints in relational databases: a proof theoretic
basis. Journal of the ACM, 36(1):46-68, January 1989.

[21] J. McDonald and J. Anton. SPECWARE - producing
software correct by construction. Technical Report
KES.U.01.3, Kestrel Institute, Mar. 2001.

[22] S. J. Mellor and M. J. Balcer. Ezecutable UML: A
Foundation for Model-Driven Architecture.
Addison-Wesley, 2002.

[23] S. Melnik, A. Adya, and P. A. Bernstein. Compiling
mappings to bridge applications and databases. In
ACM SIGMOD International Conference on
Management of Data, 2007.

[24] T. Miller, L. Freitas, P. Malik, and M. Utting. CZT
support for Z extensions. In International Conference
on Integrated Formal Methods, 2005.

[25] C. Nentwich, W. Emmerich, and A. Finkelstein.
Consistency management with repair actions. In
International Conference on Software Engineering,
2003.

[26] L. V. Orman. Transaction repair for integrity
enforcement. IEEE Transactions on Knowledge and
Data Engineering, 13(6):996-1009, Nov. 2001.

[27] A. J. Perlis. Epigrams on programming. ACM
SIGPLAN Notices, 17(9):7-13, Sept. 1982.

[28] C. Rich and R. C. Waters. Automatic programming:
Myths and prospects. IEEE Computer, 21(8):40-51,
1988.

[29] D. R. Smith. Top-down synthesis of
divide-and-conquer algorithms. Artificial Intelligence,
27(1):43-96, 1985.

[30] D. Stemple, S. Mazumdar, and T. Sheard. On the
modes and meaning of feedback to transaction
designers. SIGMOD Record, 16(3):374-386, Dec. 1987.

[31] H. Waeselynck and S. Behnia. B model animation for
external verification. International Conference on
Formal Engineering Methods, 1998.

[32] R. J. Waldinger and R. C. T. Lee. PROW: A step
toward automatic program writing. In International
Joint Conference on Artificial Intelligence, 1969.

