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Abstract

System designers and developers need data-driven ap-
proaches for user-interface (Ul) development and testing.
They need trace-based workflows to support Ul naviga-
tion agents and inputs for Ul code generation. Given the
high production costs of manually constructing such work-
flows, the UI agent research community has explored auto-
mated, fully-synthetic UI workflow generation [16]]. How-
ever, there is an open need to characterize the fidelity and
effectiveness of these synthetic approaches with respect to
the current manual approaches.

In this work, we aim to provide larger-scale synthetic
workflows based on past human usage. We particularly fo-
cused on the desktop application modality since prior syn-
thetic generation has mostly targeted mobile or web ap-
plications. Using video tutorials with permissive licenses,
we derive associated Ul behaviors to construct synthetic
dataset of Ul workflows in desktop applications. We provide
data from these videos to a large language model (LLM) to
generate a set of “task list” instructions that replicate the
videos’ actions. We execute the task list instructions in a
UI agent within an instrumented desktop operating system.
Using the sensor data from that environment, we can en-
able simpler actuation scripts for replay of the tasks. Along
with detailing our approach, we provide a dataset with over
5,000 workflows across a range of desktop applications with
costs that are significantly lower than manual construction.

1. Introduction

Data-driven approaches are important for a range of devel-
opment and automation approaches in a computer’s user in-
terface. Software designers can significantly improve de-
sign process for the user experience (UX) using approaches
such as automatic code generation [32]. For software test-
ing or execution purposes, Ul navigation agents [38]] can
perform tasks within graphical UI systems. However, Chen
et al. [4] note a lack of high quality user interface workflow
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data for desktop applications. The most prolific datasets,
such as RICO [7]] and Android in the Wild [28]], are for mo-
bile user interfaces. Recent work, such as the work by Xu
et al. [36], has focused on web interfaces.

Unfortunately, the generation of desktop UI workflow
data faces multiple challenges. Existing approaches that
leverage crowdwork for UI datasets may be prohibitively
expensive for organizations and individuals. The construc-
tion of the RICO data set cost over $19,000 USD and re-
quired over a dozen human workers to complete [7]. With
the rise of large language model (LLM)-based UI agent sys-
tems, we explore the extent such agents can reduce the time
and resource costs associated with UI data generation.

To the best of our knowledge, only Xu et al. [36] have
explored LLM UI agents for workflow generation. In their
work, the authors collect text-based online tutorials of web
applications for replication via a Ul-Agent. While there
have been concerns raised about the utility of generative ap-
proaches regarding UI data [16]], the use of such UI agents
as synthetic data sources for Ul workflows is not well un-
derstood. There is a clear need for a characterization of both
the costs, requirements, and fidelity of synthetic data gener-
ation of UI workflows via LLM-based UI agents.

To address these needs, we construct a high-fidelity
dataset comprised of user interaction traces of popular desk-
top applications, totaling to over 5,000 unique workflows.
We define a scope of popular applications in the most ubig-
uitous desktop operating system, Microsoft Windows. We
leverage publicly-available tutorial video resources and an
LLM to generate user-inspired task lists. We supply these
task lists to a Ul agent for reconstruction and recording, al-
lowing for the automated generation of user workflow data.

Our approach has two key distinctions from prior work.
First, we leverage multimodal data in the form of Cre-
ative Commons YouTube videos as our primary data source,
which allows for the inclusion a visual element that has
not been studied before. In addition, we expand the actu-
ation and recording of workflows to include all applications
on a desktop environment, as opposed to strictly browser-
based approaches. We present performance measurements



to characterize hardware costs and generational through-
put. We characterize the input requirements for generat-
ing UI data through LLM-based UI agents. By leveraging
metrics to evaluate the fidelity and distinctiveness of gener-
ated workflows, we additionally evaluate the success rate of
LLMs at completing user-generated tutorial tasks.

The primary costs associated with this strategy are re-
lated to the nature of LLM-based UI agents. If one does
not have the capacity to host these inference models locally,
the API costs for workflow generation may be expensive
for some models. Further, while current models offer im-
proved performance in popular applications, the failure rate
of these approaches may be high. This requires users to
filter through poorly-performing workflows to attain high
quality data by our metrics.

Competitive approaches lack the modality focus [7} [28]]
or scale [30] of our approach. Our work features similarities
to Xu et al. [36], but we shift our focus to desktop applica-
tions as opposed to web applications, and provided detailed
performance-based metrics. We additionally expand the ac-
tuation goals from a single text-based goal to an entire task
list within an application.

In the process of constructing this dataset, we ask the
following research questions:

1. To what extent can we create and actuate synthetic user
interface task lists from visual observations of applica-
tion workflows?

2. What are the data requirements and associated costs for
generating synthetic user interface workflows?

3. What are the performance costs associated with large-
scale workflow actuation using GUI agents?

To explore these research questions, we leverage a com-
bination of open source tools as well as our own developed
strategies. We construct and evaluate our dataset produc-
tion strategies as well as outputs. In so doing, we make the
following research contributions:

1. A high-fidelity, synthetic user workflow dataset with real
actuation data gathered from LLM-brained GUI agents

2. Anevaluation of data gathering and procedural strategies
for generating synthetic workflow data

3. A formal construction and evaluation of the actionability
of visual observations from software usage videos.

In Section 2] we review relevant background material in-
volving user interfaces and prior dataset construction. We
detail our own design work and formalism for UI task anal-
ysis in Section [3] In Section 4 we outline our approach
to our pipeline tools. We discuss the detailed results and
conclusions of our work in Sections[3and[6l

2. Background and Related Work

We characterize the current state of Ul-focused datasets
along with the tool-sets we utilize in our work. We sum-

Ours AgentTrek  GUIAct Mind2Web WebLINX

Workflows 5,040 10,328 2482 1009 969
Desktop v X X X X
DOM Trees v v X X X
Multi-App v X X X X
Reasoning v v X X X
Screenshot v v v X v

Table 1. A comparison with existing workflow-based datasets.

marize the existing state of user workflow datasets across a
range of modalities, as well as the usage of synthetic data in
UI trajectory research.

2.1. User Interface Workflow Datasets

Since graphical Uls are a common way for users to con-
trol applications, they have become the subject of efforts to
automate interactions. Early approaches for graphical Ul
testing often leveraged controlled explorations of UI states
within desktop [34] and mobile [14] applications. In the
desktop space, such efforts have accelerated due to the de-
velopment of Microsoft ULAutomation [6] and similar tools
for providing formal labeling of graphical elements.

Prior work has sought to produce data-driven approaches
related to interface design and testing. These efforts often
consist of large repositories of user interface runtime data,
typically extracted during a user workflow on a device [7].
Such data can provide insight into both trends of UI design,
as well as offer valuable training data for the automated
exploration and fine-tuning of Ul automation models [19].
Deka et al. [7] were the first to record UI data at a signifi-
cant scale. In that work, the authors leverage crowd-workers
to automate exploration processes of Android applications.
Rawles et al. [28]] employ a similar approach on Android
devices with greater application diversity.

2.2. User Interface Agents and Benchmarking

We use a general definition of a Ul Agent as any form
of software capable of actuating workflows within graph-
ical UI systems through the emulation of human atomic ac-
tions such as clicking and typing. While early agents lever-
aged record and replay [15] or reinforcement learning so-
lutions [10], LLM-based methods emerged recently with
higher performance [23]]. This improvement comes from
the innate reasoning abilities of new LLMs [40] as well as
the capacity for increased performance via fine-tuning [9].
LLM-based agents often leverage vision models in com-
bination with real-time input data to actuate workflows in
a graphical environment. Works such as Li et al. [17] and
Burns et al. [2] seek to enhance vision language model ca-
pabilities through the mapping of natural language phrases
to graphical UI frames. Wu et al. [35]] use such data to cre-
ate a foundation model for UI agent navigation tasks that is
competitive with much larger models such as GPT4o.



App Category Application Included Workflows AvgLen MinLen MaxLen Complexity
Adobe Acrobat 24 8.67 4 16 Medium
LibreOffice Calc 61 8.72 1 25 High
LibreOffice Impress 16 11.44 4 24 Medium
LibreOffice Math 3 9.33 5 13 Medium
Office LibreOffice Writer 70 9.69 1 20 Medium
Microsoft Office Excel 1,407 7.27 2 33 High
Microsoft Office PowerPoint 1,260 9.32 1 36 Medium
Microsoft Office Teams 122 8.89 1 30 Medium
Microsoft Office Word 278 7.87 2 29 Medium
Email Microsoft Outlook 83 8.12 1 18 Medium
Mozilla Thunderbird 26 7.58 1 17 Medium
Adobe Dreamweaver 28 8.43 5 15 High
Adobe Illustrator 566 9.35 1 32 High
Creativity Adobe Photoshop 439 8.70 1 30 High
Audacity 246 8.04 4 24 Medium
LibreOffice Draw 10 8.71 4 14 Medium
Microsoft OneNote 40 8.30 2 13 Medium
. Notepad 22 7.77 1 22 Low
Note-Taking Notepad-++ 46 8.22 1 13 Medium
Obsidian Notes 9 8.67 3 14 Medium
Web-Browsers Google Chrome 223 6.86 1 17 Medium
Mozilla Firefox 61 7.48 2 23 Medium

Table 2. We provide application metrics in category groups, including the number of obtained workflows, the number of tasks in each, and
a coarse complexity rating (High/Medium/Low) based on keystroke-level modeling averages of applications.

With the broader use of such agents, the community has
worked to formalize the evaluation of agent performance
for various domains via benchmarking. Such benchmarks
serve as performance indicators and fine-tuning tools for
UI agents. World of Bits (WOB) [31] and successors such
as MiniWoB++ [18]] created a standardized set of tasks for
UI agents to complete. Within benchmarking approaches,
manual annotation is common and may range in scale from
several researchers to whole organizations [22,131]. Crowd-
work has also played a significant role in both dataset and
benchmark construction [7, [22]]. We aim to construct such
labeled workflows without the time-consuming manual la-
beling requirements of existing work.

2.3. LLMs and Synthetic Data in UI Research

Synthetic data broadly refers to annotated data generated by
computer algorithms or simulations [20]. Within the HCI
research community, synthetic data generation has been
viewed as a potential use-case of generative Al [29]. The
privacy-preservation component of synthetic data has been
widely noted [20], and has allowed for accessibility-based
applications in user interface design. Peng et al. [26] lever-
age synthetic images for code generation. In the trajectory
space, Xu et al. [36] leverage public tutorial repositories to
create workflows based on natural language tasks. Our own
work expands these efforts to encompass multimodal work-
flow data for Windows desktop applications.

3. Design Goals and Actionability Formalism

When viewed through the model view controller (MVC)
software architecture pattern, our work focuses on the
“view” component of applications. Within the paradigm
of Ul interaction tasks, agent-based approaches are typi-
cally understood as partially-observable Markov decision
processes (POMDP). This is due to the non-determinism of
UI actions with respect to underlying system state. We thus
define the notion of an application’s “observable state” as
an equivalence class:

q={s €S |sim(s,sq) >0} (L

In this equation, s denotes a visual representation of the
UL, out of the set S of all possible visual states. The func-
tion sim represents a visual similarity metric between two
states, in this case s and a goal state s,. If this value is
below a given threshold function 6, the two states are con-
sidered “observationally equivalent,” and members of the
same equivalence class q.

With this understanding of visual state in applications,
we consider a natural language task list to be “actionable”
if and only if it is comprised solely of actionable sub-tasks.
An actionable sub-task must have the following schema:

* Target Element: The Ul element(s) effected by the cur-
rent sub-task, which are denoted by naming convention
or on-screen pixel location.
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Figure 1. Overview of pipeline and applications of our work.

* Associated Atomic Action(s): The primitive actions
(click, type, scroll) associated with the sub-task.

¢ Starting State: The expected observable state prior to
sub-task actuation.

* Goal State: The expected observable state upon complet-
ing the sub-task actuation.

Due to the usage of natural language for Ul-based task
actuation, schema elements may be relative to current con-
text (e.g., “change the current window size”), inferred
for certain sub-tasks, or ambiguous (and thus unusable in
automation). In light of these concerns, robust evalua-
tion of task list outcomes are necessary when using non-
deterministic generative methods, such as LLMs. We pro-
vide such outcome-based analysis in Section[5.1]

4. Approach

We detail our overall system architecture for the collection,
processing, and actuation of UI workflows.

4.1. System Architecture

We develop a pipeline with Ul agents being the primary
generators of synthetic workflows. We start our pipeline
approach by collecting public videos of application tutori-
als from Google’s YouTube platform. We use videos with
Creative Commons [5] licensing and select videos on a per-
application basis. For each video, we extract subtitles and
significant key-frames to produce a set of input data for
summarization. We then present this data to an LLM and
ask it to summarize the video into a simple workflow that
may be actuated by an end user. We refer to such instruc-
tional output of the LLM as a task list.

After we create this task list, we deploy a graphical Ul

desktop environment equipped with a Ul navigation agent.
We configure each environment to have an installed copy of
the software associated with the task list. We then prompt
the agent to actuate the task list instructions for that appli-
cation. We record screenshots, Ul accessibility tree data,
interaction element locations, as well as LLM context for
each action taken. This recording results in a finished mul-
timodal dataset of desktop application workflows.

4.2. Public Video Collection

At a high level, we collect the public tutorial videos us-
ing open-source libraries and toolkits. We use the Youtube
API [11] and the YT-DLP library [37] to obtain videos.
We use OpenAl Whisper [27] and the ResNet image detec-
tion dataset [[12] and extend these tools to enable large-scale
video annotation for applications. In Figure[2} we illustrate
this video collection and data extraction.

We begin by conducting large scale, automated queries
of YouTube videos using Google’s YouTube API. When
conducting queries, we utilize the “video license” tag on
YouTube API requests to filter for videos under a Cre-
ative Commons license only to ensure ethical data retrieval.
Where we publicly share our data set, we provide author-
ship attribution for the videos and links to the original
sources [1]]. For each downloaded video, we attempt to
perform subtitle generation using OpenAl Whisper. Some
videos are not in English or contain no spoken dialogue, so
we may not have subtitles for all videos. We retain such
videos for further processing, but without a subtitle file.

4.3. Semantic Task List Generation

To transform visual data into an actionable task list, we
employ a multimodal LLM capable of analyzing both im-



age and subtitle data extracted from our collected videos.
We host this LLM locally via an Ollama server [25]
with the most recent variant of Google’s Gemma model
(Gemma3:12b) [33]]. This model met the performance and
contextual length requirements for our work.

To prepare an input video for submission to the LLM,
we extract images from that video to use as additional
prompt data. We perform keyframe extraction on videos
to only extract high-relevance frames from a workflow.
Keyframes can allow for the usage of longer videos as work-
flow sources, since they use require less images to summa-
rize a video. While our approach runs the risk of excluding
relevant data, UI frames are unique in that models may infer
a significant amount from timestamped images. This may
include the identification of novel elements whose creation
was not captured in a previous keyframe, as well as new
input data to existing Ul elements.

Our keyframe extraction process consists of two steps:
keyframe identification, and UI verification. In the first
step, we leverage the scene-detect library [3] to es-
tablish a pixel similarity threshold between video frames.
If this threshold is exceeded, we consider the frame to be
a keyframe and save it as an image. After we extract the
keyframes, we remove any keyframes that contain non-UI
visual information. To distinguish UI frames from non-
UI frames, we use a fine-tuned variant of the ResNet ar-
chitecture for image classification [[12], pretrained on Im-
ageNet [8]]. We adapt it to a binary classification task us-
ing a custom-labeled dataset of 2000 images extracted from
our data. We found that such an approach outperforms ap-
proaches based on pixel structures by 23% in our evalua-
tion. When keyframes are generated, we present them along
with subtitle data to the LLM using the following prompt:

Task List Generation Prompt

You are an expert on user interface software and tutori-
als. You will be provided a list of frames extracted from
a video about [program name]. Your task is to summarize
this video into a single task list, containing simple, clear
instructions for a user to follow to replicate the workflow
demonstrated in the video. If creating such a list is im-
possible with the provided video, you may output: “task
list creation not possible”. Here is the data:

If the LLM can successfully generate a task list, we per-
form a final check for redundancy. In this check, we again
leverage the LLM to perform a comparative analysis of the
produced workflow to all other generated workflows for a
given program. We ask the LLM to produce a binary out-
put (similar/non-similar). If the LLM indicates a task list is
similar to more than three existing task lists, we discard that
task list. This allows us to accommodate a degree of LLM
error while supporting the goal of a diverse set of task lists.

4.4. Task List Actuation and Data Collection

We automate the actuation and data harvesting of Ul in-
teractions associated with our task lists. We do so using
UFO [39], an open-source Ul agent designed for the Mi-
crosoft Windows operating system which has demonstrated
successful task completion for desktop tasks in Windows.
We leverage UFO’s “follower mode” to perform task list
actuation. Follower mode enables UFO to follow a pre-
determined set of natural language steps as opposed to gen-
erating such a set via an agent. Such actuation is related to
our definition of actionable task lists in Section[3l UFO is
capable of interfacing with different types of LLMs. For our
actuation, we leverage Qwen?2.5-VL-32B-Instruct.
A variant of the Qwen2-VL model, Qwen2.5-VL has been
fine-tuned for agent actuation tasks and has been recom-
mended by the developers of UFO for self-served models.
For each workflow, we record a detailed trace of Ul inter-
action data, comprised of screenshots, action context data,
and formal application tree states. We include the per-step
screenshots taken by UFO, as well as click-based screen-
shots, in which mouse interactions with applications are
highlighted. We capture the LLM context data UFO pro-
vides and export it after each session. After each action, we
capture the application tree data, which is comprised of a
structured tree of elements for the targeted application. We
capture these elements using the Microsoft UlAutomation
library for the application operated by the main UFO pro-
cess. We store context data in a text file after each run.

5. Results

We present the results and observations relevant to our re-
search questions.

5.1. Fidelity and Downstream Applications

We explore the research question: “To what extent can we
create and actuate synthetic user interface task lists from vi-
sual observations of application workflows?” We detail our
actionability-based self-critique method for task list filter-
ing, as well as our results for uniqueness and reproduction
success rate of our workflows.

We note that workflows can still be useful for down-
stream applications even if they fail to complete the given
set of tasks. In particular, if a workflow includes novel ex-
ploration of an application, it may be useful for understand-
ing visual state transitions. We define a workflow as be-
ing unique if it reaches a state that is not present in any
prior workflows’ list of states. We leverage the UlAutoma-
tion library output detailed in Section4.4]to determine such
uniqueness. That library provides output formally struc-
tured as a tree of Ul nodes. These nodes include all Ul
elements such as titles, buttons and tab-items rendered in a
Windows application. For each workflow, we perform an



O(n) walk of the nodes of the output tree of the final state,
comparing node placements with all previous trees. We pro-
vide such a comparison in Figure 2]

When the UI agent completes a workflow, we utilize our
collected outputs and compare them with the originally-
obtained workflow from the source video. We compare the
original task list with the recorded workflow images as pro-
vided by the actuation server. We use the same LLM with
a fresh context window to perform this measurement using
the prompt below, enabling a self critique measurement:

Actuation Success Verification Prompt

“You will be presented with a set of images representing
a workflow on a computer user interface. Your task is as
follows: given these images, determine if they represent
the following structured text workflow:” [Task list] “If
the images provided are an accurate sequence of events
as described in the text, output YES, if not, output NO.”

To provide a robust analysis, we include manual human
validation of workflow success rates for 250 unique, ran-
domly sampled workflows across 4 applications: Microsoft
Powerpoint, Microsoft Word, Microsoft Excel, Google
Chrome, and Adobe Photoshop. These applications were
selected both for diversity as well as for having a high num-
ber of completed workflows at the time of writing. Review
is conducted by a single member of the research team. To
mitigate labeling bias, LLM outputs were not revealed to
the labeler prior to the completion of their own labeling out-
puts. Correctness is based on the same prompt as given to
the LLLM labeler, and the labeler was only permitted to see
the set of images present as part of the completed dataset.
The conditions for success may be unclear in some cases,
such as successfully navigating to a web page and attempt-
ing to actuate a web Ul element that existed at the time of
the source tutorial video, but not at the time of dataset con-
struction. We leave such scenarios to be determined on a
case-by-case basis by the reviewer, but recommended erring
towards failure in such cases so as not to favorably bias re-
sults. In Table[3] we show the machine and human-reviewed

Figure 2. We compare a Microsoft Word UI tree with a prior UL
tree. We do not shade identical nodes. Yellow nodes differ in
content fields. Purple nodes are present only in the current tree
and not in the prior one.

workflows, with respective outcome uniqueness.

Application Hunman Eval | LLM Eval | Unique
Excel 70% 68% 96%
Google Chrome T4% 75% 100%
Photoshop 52% 42% 84%
PowerPoint 72% 66% 98%
Word 86% 70% 96%

Table 3. Results of LLM and manual evaluation of workflow suc-
cess and uniqueness of outcomes.

While application scores were variable, most applica-
tions scored highly on both the human and LLM-based cor-
rectness evaluation. All evaluated applications achieved
above 70% correctness in human evaluation, with the ex-
ception of Adobe Photoshop, in which increased work-
flow complexity lead to a moderate reduction in completion
rates. Across all workflows, unique results were high. This
implies significant exploration of application visual states,
even in failure scenarios.

To explore dataset applications beyond the scope of
workflow success, we trained joint encoders over screen-
shots and UI trees from our dataset. We leverage a con-
trastive loss, aligning paired representations in a shared em-
bedding space. To test cross-application generalization, we
performed leave-one-out retrieval: in each case, the model
was trained on two Microsoft Office applications and evalu-
ated on the third. We select three applications in our dataset
with high amounts of recorded data: Word, Powerpoint, and
Excel. Queries from the held-out app were projected into
the embedding space, and nearest neighbors were retrieved
by cosine similarity. As shown in Figure [3] the retrieved
neighbors reflect semantically consistent states (e.g. rib-
bons, dialogs, templates), even when the queried applica-
tion was unseen during training. This demonstrates that our
dataset enables generalizable UI representations that cap-
ture functional structure beyond pixels. Further, the multi-
ple modalities captured by the dataset allow for the retrieval
of structurally similar Uls with different visual appearances.

5.2. Synthetic Workflow Generation

We explore the metrics and results associated with the re-
search question “What are the data requirements and asso-
ciated costs for generating synthetic user interface work-
flows?” To allow for experimentation via manual annota-
tion, we present a smaller-scope case study of five distinct
applications. These applications are selected for based on
the number of successful generated task lists.

The five applications we selected are Adobe Photoshop,
Microsoft Outlook, Microsoft Teams, Microsoft Word, and
Mozilla Firefox. We sample 100 videos for each of these
applications and each video had subtitle data available. We
then compare task list generation in three separate cases:
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Figure 3. Zero-shot cross-application retrieval with joint im-
age—tree embeddings. Each row queries a held-out app using an
embedding trained on the other two: Row 1—PowerPoint (trained
on Word+Excel); Row 2—Excel (trained on Word+PowerPoint);
Row 3—Word (trained on Excel+PowerPoint).

1. Multimodal: We provide keyframe images and subtitles
in the task list generation prompt.

2. Text only: We only provide the extracted subtitle data in
the task list generation prompt.

3. Image only: We only provide the extracted keyframes
from the videos in the task list generation prompt.

Across all three approaches, we achieve an overall task
list yield rate of exactly 0.5 among the sampled videos. The
yield rate refers to the success of the LLM in generating a
task list based on the input data provided. We depict the
variations in yield rates in Figure ] We find the perfor-
mance of the vision modality for Photoshop workflows to
be particularly noteworthy, but understandable, given the
heavy reliance of on-screen demonstrations and graphics
common to artistic programs.

We then compare the relative quality of generated task
lists with respect to correctness and actionability. We lever-
age the atomic factscore metric as proposed by Min et

al. [21] in combination with our actionability schema as we
described in Section |3|as a knowledge source. If a task list
step is actionable, a human reviewer marks it to be sup-
ported by the knowledge source. It is then added to the total
factscore [21]. We collect a sample from our case study
dataset of 150 generated workflows, which we evenly select
across applications and modalities. We then had a human
evaluator manually review these workflows with an under-
standing of our actionability-based knowledge source. We
display the average factscores by modality are in Table [4]
We note that across all applications, the multimodal-based
task lists yielded the highest factscores in comparison to vi-
sion or text-only modalities.

Modality Factscore | Best Application

Multimodal 0.90 Adobe Photoshop
Subtitles Only 0.82 Mozilla Firefox

Vision Only 0.79 Adobe Photoshop

Table 4. Average atomic factscores by modality

In Table [5] we show the success rates by both modality
and application. While both the multimodal and subtitles-
based approaches performed well across the browser (Fire-
fox), word processor (Word), and email client (Outlook)
applications, the multimodal approach significantly outper-
forms the subtitles-based approach in both the visual design
application (Photoshop) and the enterprise communication
application (Teams). Additionally, the vision and multi-
modal approaches significantly outperformed the subtitles
approach in the visual design application. Given these re-
sults, the process of extracting task lists from videos bene-
fits from image-based inputs across application types.

Applications
Modality Firefox Word Outlook Photoshop | Teams
Multimodal 0.88 0.84 0.90 0.96 0.91
Subtitles 0.92 0.86 0.81 0.79 0.72
Vision 0.71 0.85 0.80 0.97 0.66

B Vision Only
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Firefox

B Subtitles Only
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Figure 4. Task list yield rates by modality and application

Table 5. Atomic factscore by application

5.3. Generation and Actuation System Performance

We present the metrics and results associated with the
research question: “What are the performance costs as-
sociated with large-scale workflow actuation using GUI
agents?” We present hardware usage data gathered across
both the LLM’s task list generation and UI agent’s actua-
tion of task lists in our environment along with associated
throughput and estimated monetary costs. Generation refers
to the LLM-based generation of task lists based on some
combination of input data as described in sectiond.3] Actu-
ation refers to the running of task lists via the UFO UI agent
as described in section [4.4]



We use separate hardware environments for the task list
generation and agent actuation stages in the pipeline. This
allows us to achieve greater concurrency and allows us
to meet the different computational requirements for these
steps. In Table [6] we provide the hardware specifications
of the two environments. All hardware was hosted locally
in a dedicated university research environment. The LLM-
UI agents required significantly higher computational re-
sources in terms of GPUs.

Server CPU Memory | GPU
Generation Gen. 13 Intel Core i9-13900K 128 GB 2x RTX 4090
Actuation Intel Xeon Processor (Icelake) 128GB 2x H100

Table 6. Hardware Specifications of Servers

We analyze the metrics gathered from a three-hour sam-
ple run of both the generation and actuation servers. For
GPU logging, we utilize the Nvidia management library
system management interface (SMI) [24] to collect GPU
state information at ten-second intervals. We gather CPU
and memory measurements at ten-second intervals using the
Linux proc filesystem.

During our observations, the CPU and memory utiliza-
tion rates were typical of idle systems in both the actuation
and generation servers. The CPU and RAM utilization of
the actuation server averaged at 7.20% and 3.60% respec-
tively. The average CPU and RAM utilization of the gener-
ation server were 16.80% and 1.20%, respectively.

We observe significantly higher resource utilization rates
in the servers’ GPUs. The generation server performed well
and its resource utilization rates were low, even with its
two consumer grade GPUs. The actuation server experi-
enced significantly higher proportional resource usage, de-
spite having significantly more powerful hardware. While
existing Ul agent systems have required powerful hardware
setups, UFO’s high context window requirements lead to
the large memory utilization statistics seen in Figure 3]

88%

809
’ 71%

61%

Percentage Utilization

18%

0%
Generation Server (2x Actuation Server (2x

RTX 4090) H100)
B VRAM Utilization O GPU Utilization

Figure 5. GPU usage across generation and actuation servers

Using computational resources at remote providers via
APIs can offset local hardware requirements, but at the
monetary cost of API pricing schemes and non-trivial cu-
rator time (e.g. designing prompts/instructions, onboard-
ing, validation). In Table [/| we compare throughput rates
(workflows completed/hour) and associated per-workflow
costs by technique compared to crowdworkers. Our VLLM-
based method can also be hosted remotely using current ser-
vice architectures, so we compare these rates with standard
LLM APIs. VLLM-based hosting costs are calculated as-
suming continuous utilization of a 2xH100 GPU setup at
the current average AWS rate of $6.38/hour. The crowd-
work statistics are based off of the reported usage in RICO,
a dataset with comparable trace-recording and workflow
complexity to our own as shown in Table[2]

Model Cost Throughput
VLLM (Qwen2.5) 0.91 7

API (GPT 4.1) 1.24 8
Crowdwork 1.77 —

Table 7. Average cost per workflow (USD) and completion rates
(throughput) of approaches

We use data from prior studies to examine curator over-
head. He et al. [13] report it took ~125 seconds to on-
boarding workers to complete a Ul-exploration task. Ac-
cordingly, we use ~2 minutes per worker-application pair.
Likewise, we use the value of 1 minute per workflow val-
idated and filtered, assuming a small sample is checked as
was done in RICO. We model a scenario of full GPU uti-
lization, no API bulk discounts, and comparable workflow
complexity. We find that VLLM-based hosting still offers
the lowest per-workflow cost for sustained throughput, de-
spite slightly lower average throughput. However, for small
numbers of workflows, or when curator or quality-control
labor is more costly, standard LLM APIs or crowdworkers
may become more competitive.

6. Discussion

This work describes the production of a large-scale user
interface workflow dataset across a range of applica-
tions. The produced dataset will be openly available at
https://web.cs.wpi.edu/~cshue/projects/
opendata.html after publication. We detail the pipeline
and engineering strategies leveraged to produce this dataset.
We provide a formalism related to the actionability of natu-
ral language Ul instructions. We answer research questions
associated with fidelity, diversity, solution costs. Future
contributions may involve expanding the pipeline aspects
of our work to additional modalities, or more standardized
evaluations of downstream applications, such as UI agent
training or standardized benchmarking.


https://web.cs.wpi.edu/~cshue/projects/opendata.html
https://web.cs.wpi.edu/~cshue/projects/opendata.html
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