
Toward a (Secure) Path of Least Resistance: An
Examination of Usability Challenges in Secure

Sandbox Systems
1st Adam Beauchaine

Department of Computer Science
Worcester Polytechnic Institute

Worcester, United States
ajbeauchaine@wpi.edu

2nd Craig A. Shue
Department of Computer Science

Worcester Polytechnic Institute
Worcester, United States

cshue@wpi.edu

Abstract—The computing hardware and software tools for
virtualizing and isolating execution environments have matured,
enabling a paradigm shift towards cloud computing and con-
tainerization. Unfortunately, the use of these technologies in
traditional computing is largely limited to servers and systems
administered by professional IT teams. At another extreme,
mobile device operating systems extensively leverage isolation
to prevent malicious activity from mobile applications. In stark
contrast, despite possessing the resources to support virtual
machines, traditional endpoint systems tend to have a single
execution environment for all of a user’s activity.

In this work, we explore the usability challenges that may
prevent widespread use of isolation mechanisms, such as vir-
tual machines, on traditional computing endpoints. We explore
systems using a common workflow, where a user wants to
experiment with a new software tool, to compare existing virtu-
alization systems and motivate a new design. We use keystroke-
level modeling to quantitatively compare systems and identify
optimization opportunities.

Index Terms—Usable Security, Isolation, System Sandboxing,
Usability Modeling

I. INTRODUCTION

Isolation tools can help contain risk to prevent malicious
activity from propagating across processes and systems. Vir-
tual machines and containerization systems are designed to
carefully manage and contain operating environments to en-
able independence from other computing activities on the
same infrastructure. This has enabled the cloud computing
paradigm [4] and was key to protecting mobile applications
in smartphones [37].

While isolation mechanisms play a significant role in the
cloud [33] and mobile devices [10], they are less commonly
used in traditional endpoint systems, such as desktop or laptop
computers. Instead, users of these devices typically have a
single execution environment in which assets and applications
can be intermingled and affect each other. End-users need a
way to divide their computation environments. Many users
must interact with tools and assets of unknown origin that have
not been vetted by their organization. They need the ability
to do so without risking every other asset on their system,
given the frequency of user-oriented cyber attacks. The recent

prevalence of ransomware attacks is an example, which has
resulted in a roughly $20 billion dollar loss in 2021 [35]. It has
also led to widespread damage to corporations, public services,
and higher education institutions [13], [18], [36]

End-users need to be able to use isolation techniques for
their work. A barrier to doing so could be the technical diffi-
culties and usability obstacles inherent in today’s tools, such
as the QubesOS [41], VMWare [1], and VirtualBox [34] VM
management tools. Prior work has found users often struggle
to understand and leverage security tools, especially when
interacting with multiple security domains [29]. Accordingly,
we ask the following research questions: What are the usability
challenges with existing sandbox and isolation tools? What
opportunities are there to improve the workflows related to
isolation, in terms of productivity and understand-ability?

To explore our research questions, we identify a concrete
workflow that leverages isolation: the creation of a sandbox
to experiment with a new tool or asset. We deconstruct this
sandbox environment creation workflow into key components,
such as actions and milestones, that are common across
isolation tools. We define these components and clarify their
relationships. We then implement this workflow in existing
virtualization technologies. We measure how well the existing
technologies work, identify improvement opportunities for the
existing technologies, and implement a front-end prototype
that incorporates such improvements. In doing so, we aim for a
system that will be significantly easier for end-users with less
complexity that will ask fewer questions, and will be faster to
initiate. The system will require a new design for this specific
workflow.

In this work, we make the following research contributions:
• Sandboxing Workflow Analysis and Standardization: We

explore the workflow associated with creating a sandbox
environment and the steps to implement the workflow
across different isolation tools. We identify and label
common actions and milestones across tools to enable
a common point of reference (Section III).

• Usability Analysis of Current Isolation Tools: We employ
the Keystroke Level Model (KLM) [11] to analyze and

evaluate the usability of current isolation systems. Using
our sandboxing workflow, we explore where specific
sandboxing tools have usability limitations and how
the tools compare with different workflow components.
We analyze and compare the results of four existing
tools: VMWare, VirtualBox, Docker [21], and QubesOS
[41] (Section IV).

• Prototype Interfaces for the Sandbox Workflow: We create
a prototype isolation tool front-end using Adobe XD [2].
In doing so, we aim to address each of the limitations
in current isolation tools. We evaluate our prototype and
compare its usability with existing tools, highlighting how
similarly designed tools may approach the sandboxing
workflow differently (Section V).

II. BACKGROUND AND RELATED WORK

We review prior work in security isolation tools, usable
security, and usability metrics. We examine prior work to
improve existing tool workflows.

The security advantages of sandboxing tools are well es-
tablished across a wide range of systems [5], [6], [9], [14],
[17], [32]. From a usability perspective, endpoint sandboxing
can be transparent in cases, such as the Microsoft Windows
Sandboxing feature analyzed by Ðuranec et al. [42], or the
OS X Chromium-based sandbox Seatbelt [40]. However, the
overall adoption of endpoint sandboxing remains low [19],
[41]. The Qubes OS is an example operating system designed
for endpoints to isolate applications into different zones of
trust. Qubes reported just under 40,000 users at the begin-
ning of 2023 [41], which is significantly lower than Linux
distributions without isolation. Since these technologies are
proven to increase end user security, adoption hurdles such as
usability may be an issue. We consider Gligor’s [15] insights
into functionality often coming at the cost of usability; we
explore the issue of sandbox usability with a goal of retaining
functionality while resolving usability challenges.

The importance of usability as a security consideration
has been noted across a range of analyses [7], [24], [38].
The usability hurdles in sandboxing workflows are not often
discussed; however, they have been noted in several works.
In SAFE-OS [29], the authors design and implement a sand-
boxing system that adds several feautures identified as lacking
in Qubes, such as VM specialization. They also design a user
interface built to emulate a traditional desktop, noting usability
concerns in Qubes. Sun et al. [39] observe usability challenges
in both configurational complexity and end user comprehen-
sibility in existing VM provisioning systems. They provide a
web-based provisioning tool to automate environment creation
via an XML file. In a similar vein, Huang et al. [20] note con-
figurational challenges with virtualized network infrastructure
and propose a Package Virtual Network hypervisor to deploy
virtual networks dynamically. Our approach focuses on using
specific usability modeling techniques to identify and resolve
sandbox usability issues.

The research community has explored ways to evaluate the
usability performance of user interfaces. This has resulted

in models such as the goals, operators, methods, and selec-
tion rules model (GOMS) [27], as well as other evaluations
and proposed standards [22], [23]. Keystroke level modeling
(KLM), a successor of the GOMS model, has been widespread
in system usability evaluations since Card et al. [11] pioneered
the approach. It enables system evaluators to decompose and
label user tasks as well as quantify usability performance.
KLM generates strings that offer algorithmically computable
estimations for the times required for task completion [3].
These strings may then be used as baseline estimates for
usability of systems. KLM has seen positive evaluations of
its accuracy and value to system designers [3], [25], as well
as usage across platform interfaces [12], [30]. We draw upon
these use cases in designing our own procedures for sandbox
evaluation.

Building on these insights, we explore usability in the
adoption of endpoint sandboxing. Taking modeling techniques
and applying them to sandboxing tools, we identify usability
limitations and build a prototype interface aimed at preserving
functionality and expanding usability.

III. CREATING SANDBOX ENVIRONMENTS

The goal of testing a new tool or exploring a data asset in
a safe environment may be common in computing [31], but
existing tools do not seem to have a standardized workflow for
doing so. These tools have specific actions, such as “create a
virtual machine” or “mount a shared folder,” that can be used
as steps in such a workflow, but they do not have a guided
process to unify the steps in this process. We explore the
components of a standardized workflow and how they apply
to existing tools that implement this idea.

Given the lack of standardization in sandboxing workflows,
we initially examine the steps needed for such a workflow
and design a tool-independent standard workflow that is com-
posed of actions, milestones, and intermediate states. We label
these components for future reference and analysis across the
tools we explore. By generating and applying such labels to
sandboxing workflows, we aim to identify usability challenges
with greater specificity to see the exact processes end users
may find difficult.

In Figure 1, we show the workflow for creating a sandbox
environment, with five distinct sub-workflows composed of
steps and actions. These sub-workflows and actions seem
common across the tools we explored.

When considering the workflow from a security perspective,
it is helpful to consider varying degrees of trustworthiness of
an environment. We declare that an environment is pristine
when it has been created using trusted media by trusted experts
following best security practices. For example, a “golden
image” is often used as the base image for the persistent
storage that will be used for computers or virtual machines.
Such images are created using trusted installation media (e.g.,
software directly from a trusted software vendor) for all
operating systems and software.

An environment can be considered contaminated, the oppo-
site of pristine, once the environment receives untrusted input.

Adding Asset Workflow

Environment Creation Workflow

Environment
Instantiation

Template
Trusted Media

Installation Target
Environment

Application-Rich
Environment

Novel
Installation

Media

Post-Installation
Customization Modified Sandbox

Pristine Branch
Environment

Contaminated

Contaminated
Sandbox

Disable
Networking, Edit

RPC Policy

Asset Rich
Sandbox

User-Selected
Asset

Contaminated,
Untrusted Sandbox

User
Productivity
Workflow

Asset Rich
Sandbox

Sandbox
Activity Log

Creates

Added to

Creates

Configures

Added to

Fig. 1. The sandbox creation workflow can be divided into an environment
creation phase and an asset integration phase.

Untrusted input can come from untrusted installation media,
assets, storage, or network connections. An environment is
also considered contaminated if it interacts with any person
who is not a trusted expert following best security practices.

Organizations may perform vetting on a contaminated en-
vironment to reclassify it to a pristine state. For example,
after thoroughly analyzing all untrusted media or assets that
resulted in a contaminated label, an organization may accept
that environment as pristine and usable as a base image. Since
we scope this work to focus on the sandbox creation workflow,
we do not further discuss the reclassification workflow. Within
the sandbox creation workflow, the transition from pristine to
contaminated is unidirectional.

The sandbox creation workflow begins with trusted media
to construct a base image. With virtual machines, operating
system installation media is used to format and populate an
otherwise empty disk image. Once the installation is complete,
the environment can be halted. At that point, the populated
disk image can be used as a base image, a template that is
copied each time a new environment is created. We refer to
each copy of the base image as an “installation target envi-
ronment.” This target environment is what will be consumed
by the remainder of the sandbox creation workflow. The target
environment is pristine since it was created using trusted media
by a trusted expert.

Once an end user begins interacting with the target en-

vironment in production, it becomes contaminated. When
experimenting with new software, an end user will want to
transform the “installation target environment” by providing
untrusted installation media. This may require actions to
install the new software, including configuration after the
initial installation. The outcome is a sandbox environment.
Up through this point, the sandbox environment is created
without access to assets. It can interact with outside systems,
such as update servers, without risks to data confidentiality
goals (i.e., the only confidentiality risks are exposure of the
installed tools themselves). However, since untrusted media
could contain malicious software, organizations may wish to
limit the system to public network access and prevent the
system from accessing other organizational systems to prevent
threat propagation within the organization.

Once the sandbox is ready, we transition to the segment
of the workflow in which data assets may be introduced.
Once an asset is added, organizations must be careful about
their security goals, particularly as it relates to confidentiality
(e.g., preventing data leaks). The safest measure is to disable
network access for the sandbox and to prevent write access
to any storage devices (e.g., shared folders or mount points)
that are not fully contained within the environment itself.
The removal of write access prevents both confidentiality and
integrity security goal violations related to assets. While the
untrusted sandbox may maliciously alter or destroy assets
copied into it, these protections prevent it from harming the
original asset.

The next step is to optionally add assets to the sandbox
environment. This step may not occur in cases where a user
only wishes to experiment with new software. In the event
they wish to use existing assets, or to work with an untrusted
asset, the asset must be added to the environment. This can
be done via read-only shared folders or network mount points.
Many isolation tools provide such mechanisms for such data
sharing, but they may not default to a read-only mode. This
could lead users to unintentionally creating attack vectors
that would undermine their security goals. Once the asset
is integrated, the end user will go through a series of steps
to access the environment they have created. They can then
perform arbitrary actions inside the sandbox to achieve their
productivity goals. All outputs produced by the sandbox would
be restricted to the sandbox environment. Other workflows
could then be used to extract and analyze any outputs before
allowing their use outside the sandbox.

Not all isolation tools follow this specific workflow for
sandboxes. Some programs, such as Microsoft Application
Guard [8], implement similar workflows in the background,
potentially without the user knowing that sandboxing is in
use. This does limit the sandboxing to specific scenarios and
trust models. For the Application Guard tool, the applications
themselves are included in the trusted computing base (TCB).

Type 1 hypervisors are isolation tools that have fewer
dependencies in their TCBs, namely that of the hardware
and the hypervisor itself. Type 2 hypervisors, such as those
in VMWare, VirtualBox, or Parallels [16], have a host op-

erating system that must be included in the TCB as well.
Containerization isolation tools, such as Docker, have a similar
TCB as Type 2 hypervisors with the additional requirement
to allow the contained environment to directly interact with
the host operating system APIs rather than interacting with a
virtualized OS.

As a result of this analysis, we have identified the following
workflow components:

• Pristine Installation Target Creation: This component
is the creation of an isolated workspace that will serve as
the environment for a user to execute untrusted software
or work with untrusted assets.

• Insertion of Untrusted Media: In this component, a user
may optionally insert untrusted software tools into a pris-
tine environment. Connecting untrusted media removes
the environment’s “pristine” label.

• Software Setup/Customization: This component per-
forms any customization or setup needed to make the
software tool ready to run and function properly within
a sandbox environment.

• Insertion of Asset(s) to Target Environment: This
component allows a user to copy a data asset, or a set of
data assets, into the sandbox environment in a read-only
fashion. When assets will be inserted, the environment
must be configured to meet confidentiality security goals
(e.g., read-only interfaces, network isolation).

• Environment Use: This component is where the end user
accesses and operates the sandbox environment.

In the remainder of this work, we analyze isolation tools
along these workflow components.

IV. EVALUATING CURRENT ISOLATION TOOLS

With our sandboxing workflow, and the labeled components
of that workflow, we examine the usability aspects of current
isolation tools. Usability can be analyzed in a variety of
ways, including usage scenarios and user studies. As noted in
Section II, the usability community has developed techniques
to quantify the complexity of user interactions to enable
comparisons across workflows.

We focus on using the Keystroke Level Model (KLM)
approach to quantify the interactions with isolation tool in-
terfaces. With KLM, we can calculate a time estimate for
the activity required to perform a workflow in a UI. KLM
divides activities into five groups [12]: user keystrokes (K),
user pointing the cursor (P), user hand movements transitions
to/from keyboard and mouse (H), user clicking the mouse (B),
user mental preparation (M), and the system response time
(R). Since we are focused on the usability and complexity
of operations in the UI, we omit the system response time
(R) from our analysis. These operations can be concatenated
together into KLM strings. For example, the string “KHPB”
would denote a keystroke, repositioning a hand to the mouse,
pointing the cursor, and clicking the mouse.

We test four isolation tools available for end-users: VMWare
Workstation Player, VirtualBox, Docker Desktop, and the
Qubes OS. We examine the KLM strings associated with each

of the components of the workflow and with the string repre-
senting all the steps to complete the workflow. We developed
a keylogging program in Python to record our execution of
the each isolation tool workflow. As we perform actions, our
program records the corresponding KLM actions (e.g., button
presses, mouse clicks) and formats each action into a KLM
character. We use this program while executing the workflows
in each tool.

We then convert these KLM string representations into a
common unit, time (in seconds), to enable comparisons. Using
the same formulas outlined by Card et al. [11], we calculated
an execution time for each workflow. We use standard esti-
mation times for each KLM character, with K=0.28s B=0.1s,
P=1.1s, H=0.4s, and M=1.35s [28].

TABLE I
KLM ANALYSIS OF THE QUBES OS TO CREATE AN ENVIRONMENT

Aggregate Action Time (in seconds)
Mouse Mouse Hand Mental

Keystroke Button Point Moves Thought
Workflow Component T(K) T(B) T(P) T(H) T(M)
Installation Target Creation 2.5 0.9 9.9 0.8 5.4
Insertion of Untrusted Media 0.8 0.7 8.8 0.8 4
Software Setup/Customization 0 1.2 5.5 0.8 4
Total Time (Seconds) 3.3 2.8 24.2 0.24 13.4

In Table I, we show the outcome of the KLM calculations
for the Qubes OS as an example of the analysis. By analyzing
the KLM measurements by workflow components, we can see
which components require different tyes of user engagement.
From this, we can see that the creation of an installation
target takes the most time. We further see that the installation
of untrusted media requires a significant amount of mouse
activity.

A. Aggregate KLM Usability Results
Using these tools and methods, we ran an experiment to

identify usability challenges in existing isolation tools. We
conducted these experiments with the tools and techniques
outlined previously. We organized our cross-tool analysis and
task comparison by workflow component. This enables direct
comparisons of tasks such as creating environments or adding
newly downloaded software to them.

For each tool, we perform the entire workflow while running
our key-logging software to take note of all mouse clicks
(T(B)), mouse points (T(P)), keyboard strokes(T(K)), and
moving of hands between keyboard and mouse (T(H)). We
then add mental preparation time (T(M)) to each string, based
the set of heuristics outlined by Card et al. [11], after the
recording is finished. We then sum these values to create com-
pleted execution times for individual workflow component.
We omit system response time (T(R)) and we limit all text
entry actions to the minimum allowed by each system. This
produces an optimal scenario for each tool for comparison. We
then process these strings to derive execution time and other
significant values.

Our results show that some isolation tools struggle in
specific areas while others are more successful in those areas.

0

10

20

30

40

50

60

70

80

Component: Pristine
Installation Target

Creation

Component: Insertion of
Untrusted Media

Component: Software
Setup/Customize

E
xe

cu
to

n
Ti

m
e

(S
ec

on
ds

)
VMWare Workstation 17

Docker Desktop

QubesOS

VirtualBox

Fig. 2. Environment Creation Workflow timing results

In Figures 2 and 3, we show the KLM execution times
by workflow component and tool. Both Type 2 hypervisors
tested, VMWare and VirtualBox, required significant user
time to create an environment, specifically the “Installation
Target Creation” component. In contrast, Docker, a container-
based tool, was faster for creating an environment, but its
command-line interface used a relatively high amount of time
to enable data asset movement. VMWare, VirtualBox and
Docker have high keyboard stroke (T(K)) measurements in
environment creation and configuration due to the need to
manually name environments and enter login information to
access environments after creation. Inserting untrusted media
and data assets into a target environment required higher
volume of mouse interaction (T(B) and T(P) scores) for both
VMWare and VirtualBox in contrast to the high keyboard
activity in Docker. This is due to the amount of pointing and
clicking required to manually select an asset from the host file
system.

0

5

10

15

20

25

30

Component: Insertion of Asset(s) to
Target Environment

Component: Environment Use

E
xe

cu
to

n
Ti

m
e

(S
ec

on
ds

)

VMWare Workstation 17
Docker Desktop
QubesOS
VirtualBox

Fig. 3. Asset Movement Workflow timing results

The Qubes OS is designed for an isolation-centric endpoint.
It required the least amount of time for all the Environment
Creation Workflow components and on the Environment Use
component while scoring third in Insertion of Assets to Target

Environment component. Qubes resolves the high keyboard
interaction scores of previous tools with its UI design, but its
menu navigation can be complex. Users need to access a wide
range of menus to create the isolation environment. There are
opportunities to optimize this by merging tasks.

V. CREATING A NOVEL SANDBOXING UI

Based on the UI challenges with the isolation tools, we
explored a prototype implementation of an sandboxing work-
flow. We use the standard “Wizard of Oz” technique [26]
in which an interface is developed without a corresponding
backend implementation for usability evaluations. We create
an interface to simplify the sandboxing workflow. We use
Adobe XD, a user interface design and evaluation tool, to
create interactive mock-ups. In doing so, we keep in mind
the underlying actions that would be needed in a system to
implement the interface. In Figure 4, we show the interface
of our sandbox configuration tool, including all interactive
elements of the tool.

Fig. 4. Our prototype interface with all components of the tool displayed as
in the window.

Our tool simplifies base templates using a drop-down menu,
eliminating the need for file system navigation for template
selection for a sandbox. We use templates, rather than disk im-
ages or VM snapshots, to reflect a goal of reusing designated
trusted image sources with simpler terminology. Similarly,
we also designate environment identifiers based on the assets
and tools selected in the sandbox construction window. We
envision an environment organizational hierarchy using a tree
of images from trusted sources. For the end user, we provide a
software list, similar in appearance to the Qubes OS AppVM
creation tool, that allows users to further customize their
environment. We also offer immediate selection boxes for
installation media and data assets that users could want to
move into a sandboxing environment. By asking the user
upfront, we can better understand the user’s goal and generate
labels for the sandbox. These changes can simplify the entire
environment creation workflow as compared to existing tools.

For interacting with the environment, we include an in-
browser remote desktop window, similar to services such as
Microsoft Cloud PC [8]. This allows users to immediately
access a sandbox environment that is automatically named

and viewable upon creation, which simplifies the environment
entry workflow. The actual running system may be on remote
infrastructure or hosted locally. The Adobe XD tool enables
actuation of UI elements, allowing us to perform usability
testing in the same manner as with existing tools.

A. Novel KLM Usability Results

Our prototype leads to faster end-user interactions
for each workflow component. One component,“Software
Setup/Customization,” is eliminated altogether since the “In-
sertion of Untrusted Media” and “Insertion of Assets to Target
Environment” steps happen before the sandbox is created,
allowing the “Environment Use” step to automate any needed
customization.

Our decreased UI complexity leads to an average reduction
of 66.24% in the final execution time in KLM measurements
across all workflow components when compared with Qubes,
the best prior performer. While many underlying processes
are abstracted from user interaction within our proposed tool,
the core functionality of configuring and customizing sandbox
environments, and the capacity to name and enter them,
matches other tested tools.

0

10

20

30

40

50

60

70

80

Component: Pristine
Installation Target

Creation

Component: Insertion of
Untrusted Media

Component: Software
Setup/Customize

E
xe

cu
to

n
Ti

m
e

(S
ec

on
ds

)

VMWare Workstation 17
Docker Desktop
QubesOS
VirtualBox
Custom Tool

Fig. 5. Environment Creation Workflow with our Prototype

Our empirical KLM results show the specific areas in
which existing sandboxing and isolation tools have usability
limitation in an approach that identifies specific tasks and sub
workflows. We leverage this information in the construction of
our own proposed tool, aimed at reducing keyboard usage and
menu complexity. Upon further experimentation involving our
own tool, we note substantial reductions in KLM completed
execution times when compared with all existing tools. This
is done while retaining functionality from a user perspective
regarding sandboxing workflows.

VI. DISCUSSION

Existing isolation tools have usability challenges in several
workflow components associated with creating a sandbox
environment to test tools or data assets. When evaluated using
Keystroke Level Modeling, we see that the different tools have
varying strengths and weaknesses in their workflow simplicity.

We design a prototype UI to address usability challenges by
reducing workflow steps and interface complexity. Our custom
tool has lower KLM times than existing tools.

While KLM can provide important comparison points for
tool interfaces, it cannot fully capture the usability challenges
in these systems. The best-scoring current tool, Qubes, has
terminology and concepts that are specific to that technology.
While our focus was on workflow optimization, we also sim-
plified the vocabulary and used existing workflow metaphors
to aid end-user comprehension.

Future work in this space may include a working backend
infrastructure to support the prototype UI along with full
user studies. Future work could also examine implementa-
tions across endpoint devices, such as templates managed by
an organization and end-users that wish to share sandboxes
for collaboration. Finally, work could examine cloud-hosted,
locally-hosted, and hybrid-hosted isolation environments, and
their usability for end-users.

REFERENCES

[1] Keith Adams and Ole Agesen. A comparison of software and hardware
techniques for x86 virtualization. In Proceedings of the 12th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XII, page 2–13, New York, NY, USA,
2006. Association for Computing Machinery.

[2] Adobe. Adobe XD platform. Electronic, https://adobexdplatform.com/,
2023.

[3] Shiroq Al-Megren, Joharah Khabti, and Hend Al-Khalifa. A systematic
review of modifications and validation methods for the extension of
the keystroke-level model. Advances in Human-Computer Interaction,
2018:1–26, 12 2018.

[4] Ibrahim Alobaidan, Michael Mackay, and Posco Tso. Build trust in
the cloud computing - isolation in container based virtualisation. In
International Conference on Developments in eSystems Engineering,
pages 143–148, 2016.

[5] Ömer Aslan and Refik Samet. Investigation of possibilities to detect
malware using existing tools. In IEEE/ACS International Conference on
Computer Systems and Applications (AICCSA), pages 1277–1284, 2017.

[6] Stanley Bak, Karthik Manamcheri, Sayan Mitra, and Marco Caccamo.
Sandboxing controllers for cyber-physical systems. In IEEE/ACM
International Conference on Cyber-Physical Systems, pages 3–12, 2011.

[7] D. Balfanz, G. Durfee, D.K. Smetters, and R.E. Grinter. In search of
usable security: five lessons from the field. IEEE Security & Privacy,
2(5):19–24, 2004.

[8] Andrea Barr, Dan Wesley, Radia Soulmani, David Coulter, and Colleen
Williams. Microsoft edge and microsoft defender application guard.
Electronic, learn.microsoft.com, Aug 2022.

[9] Ashish Bijlani and Umakishore Ramachandran. A lightweight and fine-
grained file system sandboxing framework. In Asia-Pacific Workshop
on Systems, New York, NY, USA, 2018. Association for Computing
Machinery.

[10] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser,
Ahmad-Reza Sadeghi, and Bhargava Shastry. Practical and lightweight
domain isolation on android. In ACM Workshop on Security and Privacy
in Smartphones and Mobile Devices, page 51–62, New York, NY, USA,
2011. Association for Computing Machinery.

[11] Stuart K. Card, Thomas P. Moran, and Allen Newell. The keystroke-level
model for user performance time with interactive systems. Communi-
cations of the ACM, 23(7):396–410, Jul 1980.

[12] Daniel Cunha, Rui P. Duarte, and Carlos A. Cunha. KLM-GOMS
detection of interaction patterns through the execution of unplanned
tasks. In Computational Science and Its Applications, pages 203–219.
Springer International Publishing, 2021.

[13] Lorenzo Franceschi-Bicchierai. Hackers claim vast access to western
digital systems. electronic, techcrunch.com, Apr 2023.

[14] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan
Boneh. Terra: A virtual machine-based platform for trusted computing.
SIGOPS Oper. Syst. Rev., 37(5):193–206, oct 2003.

[15] Virgil Gligor. Security limitations of virtualization and how to overcome
them. In Bruce Christianson and James Malcolm, editors, Security
Protocols, pages 233–251, Berlin, Heidelberg, 2014. Springer.

[16] Parallels International GmbH. Parallels technical documentation. Elec-
tronic, https://www.parallels.com, 2023.

[17] Chris Greamo and Anup Ghosh. Sandboxing and virtualization: Modern
tools for combating malware. IEEE Security and Privacy, 9(2):79–82,
2011.

[18] Joel Griffin. Lincoln college closure a testament to the threat posed by
ransomware. electronic, securityinfowatch.com, Jun 2022.

[19] Justin Henderson and John Hubbard. 2019 SANS survey on next-
generation endpoint risks and protections. electronic, SANS.org, Jan
2023.

[20] Shufeng Huang, James Griffioen, and Ken Calvert. Pvns: Making
virtualized network infrastructure usable. In ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, pages 147–
148, 2012.

[21] Docker Inc. Docker docs: How to build, share, and run applications.
Electronic, https://docs.docker.com/, 2023.

[22] Melody Y. Ivory and Marti A Hearst. The state of the art in automating
usability evaluation of user interfaces. ACM Computing Surveys,
33(4):470–516, Dec 2001.

[23] Yong Gu Ji, Jun Ho Park, Cheol Lee, and Myung Hwan Yun. A usability
checklist for the usability evaluation of mobile phone user interface.
International Journal of Human–Computer Interaction, 20(3):207–231,
2006.

[24] Ronald Kainda, Ivan Fléchais, and A.W. Roscoe. Security and usability:
Analysis and evaluation. In International Conference on Availability,
Reliability and Security, pages 275–282, 2010.

[25] Christos Katsanos, Nikos Karousos, Nikolaos Tselios, Michalis Xenos,
and Nikolaos Avouris. KLM form analyzer: Automated evaluation
of web form filling tasks using human performance models. In
Human-Computer Interaction, pages 530–537, Berlin, Heidelberg, 2013.
Springer.

[26] John F. ("Jeff") Kelley. Wizard of oz (WoZ): A yellow brick journey.
J. Usability Studies, 13(3):119–124, May 2018.

[27] David Kieras. A guide to GOMS model usability evaluation using
NGOMSL. In Marting G. Helander, Thomas K. Landauer, and Prasad V.
Prabhu, editors, Handbook of Human-Computer Interaction, pages 733–
766. North-Holland, Amsterdam, 1997.

[28] David E. Kieras. Using the keystroke-level model to estimate execution
times. University of Michigan Published Papers, 2003.

[29] François Lesueur, Ala Rezmerita, Thomas Herault, Sylvain Peyronnet,
and Sébastien Tixeuil. SAFE-OS: A secure and usable desktop operating
system. In International Conference on Risks and Security of Internet
and Systems, pages 1–7, 2010.

[30] Hui Li, Ying Liu, Jun Liu, Xia Wang, Yujiang Li, and Pei-Luen Rau.
Extended KLM for mobile phone interaction. In CHI EA ’10: CHI ’10
Extended Abstracts on Human Factors in Computing Systems, pages
3517–3522, 04 2010.

[31] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti.
Detecting environment-sensitive malware. In Recent Advances in Intru-
sion Detection, pages 338–357, Berlin, Heidelberg, 2011. Springer.

[32] Stuart E. Madnick and John J. Donovan. Application and analysis
of the virtual machine approach to information system security and
isolation. In Proceedings of the Workshop on Virtual Computer Systems,
page 210–224, New York, NY, USA, 1973. Association for Computing
Machinery.

[33] Lin Ni, Huanqing Cui, Mingqian Wang, Depeng Zhi, Kun Han, and
Wangli Kou. Construction of data center security system based on
micro isolation under zero trust architecture. In Asia-Pacific Conference
on Communications Technology and Computer Science, pages 113–116,
2022.

[34] Oracle. Virtualbox technical documentation. Electronic, https://www.
virtualbox.org/wiki/Technical_documentation, 2023.

[35] Harun Oz, Ahmet Aris, Albert Levi, and A. Selcuk Uluagac. A survey
on ransomware: Evolution, taxonomy, and defense solutions. ACM
Computing Surveys, 54(11s), Sep 2022.

[36] Carly Page. Ransomware attack forces dallas to shut down courts,
disrupts some 911 services. electronic, techcrunch.com, May 2023.

[37] Giovanni Russello, Mauro Conti, Bruno Crispo, and Earlence Fernandes.
Moses: Supporting operation modes on smartphones. In SACMAT ’12:
Proceedings of the 17th ACM symposium on Access Control Models and

Technologies, page 3–12, New York, NY, USA, 2012. Association for
Computing Machinery.

[38] M Angela Sasse and Ivan Flechais. Usable security: Why do we need it?
how do we get it? In Security and Usability: Designing secure systems
that people can use., pages 13–30. O’Reilly, 2005.

[39] Xian-He Sun, Cong Du, Hongbo Zou, Yong Chen, and Prerak Shukla. V-
mcs: A configuration system for virtual machines. In IEEE International
Conference on Cluster Computing and Workshops, pages 1–7, 2009.

[40] Robert NM Watson, Jonathan Anderson, Ben Laurie, and Kris Kenn-
away. Capsicum: Practical capabilities for unix. In USENIX Security
Symposium, volume 46, page 2, 2010.

[41] Michael Carbone Wojtek Porczyk, Marek Marczykowski-Górecki.
Qubes-os statistics. Electronic, qubes-os.org/statistics, Apr 2023.

[42] A. Ðuranec, S. Gruic̈ić, and M. Žagar. Forensic analysis of windows 10
sandbox. In International Convention on Information, Communication
and Electronic Technology (MIPRO), pages 1224–1229, 2020.

