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Abstract—Interactive web-based applications play an impor-
tant role for both service providers and consumers. However,
web applications tend to be complex, produce high-volume data,
and are often ripe for attack. Attack analysis and remediation
are complicated by adversary obfuscation and the difficulty in
assembling and analyzing logs.

In this work, we explore the web application analysis task
through log file fusion, distillation, and visualization. Our ap-
proach consists of visualizing the logs of web and database traffic
with detailed function execution traces. We establish causal links
between events and their associated behaviors. We evaluate the
effectiveness of this process using data volume reduction statistics,
user interaction models, and usage scenarios. Across a set of
scenarios, we find that our techniques can filter at least 97.5%
of log data and reduce analysis time by 93-96%.

I. INTRODUCTION

Web-based applications are important and numerous. As
one example, the WordPress content management system
reportedly is used by over 41% of websites [22] and allows
non-experts to create and update their sites in an easy-to-use
fashion. However, these tools commonly rely upon a complex
software stack, with multiple servers interacting to retrieve
or store records, serve content, and to perform authentica-
tion. Adversaries recognize that web-based applications are
valuable assets and attack them, leading to regular breaches
and significant financial losses [1]. Whenever an adversary
successfully exploits a vulnerability, system defenders have an
opportunity to learn about the defect that makes the software
vulnerable. Since adversaries may wish to continue leveraging
the vulnerability, they may try to obscure the interaction with
cover traffic, superfluous activity, or by corrupting records.

For defenders to pinpoint the vulnerabilities associated with
successful exploits, they must first meet multiple requirements.
First, they must have a mechanism to determine when an
exploit occurred. This can be a tool such as an intrusion
detection system or via manual labeling. Second, they must
have a sufficiently detailed logging system in place that records
the relevant actions in an attack in a manner that the attacker
cannot corrupt [3]. Finally, they need to perform incident
analysis by correlating records from distributed sensors while
eliminating extraneous information.

Prior efforts have led to progress with the first two re-
quirements. Such works have focused on techniques to isolate
attacks on web infrastructures and to detect access viola-
tions [20], [14]. These systems separate users into lightweight,
isolated server instances. By deploying network middleboxes

between clients and server instance pools, concurrent requests
from different users are demultiplexed. This per-user isolation
also naturally collects logging data on a per-user basis. Our
work builds upon such infrastructure to enable accurate linking
between events recorded at different vantage points.

The remaining task, incident analysis, requires a scarce
resource: developers’ time. Prior work estimates between
35-50% of developers’ time is spent performing debugging
tasks [4]. With web applications, the volume of log data
can be large. Furthermore, with adversary efforts to hinder
comprehension, it can be difficult to unravel an attack. The
current best practice is a manual (and tedious) evaluation of log
files and note-taking to understand how events relate. Analysts
need a visualization platform that can quickly communicate
the causal links and flows between events to allow them to
construct a mental model of the issue.

In this paper, we focus on the incident analysis task and
ways to improve it. We ask the following research questions:
To what extent can detailed logs help developers identify the
defect associated with a web application vulnerability when
responding to incidents? What log data is useful in such
analysis? To what extent can visualizations of function call
stacks simplify analysis and what impact would it have on the
time required for defect identification?

In exploring these questions, we contribute the following:

o Fuse and Prune Data Logs: We implement a log fusion
and distillation function for PHP web applications. We
leverage existing server virtualization architectures that
enforce user isolation and flag violations to trigger our log
data collection process. We extract interactions related to
incidents and prune unrelated activity. Using heuristics,
we identify the functions most likely to be responsible
for a security violation.

« Create a Visualization and Analysis System: We create
PEGASUS (Powerful, Expressive, Graphical Analyzer for
Single-User Servers), a web-based visualization system
that creates a graph of function calls in PHP scripts and
provides multiple views that link records from proxies
that are between 1) the web client and web server and
2) the web server and database server. PEGASUS ex-
pedites code navigation, prunes irrelevant code, displays
incident function call parameters, and enables developer
annotation of defects. Results suggest that our approach
can filter up to 97.5% of log data while still presenting
the defect and its context.



« Evaluate the System with Usability Models: Since an-
alyst time is our critical resource, we use Keystroke-level
Model (KLM) [13] to model actions analysts perform
when using our system. We record the actions an analyst
performs during a debugging task for localizing vulnera-
bilities in plug-ins associated with the WordPress content
management system. We compare traditional debugging
against the PEGASUS system and found that our tools
can reduce required analyst time in our tested scenarios
by 93-96%.

II. BACKGROUND AND RELATED WORK

Understanding and identifying the cause of a security vul-
nerability combines multiple sub-fields of research. Existing
work studied the pattern of software code commits [5] and
application contextual information [9] to provide high-level
guidance on understanding software vulnerabilities. Since our
work aims to localize the direct cause of a security vulner-
ability at the source code level, we consider more related
work in causal analysis, program behavior analysis, isolation
of untrustworthy execution, and visualizations of execution
traces of applications.

A. Web Data Provenance

At a high level, PEGASUS parses and builds linkage using
data collected from multiple sources. The goal of such a pro-
cess is essential to answer the questions about what execution
leads to the security incident. Previous work proposes the
concept of a Network Provenance Function (NPF) [2]. By
deploying network middleboxes between components of a web
stack and using domain knowledge to parse the protocol data,
the linkage between an HTTP request and resource access
can be established. Such an approach enables causal reasoning
to locate which request leads to an exploit. Other work [11]
extends the basic concept of NPF and uses server application
logs to add extra context to facilitate the understanding of
server execution.

These efforts allow a security incident’s cause to be traced
at the process or request level. Our approach offers greater
localization precision by capturing the web application’s dy-
namic behavior. Further, we visualize the pruned log data to
allow analysts to explore and localize the vulnerable code.

B. Visualizing Execution Traces

A program’s execution trace reveals important information
about the program’s behavior and prior research has examined
how to visualize it. Earlier efforts focused on object-oriented
programs [8], [7]. They instrument and visualize each object’s
dynamics and invocation of methods. This allows an analyst
to gain a general understanding of a program. In addition to
program comprehension, trace visualization is also used in
software debugging. Mehnerd et al. proposed JaVis [15] to
help with deadlock detection. JaVis instruments the entry and
exit points in a synchronized method and uses a collaboration
diagram to visualize each thread’s execution traces. Analysts
can identify deadlocks by finding cyclic dependencies in the

resulting graph. To quantitatively evaluate the usefulness of an
execution trace visualization, Cornelissen et al. [6] designed
and conducted a series of controlled experiments where a
participant was asked specific questions related to typical tasks
in program comprehension. The answer’s correctness and the
task completion time are compared between users with or
without the visualization tool.

Unlike prior works, PEGASUS visualizes and fuses execu-
tion data from web applications to identify security defects.
Specifically, PEGASUS uses a successful attack as an illus-
trative example of the defect and helps an analyst identify the
defective source code that enables the attack.

C. Attack Containment via Isolation Mechanisms

Multiple research efforts have explored mechanisms to
isolate untrustworthy web-based execution environments. Rec-
ognizing the complexity of modern web applications, the goal
in such research is to limit and contain security breaches.

In their work on CLAMP, Parno et al. [20] used Virtual
Machines (VMs) to protect certain web applications. CLAMP
directs each web client to a web server running in a separate
VM and proxies database queries through a middlebox that
is designed to enforce access privileges. Authors also note
that the overheads of running multiple VMs require further
innovation to enable practical deployment. In a later work,
Lanson [14] proposed the Single-use Server (SuS) that uses
lightweight containers to isolate web server processes, rather
than VMs. This approach incorporates CLAMP’s middlebox
techniques while enabling better performance and scalability.

We leverage the logging infrastructure enabled by SuS as
the foundation for our system, PEGASUS. In particular, we
use the SuS model’s isolation and middleboxes to log each
web client’s actions independently of other users.

III. DESIGN: HELPING ANALYSTS FIND DEFECTS

In designing PEGASUS we adopt processes from Mun-
zner’s Nested Model [19]. Specifically, we characterize the
domain, data, and data filtering processes for a web application
vulnerability context, develop analyst’s common actions IV
related to understanding and remediation.

Web application codes are designed to be easily developed
and deployed. Many applications serve users with varying
roles, from anonymous (and unprivileged) users to site admin-
istrators. As a result, a web application is typically granted ex-
pansive permissions when interacting with backend resources.
This allows the application to perform tasks on behalf of each
type of user that is authenticated. However, this approach also
makes the application responsible for determining when to use
those permissions appropriately. If an adversary is able to find
a defect in the application server, the adversary may cause
the server to misuse its privileges. This is called a “confused
deputy” attack [10]. SQL injection attacks are an example of
confused deputy attacks and are consistently found to be a top
security concern for web applications [21].

Both CLAMP [20] and SuS [14] use proxies to restrict
queries to backend resources, such as SQL databases. By



creating a unique server instance for each web client, these
architectures can determine the permissions associated with
each user and enforce those in the proxy servers. In the SuS
architecture, such an access violation causes the system to
suspend the associated web server container, preserve the logs
associated with the interaction, and alert the administrator
of the system. While CLAMP and SuS play an important
containment role and treat the symptoms of a vulnerability,
they do not reveal the defect’s cause.

With PEGASUS, we recognize that human analyst time
is a precious resource and is key to remedying security
vulnerabilities. We explore the context needed for analysts to
understand the problem, the symptoms, and the events that
precede the security violation. In this Section, we start by
providing a concrete example attack. We then describe the
SuS foundation and the PEGASUS components.

A. Example: WordPress Privilege Escalation

Determining the cause of a web application vulnerability
can be challenging. We use a real-world example to illustrate
the common obstacles faced by analysts in incident response.

Our example vulnerability, CVE-2018-19207 [18], is an
improper access control defect in a WordPress plugin. The
defect allows any unauthenticated user to alter WordPress
global settings, which normally requires administrator-level
privileges. In exploiting the defect, an attacker enables the
registration of a new administrator-level account and creates
such an account for their use. This attack only requires two
HTTP requests with specifically tailored payloads. The only
persistent indication of the attack for a site manager is the
existence of another administrator account.

If the defender had detailed logging enabled for the site,
they might be able to find symptions of the attack. The
first symptom would appear in the query log for Word-
Press’s database. That log would contain updates to the
user_can_register and default_role values in the
wp_option table. The second symptom would appear in the
web server request log with two HTTP POST requests to the
/admin-ajax.php script with the following payload:

payload 1={"option": "default_role",

"value": "administrator"}
payload 2={"option": "users_can_register",
"Value" . "1"}

Based on the similarity of strings between the HTTP and
database log entries, the analyst may hypothesize that there
is a causal link between the given HTTP request and the
SQL action. To validate the hypothesis, the analyst could then
explore the /admin-ajax.php script and its functions to
determine if the POST request could cause the bad SQL query.

While this hypothesis creation and data exploration is the-
oretically straightforward, it might be daunting in practice.
The logs of these operations grow rapidly in production web-
sites and often involve concurrent requests, potentially across
distinct users. A given SQL interaction may have hundreds
or thousands of HTTP requests immediately preceding it.

When multiplexed at a shared web server, it can be difficult
to determine which PHP process caused a given SQL query
and which client invoked that PHP script. Further, the attack
payload may transform during the script’s execution, so the
string similarity heuristic may fail, complicating the formation
of an initial hypothesis.

One of the key tasks for the PEGASUS system is to distill
logs and present the analysts with the relevant causal chain of
events, allowing them to skip the hypothesis creation step and
jump to data exploration. With the data exploration task, we
focus on providing the structure and relationship of functions
as well as the specific instance of variables in an attack
workflow. We now describe the key operations in PEGASUS
and the components that perform each of them.
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Fig. 1: The relationship between SuS and PEGASUS

B. Leveraging the SuS Model’s Logging Infrastructure

We obtain a copy of the SuS system and build PEGASUS
to leverage its container orchestration, client separation, and
alerting functions. We consume SuS logs in PEGASUS.

Figure 1 shows the relationship between the SuS infras-
tructure and our PEGASUS system. While web servers are
usually highly multiplexed, potentially serving thousands of
simultaneous users, the SuS model instead has a unique web
server instance that includes a separate server application and
PHP runtime for each client. As Figure 1 (top) shows, each
client is directed through a middlebox that acts as a TLS
endpoint. That middlebox decrypts the communication, logs it,
and directs it to the container with the appropriate web server
instance. A second middlebox logs communication between
the servers, enforces permissions, and acts as the detection
component to alert when an access error is observed from
the database server. It further notifies a coordinator system to
suspend the container involved in the violation.

C. Function Call Logging in PHP

SuS’s middlebox provides log data about the executions
across the server component, but that base functionality does
not capture the dynamic execution of the web application. To
gain insight into the nature of the vulnerability, analysts need
to know the code executed on the web server and the values
associated with function call parameters.
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Fig. 2: Annotated screenshot of PEGASUS debugging a CVE

With PEGASUS, we augment the SuS data with an in-
container application profiling module that logs execution of
each PHP function. The module records parameters with each
function invocation along with the call site (i.e., the location
in which the calling function invoked the function). This
module interacts with PHP’s execution engine and writes to
a location monitored by the PEGASUS backend. When a
permission violation occurs, SuS will immediately suspend
the web server container. This halts the system while some
actions are still in-progress. This partial data represents the
portion of the “call stack™ that represents the currently-running
function and its ancestors. An analyst can use this call stack
to better understand how HTTP requests are processed by the
web application. A visualization of this call stack can help an
analyst navigate through the functions called by the attack.

D. Log Data Fusion and Distillation

To help an analyst understand a defect, we fuse disparate
data sources while pruning distracting information, such as
unrelated interactions or code paths that are not executed
during an attack. The SuS system provides one inherent source
of pruning: each log is maintained on a per-web-client basis
and each client is fully isolated by containerization. When
the SuS system flags an incident, it constructs incident logs
only for traffic for the associated client. This is particularly
important for high-traffic websites with significant amounts of
unrelated traffic.

We then fuse information related to each web client. The
user’s requests, web application’s function execution and
database query depict an incident at different phases. There-
fore, linking entries in these different logs helps reconstruct
the whole incident. It identifies which user’s requests cause
functions to execute and trigger database queries. We start the
linking process at the end: we identify the SQL query that
caused the permission violation and link it to the appropriate
node in the PHP call stack trace. To do so, we use timestamps
to identify the PHP functions associated with SQL queries
that immediately precede the SQL interaction. We then inspect
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Fig. 3: Stacked code view mode

each function’s parameters and compare their strings with the
SQL query to find a match.

Once we have the PHP function that issued the SQL query,
we traverse its call stack. We examine the call site for each
function call, allowing us to find the calling node and traverse
the graph. Ultimately, we reach the root node associated with
the script invoked by the web client. We again use timestamps
and string matching between the PHP call stack and the HTTP
proxy’s logs to find the web request associated with that
function invocation.

This process produces a complete causal chain of events.

E. Combining Node-Link Diagrams with Source Code

One of the goals of the visualization in PEGASUS is to
empower analysts to quickly understand the flow of events,
extract relevant details from the attacker’s exploitation of
the defect, isolate the faulty code, and annotate the issue.
The process to actually correct the source code is a separate
development task and is beyond the scope of this work.

In our design, we explore a directed node-link diagram.
It uses nodes to represent log entries and edges to represent
causal invocations between entries, such as function calls from
parent to child functions. This visualization may be intuitive
to analysts with experience using flow charts. The top part of
Figure 2 shows the visualization in our PEGASUS tool.

The node-link visualization also provides natural interaction
points for contextual information and navigation features.
When an analyst clicks an edge, we overlay a table of
parameters that the parent provides to the child function. When
an analyst clicks a node, we signal the nearest code-view
widget to scroll to that function.

Our code-view widget shows the source code of the soft-
ware. PEGASUS allows panes to be arranged in a side-by-side
fashion, allowing an analyst to use the Node-Link diagram for
navigating and a source code viewer to explore the event.

When a user selects a node in the Node-Link diagram,
PEGASUS displays the relevant code for that function in
a code view widget. Importantly, unlike a traditional code
viewer, the call stack logs allow us to know which lines of code



were executed in the trace. This allows us to sandwich relevant
executed code regions, allowing a developer to visually see
jumps between functions and eliminating distractions such as
the trailing portion of functions that are not executed before the
error occurs. Figure 3 shows the stacked code view that allows
the analyst to see the lines of code that are invoked, in order.
This allows developers to trace even complicated function
calls, such as object member functions or when variables must
be dereferenced to determine the invoked function (e.g., the
transition between code segments two and three in Figure 3).

F. Support for Heuristics to Localize Vulnerabilities

Since call stacks include all the code that is executed before
an exploit is detected, they necessarily include the software
defect. This is true even if that defect is by omission, such as
a failure to sanitize variables or check user permissions. Since
call stacks can involve dozens of functions, a detailed analysis
of the functions involved may still be arduous.

We designed heuristics that assigns a suspicion score to each
function in a call stack. In these traces, each function is in a
“caller” and “callee” relationship. Accordingly, heuristics can
leverage these relationships where needed.

The first heuristic applies string matching between the
network payload and the parameters to PHP functions. If a
function directly consumes HTTP payload, we assign it a
higher suspicion score since it can be adversary-influenced.
The second heuristic assigns higher suspicion scores to files
from source code directories associated with plugins or priv-
ileged code, since such regions are often implicated in web
application attacks. Our final heuristics assigns lower suspicion
scores to frequently-used functions (like helper functions) and
higher suspicion to relatively rare functions. Since defects are
more likely to be quickly detected in common traces, we
decrease the suspicion score associated with those functions.

As part of our evaluation, we test these heuristics across
a set of real-world vulnerabilities. While these heuristics are
simple and straightforward, they appear to hold promise. In
addition, they are modular and PEGASUS users can tailor
them to the analyzed web application.

IV. IMPLEMENTATION

We implement the PEGASUS visualization component us-
ing TypeScript and JavaScript. The PHP function logger and
log fusion are implemented using C and Python respectively.

A. PHP Function Logger

To implement our PHP function logger, we leverage the
function execution hook provided by the PHP execution en-
gine. We write a profiling function that intercepts calls to user-
defined and built-in function handlers to retrieve the execution
context before calling the original functions. When logging,
we record the called function, the function’s call site (i.e., the
file and line at which the function is called), the function’s
parameter values and the function’s definition location (i.e.,
the file and line range that implement the function). To reduce
the runtime overhead, we only instrument user-defined PHP

functions (i.e., those not built-in to PHP itself) and certain
database-related built-in PHP query functions. The database
functions are essential for us to link the PHP’s execution
trace to database query. In our implementation, we use a
special function, called RINIT, to identify the handling of
user request. When that function is called, we record the PHP
worker process’s process ID to appropriately handle PHP’s
multi-process model.

B. The PEGASUS Backend: Log Fusion and Scoring

We adapt a reverse collection approach that starts with the
erroneous SQL query. To link an SQL query with the respon-
sible PHP function, we search for mysgli_query functions
in the PHP function log and retrieve the parameter values
to obtain the strings associated with queries. We connect the
query log with a PHP function if there is a string match with
the SQL log entry and the PHP function’s parameter. Once the
first PHP function is identified, we then recursively look for a
PHP function’s caller until we reach a global scope function.
A function’s caller can be identified by examining the call
site and definition attribute in each function log entry.
A function X is the caller of function Y, if function Y’s call
site is within the definition range of function X. A global
scope function can be identified if it has a special “main”
function as its caller. By examining the “main” function’s
call site, we obtain the script’s name that handles the user’s
request. PEGASUS tracks both the registration and invocation
of callbacks and event handlers.

HTTP log PHP log
RINIT scriptC
funcA log entry
funcB log entry

funcC log etnry

SQL log

UPDATE ...
INSERT ...
SELECT ...

GET urlA/scriptA.php
GET urlB/scriptB.php
POST urlC/scriptC.php

parse raw log data

link HTTP to |
PHP script .
execution .
1
1

D HTTP function log entry D PHP function log entry

D Normal (Alert) SQL log entry Pruned execution trace

Fig. 4: PEGASUS fuses data from three log sources and distills
the data into a set of execution traces associated with SQL
queries that generate security alerts. This novel data set forms
the basis for our visualization approach.

After completing the SQL and PHP steps, we have a
function call stack that leads to a error SQL query. Our final
step is to link the trace to a HTTP log entry. We do this via the
HTTP request’s URL. Often, as is the case for WordPress, the



script’s relative path and file name is explicitly specified in the
URL, which simplifies the linking process. Other applications
may use URL rewriting or a single navigation script to dispatch
each request. For them, we use temporal correlation.

Once we finish processing the execution trace, we apply our
suspicion scoring heuristic to the linked execution trace. Each
function in the execution trace starts with a default suspicion
score. We use the function’s name, call site and definition
file to match each heuristic mentioned in Section III-F and
adjust the score accordingly. The backend provides an API
to the front-end to allow the display of theses scores and the
trace data. The front-end encodes each node in the Node-Link
graph with different color (shown in Figure 2) to denote the
difference of each function’s suspicion score.

C. The PEGASUS Front-End: Interactive Visualizations

When entering the system, PEGASUS shows an overview
interface that displays a list of security violation incidents.
Each incident includes information on its server instance
identifier, the timestamp of the incident, and the rejected SQL
query. From the interface, the user can select an incident of
interest. Upon doing so, the frontend will direct the user into
the workspace interface, acquire the relevant log data, and use
that for the working set.

The workspace interface is where analysts perform most of
the tasks. When first entered, the interface presents a single
EmptyContainer component. The analyst may then choose
which view window to add through a ContainerSelector
component. The selector allows the analyst to create dif-
ferent view windows or to split the current window. The
analyst may dynamically manage windows by splitting the
ColumnContainer and the RowContainer components
either vertically or horizontally. This feature generates arbi-
trary numbers of resizable panes in the interface, allowing the
analyst to view different aspects of the incident and move
between perspectives and focus as needed.

A key part of the analyst’s task is to examine source code.
We implement this component using the open-source and web-
based Monaco editor [16] which supports code formatting and
highlighting to aid readability. To support code annotations,
we use a clickable Glyph Margin (a vertical bar on the left
side of the editor window that typically displays line numbers)
in Monaco to allow analysts add comments to the code they
are reviewing. As annotations are added, they are displayed
as a separate view zone, which preserves the original source
code line numbering in the code view (as shown in Figure 2).
Within the code view, we implement an alternative stack
mode that only displays the code that ran before the security
violation was flagged (since code run after the incident could
not have contributed to the defect). As we show in Figure 3, the
stack mode splits the code view into multiple segments, each
displaying only the relevant implementation of each function.
The last line in each segment is the next function that is called
in the execution trace. In the stack mode, a developer can
examine all the code executed before issuing the query by
strolling the code view window from top to bottom.

To represent the call stack and order of events in the
execution trace, we use a node-link diagram that is both
zoomable and panable to allow the analyst explore and focus
on items of interest. Clicking on the arrows between the PHP
function nodes displays the parameters used in the called
function. As shown in Figure 2, clicking on a node reveals
the context information (i.e., the request payload data for a
HTTP node or the function’s call site for a PHP function
node) in a floating box. Further, to save the analyst’s time
in switching between log data and source code, we direct the
source code view associated with the window to jump to the
function definition associated with the clicked node.

V. EVALUATION

To evaluate on how well PEGASUS supports analysts in
navigating diverse the log data in vulnerability analysis, we
pose the following evaluation questions:

1) EQl: To what extent can detailed logs help analysts
identify the defect associated with a web application
vulnerability when responding to incidents?

2) EQ2: To what extent do the PEGASUS visualizations of
function call stacks simplify analysis and how do they
impact the time required for defect identification?

Following recommendations from prior work [23], we con-
sider the dimensions of PEGASUS such as the feature set util-
ity, task performance, and insight generation in our evaluation.
These dimensions are essential in ensuring the effectiveness
of PEGASUS’s data and design in helping analysts with
localizing software security defects.

A. Effectiveness of Log Distillation

We answer the first evaluation question by applying our data
fusion and distillation process on real-world vulnerabilities and
determining if the defect is present in the filtered result. If the
defect is in the resulting data, we consider the result accurate.
We compare the amount of data in the filtered result with
the original volume of the relevant log data to determine the
precision of our approach.

We explore how the approach works across seven vulner-
abilities independently identified and recorded in the MITRE
Corporation’s list of common vulnerabilities and exposures
(CVEs) [17]. We list these vulnerability identifiers in the
first column of Table I. Given its ubiquity, we focused on
vulnerabilities in the WordPress content management system.
We further selected vulnerabilities that would be detected
by the base SuS platform, namely those causing a privilege
violation in a backend database or being flagged by the
middlebox protecting that database. While the SuS platform
and middleboxes can be extended to support other backend
resources, such as file or mail systems, our scope with PE-
GASUS is to explore the utility of logs and visualizations.
Accordingly, we focus solely on the issues already supported
by the SuS platform.

To explore each CVE, we create a vulnerable WordPress
instance inside the SuS platform in an isolated VM envi-
ronment. If the vulnerability uses a WordPress plugin, we



also install the version of that plugin that is known to be
vulnerable. We then run the exploit scripts associated with
each CVE on the WordPress instance. These scripts typically
act as web clients that send specially-crafted messages to
the website. Accordingly, the scripts’ execution causes the
SuS platform to log HTTP, PHP and MySQL activity. In
production deployment, deployers must configure the SuS
middleboxes with permissions and schema constraints so that
the SuS platform can automatically detect and alert upon
vulnerabilities. Those efforts are out of the scope of the
PEGASUS work, so to simplify our testing, we manually mark
the malicious SQL queries as the start entry of our reverse data
collection process (Section IV-B). For each of the tested CVEs,
we examine the patch data for the CVEs to verify the actual
vulnerable function, which we use as ground truth.

TABLE I: PEGASUS filters over 97.5% of logs while preserv-
ing the code needed to identify the defect.

CVE Distillation Data Reduction Rate by
Log Volume (in MB) Num. Functions
2021-24182 | 98.27% (1.20/60.65) 99.28% (8/1112)
2021-24183 | 97.95% (1.16/56.49) 99.26% (8/1083)
2020-13693 | 99.49% (0.17/54.48) | 98.33% (19/1136)
2019-9881 99.72% (0.17/61.87) | 98.19% (26/1434)
2019-9880 99.73% (0.17/63.98) | 97.56% (31/1272)
2019-9879 99.81% (0.12/65.30) | 98.11% (28/1480)
2018-19207 | 99.24% (0.15/19.19) 98.88% (9/802)

When evaluating the accuracy and precision of PEGASUS,
we look at two metrics: the percentage of log data filtered
in the log distillation process and the percentage of unique
functions filtered during distillation. In Table I, we show the
impact of the filtering. In each case, the defective source code
remains in the PEGASUS output, making PEGASUS’s filter-
ing accuracy 100%. Further, the table results show that from
both a raw data volume perspective and from a user-defined
function perspective, PEGASUS eliminates over 97.5% of
entries. On average, analysts typically would have less than 30
functions to examine after PEGASUS’s attack reconstruction.

While 30 functions may be reasonable for an analyst to
explore, the heuristic approach from Section III-D may help
an analyst start with the functions most likely to be relevant
to correcting a defect. We now examine how accurate and
precise the heuristics can be in labeling the functions to help
developer prioritize their task.

TABLE II: Accuracy and precision of heuristics to highlight
functions most likely to harbor the defect. For CVE-2019-
9879 to CVE-2019-9881, we manually verified the the cause
by comparing the vulnerable version with patched version.

Ranking of Cause
CVE Vulnerable Function Verification

2021-24182 1
2021-24183 1 (2]
2020-13693 2 [12]
2019-9881 7
2019-9880 9 manual verification
2019-9879 7
2018-19207 1 [26]

In Table II, we show the results of our heuristic labeling.
For the CVEs we examined, we ranked the most vulnerable
functions. Our heuristics specifically looked for functions
associated with the plugins path in WordPress. In doing so,
PEGASUS further narrows the scope of vulnerable functions.
For more than half of the CVEs, the defect was found in the
top two most suspicious functions.

The PEGASUS approach can filter the data analysts must
examine. In some cases, that examination can be further aided
by heuristics to help highlight the functions most likely to
harbor defects, allowing analysts to prioritize their efforts.

B. Quantifying Analyst Effort

We evaluate the visualization components in PEGASUS by
quantifying the number of actions an analyst must perform in
identifying and annotating a defect. While the underlying log
data and source code associated with each vulnerability varies,
we find that the process of localizing a vulnerability for a web
application requires repetition in developer actions.

TABLE III: KLLM operations, their times, and their symbols.

Operation Symbol | Time (s)
Pointing to a target P 1.10
Keystroke k 0.20
Mentally preparing for an action m 1.35
Filling in a text field T 2.32
Scrolling S 3.96
Button Press or Release b 0.10

Therefore, to quantify such a process accurately, we first use
a Keystroke-level Model [13] to define basic common mouse
and keyboard actions a user usually performs. As shown in
Table III, we use different symbols to represent constituent
actions and show the time required in performing each action.
Then in Table IV, we use these basic actions to compose and
define the common actions performed in PEGASUS.

TABLE IV: Common actions performed in PEGASUS

Ag;:ioen Description KLM
Al Open overview interface
A2 Open workspace interface
A3 Select security violation
A4 Split window mobb
AS Add “Flow Graph” widget P
A6 Add “Code View” widget
AT[i] Click the left side “arrow” connecting the
it" node in the flow graph to examine
corresponding function’s parameter
A8[j] | Click the j"" node in flow graph to ex-
amine the j** function’s implementation
code in code view
A9[k] | Click the (k-l)”‘ node in the flow graph | mpbbS
and scroll in the code view to examine
the k" function’s call site

With these common actions defined, we then explore an-
alyst effort by recording an analyst performing the analysis
workflow for CVE-2018-19207. For comparison, we record
the same workflows for the analyst with legacy tools. In these
recordings, the analyst is given the same log data. In the



PEAGSUS scenarios, the debugging tool is PEGASUS itself
with the log data loaded. For the non-PEGASUS scenario,
the analyst uses command line tools like vim, vscode, and
grep. These tools provide the basic searching and code navi-
gation functionality present in PEGASUS, and are commonly
used in the broader security analyst toolchain [24].

As a result, we found that with PEGASUS, an analyst
spends 33 to 104 seconds (whether examine the function
sequentially or rely on suspicion scoring) locating the vul-
nerable function for CVE-2018-19207. In the non-PEGASUS
case, the same task requires around 405 seconds to complete.
From the recordings, we found that in actions Al through
A6, an analyst can easily set up the analysis environment in
a single integrated interface that combines both the code and
the corresponding log data. The convenient setup saves the
time spent in locating related logs and code, which are usually
performed in a non-PEGASUS scenario. Through actions A7
to A9, an analyst can easily determine the causal relationship
between logs generated by different application components or
by different functions. Importantly, an analyst does not need to
spend time identifying the code responsible for the log entry
since our interfaces already fuses that information.

VI. CONCLUDING REMARKS

In our work, we find that fusing and distilling log data
from multiple sources can significantly reduce the log volume
associated with a security incident. By providing a visual-
ization that shows causal links between events in malicious
execution traces and fusing the log data with the underlying
source code, we find analysts can save significant time in
locating the root cause for a web application vulnerability. The
heuristics we use in our evaluation are simple and based on
usage frequency, historical vulnerabilities in plugins, and string
similarity. The suspicion scoring component is designed to be
easily extended and could be enhanced with insight from code
analysis studies. As with code “linting” tools for debugging
purposes, highlighting instances of poor programming practice
may help analysts quickly identify the cause of vulnerabilities.

In our future work, we will examine PEGASUS’s effec-
tiveness in helping developers save analysis time via user
studies. In addition, we will explore other web applications and
code bases to assess the generalizability of our findings. We
examine WordPress in our evaluation due to its widespread use
on the Internet, enabling PEGASUS to have a significant im-
pact. Likewise, WordPress’s popularity provides ample well-
documented vulnerabilities for our evaluation. At the same
time, PEGASUS can be easily expanded to other applications
running on the SuS platform that use SQL and PHP.
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