Detecting Root-Level Endpoint Sensor
Compromises with Correlated Activity

Yunsen Lei and Craig A. Shue*

Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, USA
{ylei3, cshue}@wpi.edu

Abstract. Endpoint sensors play an important role in an organization’s
network defense. However, endpoint sensors may be disabled or sabotaged
if an adversary gains root-level access to the endpoint running the sensor.
While traditional sensors cannot reliably defend against such compromises,
this work explores an approach to detect these compromises in applications
where multiple sensors can be correlated. We focus on the OpenFlow
protocol and show that endpoint sensor data can be corroborated using
a remote endpoint’s sensor data or that of in-network sensors, like an
OpenFlow switch. The approach allows end-to-end round trips of less
than 20ms for around 90% of flows, which includes all flow elevation and
processing overheads. In addition, the approach can detect flows from
compromised nodes if there is a single uncompromised sensor on the
network path. This approach allows defenders to quickly identify and
quarantine nodes with compromised endpoint sensors.

Keywords: Endpoint security - Compromise detection - Software-defined
networking

1 Introduction

To protect their organizations, defenders typically deploy a mixture of perimeter
defenses and defense-in-depth techniques, such as endpoint tools and sensors.
Perimeter and endpoint defenses have varying strength: perimeter defenses can
be centrally administered and have a global view while endpoint sensors often
have detailed context about the associated endhost and can detect intra-subnet
traffic. End-user activity on the endpoint represents a common vector for threats
to enter an organization [13]. The value of context around these user actions
has caused even leaders of perimeter-based defenses to begin creating endpoint
sensors [15, 3].

While endpoint sensors can play an important role, they come with a significant
risk: an adversary could compromise the sensor to silence its reporting or to
provide false information. Many endpoint solutions, such as firewalls, host-based
intrusion detection systems, and anti-virus, rely upon a least-privilege assumption

* Shue holds stock in ContexSure Networks, Inc., an arrangement that has been
reviewed and approved by WPI’s Conflict Management Committee.

2 Yunsen Lei and Craig A. Shue

in which the end-user operates in a regular user account. Those solutions further
assume that processes running as an administrator user and all kernel space
functionality will remain uncompromised. In the event of a root-level compromise,
these tools may use anti-circumvention techniques to hinder their removal or
sabotage, but they ultimately cannot offer any security guarantees.

In some cases, the data provided by endpoint sensors can be corroborated with
data from other sensors in the network or remote endpoints. A sensor’s reports
about network flows, for example, can be easily corroborated by examining the
data flows reported by sensors on other machines. In some instances, all of the
report data may be corroborated while in other instances, only a portion of
the data can be corroborated. For example, a remote network IDS could verify
that the network layer packet headers are accurate, but may not be able to
definitively confirm application layer headers. With only partial verification, it
may be possible to determine whether the unverified portion is consistent with
the verified data.

In this paper, we examine how an endpoint sensor providing data via the
OpenFlow protocol can be evaluated using data from other OpenFlow nodes.
In the OpenFlow protocol, an OpenFlow agent seeks guidance from a logically
centralized controller whenever the agent encounters a packet for which it lacks
a matching flow rule in its cache. When these caches are empty or when fine-
grained (i.e., connection-specific) flow rules are used, each OpenFlow agent along
the new flow’s path will “elevate” a request to the controller. Accordingly, a
controller can receive multiple reports about each new connection and determine
if the OpenFlow agent requests are consistent. If it detects any inconsistency, the
controller may be able to pinpoint a compromised or faulty node.

In this paper, we make the following contributions:

— Implement an Endpoint Flow Verification System: In our Correlated
Host-based OpenFlow Sensor Enforcement (CHOSE) system, an endpoint
sensor reports flow and contextual data (e.g., originating user and application)
for each new network connection. We correlate these reports across endpoint
and in-network devices to detect potentially compromised endpoints.

— Evaluate the System’s Security and Performance: Our system can
detect and block flows with inaccuracies that indicate a compromised sensor
even before a flow is fully established. We further find that legitimate flows
can corroborated by remote sensors and complete their first round trip in
less than 20 milliseconds for about 90% of flows. We find that a controller
can easily detect a faulty OpenFlow agent when a single non-compromised
sensor is on the flow’s path.

2 Background and Related Work

In this section, we provide a brief overview of the OpenFlow protocol and its use.
We then describe prior work related to host-based software-defined networking
(SDN), detecting attacks using SDNs, and the detection of endpoint compromises.

Detecting Root-Level Endpoint Sensor Compromises 3

2.1 OpenFlow and Software-Defined Networking (SDN)

In the software-defined networking paradigm, control-plane decisions are separated
from the underlying hardware that performs packet forwarding. The OpenFlow
protocol [9] provides an API for a logically centralized controller to interact
with a set of packet forwarding devices, which are often network switches. In
OpenFlow, a switch will send a PacketIn packet to an OpenFlow controller
whenever the switch encounters a packet whose fields are not a match for any of
the switch’s cached rules. When issuing the PacketIn request, the switch includes
a copy of the associated packet. The controller consults its policy to determine
the appropriate action. The controller may optionally create a FlowMod packet to
order the switch to store a new rule with match criteria corresponding to the flow
along with an action the switch should take on future matching packets. Finally,
the controller issues a PacketOut message that indicates what the controller
should do with the packet contained in the PacketIn message.

The OpenFlow protocol allows a controller to essentially treat each OpenFlow
switch as a configurable rule cache. A controller could proactively push coarse-
grain rules, which contain wildcards for various flow headers, to allow a switch
to operate with few PacketIn elevation requests. Alternatively, a switch can use
fine-grained rules, which typically specify a fixed flow tuple (i.e., IPsource, IPdest.
transport protocol, portseyrce, POrtgest.) that will only match a single connection.
The use of fine-grained rules can be attractive for security purposes because the
resulting packet elevations give the OpenFlow controller detailed visibility into
the communication occurring on the network. This empowers the controller to
act as a network-wide flow-based access controller.

2.2 Host-based SDN

While OpenFlow was originally designed for use with physical hardware in network
switches, one of the more popular OpenFlow implementations is in software.
Open vSwitch (OVS) [16] is often used on virtual machine (VM) hypervisors
to provide SDN functionality between VMs. In the Scotch approach, Wang et
al. [23] proposed using OVS to enhance the scalability of fine-grained flows by
using OVS on VM hypervisors.

Taylor et al. [20] proposed a host-based SDN that provides information
about the end host in addition to the network flow information. Najd and
Shue [12] transformed Taylor’s host-based SDN into an OpenFlow compatible
implementation that could complete a flow elevation to a controller in less than
9 milliseconds. These latter two host-based SDNs fall into the class of endpoint
sensors that we focus on in this paper.

2.3 Detecting Attacks with SDN

SDNs can provide both centralized and fine-grained flow-based network access
control. Prior work has examined how to leverage these features to improve the
network’s security.

4 Yunsen Lei and Craig A. Shue

Jafarian et al. [7] proposed a technique called OpenFlow Random Host Muta-
tion (OF-RHM) which use OpenFlow to mutates hosts’ IP addresses frequently
and randomly, consequently prevent adversaries from accurately identifying the
target. T. Xing et al. proposed SnortFlow [24] which integrates OpenFlow and
Snort [17] to support efficient and flexible Intrusion Prevention Systems (IPS).
To better detect attacks from inside the internal network, Shin and Gu proposed
CloudWatcher [18] which leverages OpenFlow to control flows and direct them
through a cloud-based middlebox for security inspection. Rodrigo et al. [4] com-
bined OpenFlow and Self Organizing Map (SOM) [8], a neural network trained to
perform traffic classification. They use SOM to classify network traffic as normal
or abnormal and rely on Nox controller to control the flows. Finally, Bawany et
al. [1] proposed an SDN-based proactive DDoS Defense Framework (ProDefense)
to detect and mitigate the consequence of such attackers for data centers.

Our approach differs from these types of systems by leveraging end-point
sensors and verifying the accuracy of the data reported by these sensors, even if
the underlying host is compromised.

2.4 Detecting Compromises on Endpoints

Once a host is compromised, an attacker may attempt to conceal the compromise
in order to remain persistent or to spread laterally across the network. When trust
assumptions, such as a trustworthy OS or kernel space, are violated, attackers
can deactivate a host’s defenses. As an example, malware has been found to
deactivate anti-virus [11] to evade detection. Attackers may also disguise their
traffic, using mimicry techniques [22], to appear legitimate.

To relax assumptions about a trustworthy OS, trusted hardware, such as
trusted platform modules (TPMs) [21] or secure co-processors [19], can be used
to provide attestations. These approaches tend to suffer from fragility to minor
changes (when a static root of trust is used) [6] or from classic time-of-check-
time-of-use (TOCTOU) issues [5] (when a dynamic root of trust is used).

In this work, we proceed in a different direction: we try to detect sensors
that provide inaccurate data, or omit data, by comparing their outputs with
other sensors on the network. This distributed monitoring approach can highlight
attacks even without special trusted hardware.

3 Correlated Host-Based OpenFlow Sensor Enforcement

In this section, we provide example attacks, their consequences, and how correlated
sensing could help. We then describe the system and threat model we are
considering. We then describe the Correlated Host-Based OpenFlow Sensor
Enforcement (CHOSE) system and scenarios in which it is effective.

3.1 Example Endpoint Sensor Compromises

An organization may use endpoint firewalls or host-based intrusion detection
systems (HIDS) in order to provide defense-in-depth protections. The organization

Detecting Root-Level Endpoint Sensor Compromises 5

may configure each endpoint with a set of firewall and HIDS rules that must
be enforced to detect and prevent the spread of attacks or data ex-filtration.
Unfortunately, one host may be compromised by an attack that gets through the
firewall (e.g., a malicious email attachment) or in an out-of-band manner (e.g.,
through an infected USB device). In some cases, the compromise may occur at
the administrator or root level due to the end-user running with administrator
privileges or due to a privilege escalation attack.

Without additional network sensors, an adversary could simply disable the
endpoint firewall or IDS to engage in arbitrary network communication and to
prevent event reporting. Without additional enforcement or monitoring points,
the attack would be successful.

With correlated sensing, other network sensors could detect the disallowed
communication. A network gateway collecting sampled netflow data [2], for
example, could provide snapshots to a centralized IDS. If those flow samples
contained flows that should have been blocked by an endpoint firewall, the
centralized IDS could determine the firewall was faulty. Likewise, a host on the
network receiving an illicit flow from another machine on the network that should
be running a firewall that would block the connection could report the issue.

In some cases, sensors may be redundant (e.g., at both endpoints) while in
other cases, they may have correlated behavior (e.g., IDSes and netflow records).
Both types of data can help a defender detect inconsistencies that belie a host
compromise.

3.2 System Overview and Threat Model

In Figure 1, we provide an example local area network for an organization. The
organization’s network is connected to the Internet via a gateway router. The
network has a set of switches, each of which are legacy switches. An OpenFlow
controller manages the OpenFlow agents that are installed on the hosts. Commu-
nication in this network may be external, such as Host 1 communicating to a
host on the Internet, or internal, such as Host 1 communicating to Host 2.

Network
Gateway

Host 1 Host 3

Legacy Switch — Switch — Legacy Switch

Host 2 ‘ Host 4

Controller

Fig. 1. An example enterprise network with OpenFlow agents on each end-point.

In this example, the trusted computing base (TCB) includes the OpenFlow
controller and the network switches. The physical connections between the

6 Yunsen Lei and Craig A. Shue

switches, hosts, and controllers are considered uncompromised and reliable. The
hosts on the network are not part of the TCB; the sensor data obtained from
these hosts could be erroneous or absent due to a root-level compromise on
a host. In some cases, a set of compromised hosts may collude with a goal of
evading detection. In other cases, a compromised host may communicate with
an uncompromised host. In that case, the uncompromised host will report the
communication. If any switch is an OpenFlow switch, it is in the TCB and it is
managed by the controller, so it can be configured so that any communication
through the OpenFlow switch will be reported to the controller.

We consider an adversary who focuses on maintaining persistence, the ability
to move laterally within an organization, and to maintain communication with
a command and control system. That adversary requires covert communica-
tion channels. Such an adversary would forgo resource exhaustion DoS attacks
since they are easily detected and can be trivially mitigated by prior work [1].
Accordingly, we omit any further analysis of DoS attacks.

The defender’s goal is to receive a full reporting of all communication flows
that occur in the network in a logically-centralized controller. The defender wants
to block any flow requests from sensors that are inconsistent with other sensors.
With this full accounting of flows, the defender can construct arbitrary access
control policies on the controller. Since the development of effective network
access control policy is its own active research area, we consider it beyond the
scope of this work.

3.3 Corroborated Sensing Deployment Scenarios

Some organizations deploy specialized security middleboxes, such as firewalls or
IDSes, that can vet communication. Often, these middleboxes are deployed at
network perimeters and they do not inspect internal traffic, such as intra-subnet
flows. These organizations may deploy endpoint sensors to gain insight into
intra-subnet traffic. But, with root-level compromises on the endpoints, these
sensors may fail to produce complete or accurate data. With sensors at both
endpoints, a network operator is more likely to detect a compromised sensor.

Using the network in Figure 2 as an example, consider a TCP SYN packet
sent by Host 1 to Host 2. If both Host 1 and Host 2 provide OpenFlow sensor
data, the controller will receive independent reports of this SYN packet within
PacketIn elevations from these hosts (shown by lines 1 and 2 for Host 1 and lines
5 and 6 for Host 2). In this case, if either Host 1 or Host 2 provided inaccurate
information about the SYN packet, or neglected to engage in a PacketIn elevation
entirely, the controller will easily be able to detect the mismatch.

This detection mechanism goes to the heart of the attacker’s goals. To establish
communication for command and control or to propagate the attack to other
machines, the adversary must establish new connections. However, an OpenFlow
endpoint sensor will reveal this flow when the adversary makes the connection
attempt, causing the adversary to be detected. The attacker must alter a sensor
to avoid this reporting, but any alteration will result in a mismatch on the remote
host’s sensor.

Detecting Root-Level Endpoint Sensor Compromises

1. Packetin 5. Packetln
+ 2. FlowMod + PacketOut| Controller 6. FlowMod + PacketOut |
Y 31cP SYN_ 4. TCPSYN ¥y
Lad Lad
Host 1 Leg_acy Host 2
< Switch <
8. TCP 7.TCP
SYN + ACK SYN + ACK

< ---» message and

. hysical cables
connection phy

Fig. 2. When both endpoints run an OpenFlow agent, if either is uncompromised,
that uncompromised sensor will alert the central coordinator of inconsistencies via its
PacketIn data.

In the Figure 2 example, the controller will receive conflicting information
and know one of the two hosts is compromised, but will not know which has the
error. However, if the switch is an OpenFlow switch, as shown in Figure 3, the
controller can determine which host is deceptive. The OpenFlow switch would
provide information about the SYN packet (shown by lines 4 and 5). Further,
since the OpenFlow switch is in the network’s TCB, its reports can be used as
ground-truth data. Without a ground-truth, network operators would need to
check both hosts for a potential compromise.

1. Packetln 7. Packetln

E 2. FlowMod + PacketOut | Controller |8. FlowMod + PacketOut |
P 5. FlowMod 7 Do
N PacketOut 4. Packetin o
E E 11. FlowMod 10.Packetin H E
! ! PacketOut E '
H Y ,

3. TCP SYN | 6. TCP SYN | Y

L
Host 1 Oper!FIow Host 2
< Switch |¢
12. TCP 9.TCP
SYN + ACK SYN + ACK

<---» message and

connection physical cables

Fig.3. When an OpenFlow switch is on the network path, the controller receives
PacketIn data that allows it to identify which endpoint, if any, is faulty.

When using corroborated sensing, particularly when only the endpoints have
sensors (e.g., Figure 2), the controller must be careful in how it manages the

8 Yunsen Lei and Craig A. Shue

rules it stores at each endpoint. By pushing uni-directional flow rules in its initial
FlowMod messages, the controller can detect if the destination fails to properly
elevate traffic. In the FlowMod messages in Message 2 in Figure 2 and Messages
2 and 5 in Figure 3, the controller only pushes an approval for the flow in the
direction from Host 1 to Host 2. When responding to the destination, and on
agents elevating the SYN+ACK packets, the controller orders the agents to store a
bi-directional FlowMod approving both directions of the flow.

1. Packetin

________ 1. Packetin___ _...5 Packetin ooo.-. 9. Packetin____y)J .S Pecketin
| 2 FlowMod + PacketOut| Controller | = i 2 FlowMod + PacketOut| Controller | 6. FlowMod + PacketOut |
[6.FlowMod ! ! i1 10. FlowMod P

PacketOut H E ' 1+ PacketOut
(deny) Lo V1 (deny)

. 3. TCP SYN 4. TCP SYN - : 3. TCP SYN 4. TCP SYN :

Host 1 Switch Switch Host 2
8.TCP 7.TCP
SYN +ACK SYN +ACK

message and <€--->»

. hysical cables
connection phy:

Fig. 4. When one of the hosts is compromised (shaded in black), the controller will
notice a discrepancy when receiving a PacketIn from the non-compromised host (shaded

in gray).

In Figure 4, we show the process that would occur if either Host 1 or Host 2
was compromised in this example scenario. In the event Host 1 is compromised
(the left diagram in Figure 4), it could fail to send a PacketIn in Step 1 or send
an inaccurate PacketIn (e.g., a PacketIn with inaccurate payload or header
information) and receive the controller’s approval. However, Host 2 would then
send a PacketIn in Step 5 and the controller would notice the discrepancy
between the two PacketIn messages, deny the flow in Step 6 and drop all the
packets in the flow, preventing the application at Host 2 from receiving them.

If Host 2 were compromised, which is depicted in the right side of Figure 4, a
similar process would occur, but the detection would be slightly delayed. In this
case, the first 4 steps would proceed and Host 2 would either neglect to provide
a PacketIn in Step 5 or provide inaccurate information. Since the SYN packet
would already have reached Host 2 in Step 4, Host 2 could process the message
and respond in Step 7. However, if the controller only pushes a unidirectional
FlowMod rule in Step 2, Host 1 would again elevate the packet to the controller in
Step 9. At that point, the controller would note that Host 2 failed to send a proper
PacketIn associated with the SYN packet and would insert a denial FlowMod into
Host 1 in Step 10, preventing the application at Host 1 from communicating with
the compromised host.

When both hosts are malicious and only legacy switches connect the hosts,
it is possible for the hosts to collude and choose not to elevate packets to the

Detecting Root-Level Endpoint Sensor Compromises 9

controller. Without a middlebox or an OpenFlow switch that connects the devices
(as shown in Figure 5), this scenario cannot be avoided.

1. Packetln

. »
' 2. FlowMod + PacketOut| Controller

A
5. FlowMod

E PacketOut 4. Packetln
(deny)

3. TCP SYN Y
OpenFlow
Switch

<€ ---» message and
connection

physical cables

Fig. 5. If both hosts collude (shaded in black), only a middlebox or an OpenFlow switch
between the hosts can be used to detect the malicious flows.

3.4 Uncorroborated Data in Endpoint Sensors

In the OpenFlow data, all sensor data can be corroborated since the only
information, the elevated packet, is included it its entirety and is independently
witnessed by multiple vantage points. However, other sensors may include data
that is only available at a single vantage point.

The host-based SDNs created by Taylor et al. [20] and Najd et al. [12]
provide additional information about the network flows. Some of that information
includes the user account and originating application on a sending endpoint and
the destination server and its user on a receiving endpoint. Since this context
is only available on the respective endpoints, neither the other endpoint nor a
middlebox can corroborate that contextual data. Accordingly, a compromised
host could arbitrarily forge this contextual data.

A controller may be able to detect obvious signs of forgery, such as a connection
on port 22, commonly associated with the SSH protocol, purportedly originating
from an email client. However, a sophisticated adversary would likely be able
to craft contextual data that would plausibly be associated with the verifiable
network headers and packet payload.

Some endpoint sensors, such an a reporting engine for an anti-virus tool, may
engage in communication that is completely unverifiable by other sensors. These
sensors would not be able to effectively use correlated sensing on its own.

To gain trust in information that cannot be corroborated, trusted hardware
or VM introspection techniques may play a role. However, in situations where
corroboration is possible, correlated sensing can provide benefits without requiring
special hardware.

10 Yunsen Lei and Craig A. Shue

4 Implementing the CHOSE System

The CHOSE system has three components: 1) a standard OpenFlow agent for
physical switches, 2) an OpenFlow-compatible host agent for Microsoft Windows
machines, and 3) a custom OpenFlow controller that manages connections for both
switches and end-hosts. For the OpenFlow agent, we use the built-in OpenFlow
agent on an enterprise-grade switch. In the remainder of this section, we focus
on the host agent and the functionality in the OpenFlow controller.

4.1 Host Agent for Microsoft Windows

While OpenFlow implementations are available in VM hypervisors, such as
through OVS [16] or HyperV[10], these implementations are not designed for
end-user systems. Recent host-based SDNs have focused on obtaining contextual
information about the host’s operation, rather than simply providing OpenFlow
functionality on an endpoint [20, 12]. These tools are particularly valuable on
end-user machines, like desktops and laptops, where the end-user’s actions take
place. However, these prior SDN systems have been implemented in the Linux
operating system, which constitutes roughly 2-3% of the desktop and laptop
market share. In contrast, Microsoft Windows has roughly 86-88% of the desktop
and laptop market share [14]. To have a major impact on how systems are used,
we need to focus on an endpoint solution for Microsoft Windows.

We created a host-based SDN agent for Microsoft Windows using a kernel-
mode Windows driver. The driver uses the Windows Application Layer Enforce-
ment (ALE) portion of the Windows Filtering Platform (WFP) to monitor all
socket operations, including the creation of TCP and UDP connections. The ALE
filtering approach allows us to monitor traffic at a per-connection or per-socket
level rather than having to process packets individually, allowing us to recreate
the OpenFlow process natively in Windows.

The SDN agent communicates to an SDN controller using a modification
to the OpenFlow protocol. As with standard OpenFlow, the agent elevates a
packet by including an OpenFlow header and encapsulating a copy of the original
packet. However, the SDN agent also includes contextual information about the
application in a custom structure that follows the encapsulated packet. This
contextual information includes the application path of the sending application,
the user running the software, and the process identifier among other fields.
The OpenFlow communication is then encrypted and authenticated using AES
encryption and a SHA-256 message authentication code (MAC).

Upon receiving a response from the SDN controller, the host-based agent
either drops the packet (for discard decisions) or updates the flow status in
the WFP framework and reinjects the packet into the network kernel queue for
delivery.

The SDN agent requires cooperation from the Windows kernel and from
an administrative service on the machine. The kernel intercepts the network
communication and delivers it to the administrative service. The service is
responsible for the network communication and for the gathering of the process

Detecting Root-Level Endpoint Sensor Compromises 11

context. Typically, user space applications and the kernel interact through system
calls. However, in this case, the kernel initiates the flow elevation requests based
on the detection of new flows, so a different communication model is needed. We
use an inverted call model using a device driver queue shared between the kernel
and user space to facilitate this interaction.

4.2 OpenFlow Controller Customization

The SDN controller must support both the Windows OpenFlow agent and commu-
nication from traditional OpenFlow agents running on switches. This controller
distinguishes the OpenFlow agent type based on the destination transport layer
port and handles the communication in separate threads of execution.

When receiving a PacketIn, the controller must determine what OpenFlow
agents would be on the path from the source machine to the destination for that
flow. If the PacketIn arrives from the first expected OpenFlow agent on the
path, the controller consults its normal policy rules to determine whether the
flow should be allowed. If not, it sends FlowMod and PacketOut messages to the
agent that order the packet and all other packets in the flow to be dropped. If
the controller policy dictates the flow should be allowed, the controller stores
a record of the flow in a local list of active flows and then sends FlowMod and
PacketOut messages to the requesting OpenFlow agent to approve the source to
destination direction of the flow.

Since the controller sent a FlowMod only to the originating OpenFlow agent
during its approval, subsequent OpenFlow agents on the path will again elevate the
packet to the controller. If the controller receives a PacketIn from an OpenFlow
agent, and that agent is not the first agent that should have appeared on the
flow, the controller will check to see if it already has an entry for the flow in its
active flows list. If it does not, the controller will send FlowMod and PacketOut
messages to the agent that order the packet and all other packets in the flow to
be dropped. It will also make note of the OpenFlow agent that failed to elevate
the flow. Alternatively, if the controller sees that the flow is in its active list and
was previously approved, it will order the OpenFlow agent to approve the flow.

In this approach, the controller makes only unidirectional forwarding ap-
provals in its FlowMod messages. This is essential to detecting compromised
or malfunctioning agents that are at or near the destination. When a reply is
issued, such as the SYN+ACK packet in a TCP connection, each agent on the
reverse path will again elevate the packet to the controller. At that point, the
controller can confirm it has received all the expected requests from agents in the
original direction. It can then send a FlowMod message that updates the original
uni-directional flow approval to instead allow bi-directional communication on
each agent on the path.

With this approach, the controller receives corroboration on packets elevated
from each OpenFlow agent any time there are multiple OpenFlow agents on the
path. Further, if at least one OpenFlow agent on the path is not compromised,
the controller will be able to detect the existence of any compromised agent on
the path that omitted or modified the flow information.

12 Yunsen Lei and Craig A. Shue

5 Evaluating the Security and Performance of CHOSE

In this section, we describe our experimental setup, our performance evaluation
process and results, and the security evaluation methodology and results. In our
evaluation, we aim to answer two questions: 1) What overhead does correlated
sensing introduce to an existing SDN deployment? 2) What security guarantees
does correlated sensing offer to such a system?

5.1 Experiment Setup

In both our performance and security evaluation, we configure our network to
match Figure 3. We use an HP 2920-24G enterprise switch with OpenFlow
enabled to connect our hosts and controller. Our controller runs on a laptop that
runs VirtualBox to host an Ubuntu 16.04 VM. We configure the controller with
2 IP address and place one of the IP addresses under the control of OpenFlow so
that the communication between sensors and controller will also be subject to
the OpenFlow’s elevation model. We then connect two end-hosts to the switch.
The first host is a Mac mini that runs VirtualBox to host a Windows 10 VM.
The second host is a Macbook Pro that runs VirtualBox to host a Windows 10
VM.

5.2 Performance Evaluation

To determine the overhead associated with correlated sensing, we compare it
with regular OpenFlow behavior in both switch-based and host-based SDN
configurations. We create a HT'TP client program using winsock2 to connect to
HTTP server written with the Mongoose web server library. Our client creates
connections in a serial fashion.

We ensure that the tested OpenFlow agents on the hosts and switch will
perform a flow elevation for each new connection. Since the system uses FlowMod
rules to avoid elevating subsequent packets in a flow, the overheads associated
with packet elevations will only affect the first round trip in a flow. Accordingly,
we use the round-trip time (RTT) on the first set of packets in the flow (e.g., the
SYN and SYN+ACK TCP packets) as our performance metric.

By comparing the time required under varying deployment scenarios, we
can determine the latency associated with elevation requests from switch and
end-host agents along with the time required for the controller to correlate flow
requests. We use the following four scenarios in our testing:

— Scenario 1: Switch-Based OpenFlow Only: In this scenario, neither of
the hosts run an OpenFlow agent and simply transmit packets using the
native Windows networking stack. The physical OpenFlow switch elevates
each new connection it sees to the OpenFlow controller. The controller only
processes standard OpenFlow packets and it approves all new flow requests it
receives. Since this controller engages in minimal computation, this scenario
provides a baseline for a physical switch’s performance.

Detecting Root-Level Endpoint Sensor Compromises 13

— Scenario 2: Host-Based Sensors Only: In this scenario, both of the hosts
run our Windows OpenFlow agents. The agents gather end-host application
context and flow data and include this information in elevation requests to
the controller for each new connection. In this case, the controller processes
the modified OpenFlow messages for the host sensors. However, the physical
OpenFlow switch is configured as a simple learning switch and does not send
any elevation requests to the controller.

— Scenario 3: Both Switch and Host Sensors: This scenario uses Open-
Flow agents at both hosts and the physical switch. The controller processes
packet elevations from both types of agents. However, the controller state-
lessly approves the flows independently and does not perform any correlation
or analysis of the requests across OpenFlow agents.

— Scenario 4: Full Sensing and Flow Correlation: In this scenario, the
OpenFlow agents run at the hosts and the physical switch. The controller
examines the elevations across OpenFlow agents and correlates the requests
to identify discrepancies or missing elevation requests.

Round Trip Timings For each of these scenarios, we conduct 500 trials, with
each trial consisting of a new connection in which the RTT for the initial packets
are measured. Once the connection is established, it is immediately terminated
and the next trial begins. We present the results of these trials in Figure 6.

100%

90% -

80% A

70%

60% -

50% A

40%

Percent of Trials

30% -

—— Switch-Only
Host-Only

—— Switch and Host

—— Correlated Sensing

20%

10% A

0% T T T 1 T T T T T T T T T T T T
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Round Trip Time (milliseconds)

Fig. 6. Round-trip time of serial connections across 500 trials.

14 Yunsen Lei and Craig A. Shue

The overhead of the correlated sensing is the timing difference between the
third scenario, in which host and switch sensors are used but the controller acts
statelessly, and the fourth scenario, in which the sensors are identical but the
controller correlates flows across OpenFlow agents. In Figure 6, the distribution
curve of the round-trip times associated with these two scenarios largely overlap,
indicating that the performance costs of correlated sensing are not significant.

From these experiments, we see that most flows complete in less than 15
milliseconds, even with correlated sensing, and that around 90% of flows complete
in less than 20 milliseconds. The performance of the host-based only sensor is
faster in most cases than the switch-only sensor. This appears to be due to
the physical switch using its relatively-slow integrated processor for performing
flow elevations in software whereas it can use a hardware table for subsequent
packet forwarding once a FlowMod is installed. As one might expect, the RTTs
in the third scenario, which requires elevations from the hosts and the switch,
are roughly the sum of the times in scenarios 1 and 2.

Parallel Connections We next examine the performance of the SDN ap-
proaches in a more real-world setting, we use end-to-end timing of a short HTTP
connection. Using parallel threads, we generate HT'TP requests on Host 1 to an
HTTP server running on Host 2. The client application on Host 1 is designed
to use a separate TCP connection for each HTTP request. It issues an HTTP
GET request for a short HTML document. After the server provides the HTML
document, the client closes the connection. Using a varying thread count on the
client, we measure how many new connections can be created by the client in a
five minute (300 second) period.

Table 1. Number of flows created in five minute period.

Number of| Scenario 1: |Scenario 2: Scenario 3: Scenario 4: Scenario 5:
Threads |Switch-Only| Host-Only [Switch and Host|Full Correlation|Host Correlation
10 2,919 2,965 2,813 2,365 2,830
20 5,431 5,520 4,525 4,519 5,221
50 13,440 13,782 10,052 9,214 13,054
100 23,841 23,298 16,389 16,194 19,926

In Table 1, we show the results of the parallel connection experiments. We see
that in the host-only scenario, the hosts and controller can handle an average of
roughly 74 new flows per second. We create a fifth scenario that uses correlation
only at the endpoints sensors, called Scenario 5, and see that it largely keeps
pace with Scenario 2 up to 50 concurrent threads, but starts to slow down at
100 concurrent threads. That likely indicates that controller bottlenecks begin to
form at that higher thread count.

Additionally, when looking at Scenarios 3 and 4 in Table 1, we note a marked
decrease in the number of new flows during the testing period compared to the
other cases. In essence, it appears that these scenarios were latency bound: each

Detecting Root-Level Endpoint Sensor Compromises 15

thread had to spend more time in elevations because there were serial elevations
for each thread from the hosts and the switch. In Table 2, we see that the number
of OpenFlow messages required (namely PacketIn messages and the associated
PacketOut+FlowMod responses) are increased by a factor of three in Scenarios 3
and 4 because the hosts and the switch are each performing the elevations and
the switch is also elevating the end-hosts’ own PacketIn messages. As a result,
each thread simply spends more time waiting for the initial round-trip.

Table 2. Number of OpenFlow messages in each scenario.

Elevation Source Total
Scenario|Host 1|Switch|Host 2| Messages
1 0 4 0 4
2 2 0 2 4
3 2 8 2 12
4 2 8 2 12
5 2 0 2 4

5.3 Security Evaluation

We examine the effectiveness of the correlated sensing approach using the con-
figuration described by Scenario 4 in the performance evaluation. We create
four cases in which we vary the proper operation status of the client and the
server. Across the four possible combinations, we vary whether the host elevates
packets normally or whether it evades proper operation by not elevating the
packet appropriately.

Table 3. Number of connections allowed and denied by scenario.

Case | Client | Server |Client Flows|Server Flows|Client Flows|Server Flows
Number| Status | Status | Approved | Approved Rejected Rejected
1 Normal|{Normal 500 500 0 0
2 Normal| Evades 500 0 0 500
3 Evades |Normal 0 N/A 500 N/A
4 Evades | Evades 0 N/A 500 N/A

In Table 3, we show the results of testing these four cases across 500 trials
each. As expected, when both the client and server are operating normally, all
the flows are approved. In the second case, where the client acts properly but
the server agent does not, the initial packets are approved and reach the server,
but the server’s responses are dropped because the server failed to elevate both
the client’s original packet and the server’s response packet to the controller.
Scenarios 3 and 4 proceed identically since the controller denies the packets when

16 Yunsen Lei and Craig A. Shue

the OpenFlow switch elevates them because the client failed to originally elevate
the packets. In that case, the packets are discarded before the server can receive
them, so the server never knows to create a response.

As we discussed in Section 3.3, if the switch between the hosts is legacy,
the uncompromised host triggers the controller’s detection rather than the
OpenFlow switch. Further, if both hosts are compromised with a legacy switch,
the communication goes undetected. We omit these cases for brevity.

In these experiments, we simply disable the sensor rather than having it
create forged data. Since the flow decisions use the network tuple (IP addresses,
ports, and transport protocol), any alteration of these fields would constitute a
new flow and thus the forgery in an elevation request would cause the actual
packets to not match a flow rule when an uncompromised agent elevates the
packet, resulting in a drop rule by the controller. Alterations of other fields in
the packet headers could be detected simply by including those fields in the
controller’s local active flows table.

6 Conclusion

In this work, we examine how network operators can detect even root-level
compromises that affect the accuracy of data reported by host-based sensors
by correlating that data with other sensors in the network. We focused on
the OpenFlow protocol and showed that if a single non-compromised sensor
exists on the network path a flow takes, a centralized network controller can
detect discrepancies in the information reported by any compromised sensors
on that same path with perfect accuracy. Our performance results show that
this correlated sensing comes with little extra cost over a standard OpenFlow
deployment. In around 90% of cases, the round trip time of the first packet
exchange in a connection took less than 20 milliseconds, which includes all of
the required flow elevation. Since this flow elevation occurs only during the first
round-trip of a new flow, these overheads are unlikely to affect the user experience
while offering tangible security benefits.

7 Acknowledgement

This material is based upon work supported by the National Science Foundation
under Grant No. 1422180.

1]

References

Bawany, N.Z., Shamsi, J.A., Salah, K.: DDoS Attack Detection and Miti-
gation Using SDN: Methods, Practices, and Solutions. Arabian Journal for
Science and Engineering 42, 425-441 (2017). https://doi.org/10.1007/s13369-
017-2414-5

Berthier, R., Cukier, M., Hiltunen, M., Kormann, D., Vesonder, G., Shele-
heda, D.: Nfsight: Netflow-Based Network Awareness Tool. In: Large Instal-
lation System Administration Conference. p. 119 (2010)

Bhattarai, R., Valle, E., Dhanraj, M., Kelly, R.: Advanced End-
point Protection Test Report. Tech. rep., Palo Alto Networks
(2018), https://www.paloaltonetworks.com/resources/whitepapers/
2018-nss-labs-advanced-endpoint-protection-report

Braga, R., Mota, E., Passito, A.: Lightweight DDoS Flooding Attack Detec-
tion Using NOX/OpenFlow. In: IEEE Local Computer Network Conference.
pp. 408-415 (2010). https://doi.org/10.1109/LCN.2010.5735752

Bratus, S., D’Cunha, N., Sparks, E., Smith, S.W.: TOCTOU, Traps,
and Trusted Computing. In: Lipp, P., Sadeghi, A.R., Koch, K.M. (eds.)
Trusted Computing - Challenges and Applications. pp. 14-32 (2008).
https://doi.org/10.1007/978-3-540-68979-9_2

Butterworth, J., Kallenberg, C., Kovah, X., Herzog, A.: Problems with the
Static Root of Trust for Measurement. Black Hat USA (2013)

Jafarian, J.H., Al-Shaer, E., Duan, Q.: Openflow Random Host Mutation:
Transparent Moving Target Defense Using Software Defined Networking. In:
Workshop on Hot Topics in Software Defined Networks. pp. 127-132 (2012).
https://doi.org/10.1145/2342441.2342467

Kohonen, T.: The Self-Organizing Map. Proceedings of the IEEE 78, 1464
1480 (1990). https://doi.org/10.1109/5.58325

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L.,
Rexford, J., Shenker, S., Turner, J.: Openflow: Enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev. 38, 69-74 (2008)
Microsoft: Hyper-V Architecture (2018), https://docs.microsoft.
com/en-us/virtualization/hyper-v-on-windows/reference/
hyper-v-architecture, [Online; accessed 09-April-2019)

Min, B., Varadharajan, V.: A Novel Malware for Subversion of Self-
Protection in Anti-virus. Softw. Pract. Exper. pp. 361-379 (2016).
https://doi.org/10.1002/spe.2317

Najd, M.E., Shue, C.A.: Deepcontext: An Openflow-Compatible, Host-Based
SDN for Enterprise Networks. In: IEEE Conference on Local Computer
Networks (LCN). pp. 112-119 (2017). https://doi.org/10.1109/LCN.2017.12
Neely, L.: Exploits at the Endpoint: SANS 2016 Threat Landscape Survey.
SANS Institute InfoSec Reading Room, September (2016), https://wuw.
sans.org/reading-room/whitepapers/firewalls/paper/37157

18

[14]

[15]

[16]

[17]

[18]

22]

[23]

[24]

Yunsen Lei and Craig A. Shue

Net Marketshare: Market Share Statistics for Internet Technologies (2019),
https://netmarketshare.com/operating-system-market-share.aspx,
[Online; accessed 10-April-2019]

Palo Alto Networks: Traps Technology Overview. Tech. rep., Palo Alto Net-
works (February 2019), https://www.paloaltonetworks.com/resources/
techbriefs/traps-technology-overview

Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme,
J., Gross, J., Wang, A., Stringer, J., Shelar, P., Amidon, K., Casado,
M.: The Design and Implementation of Open vSwitch. In: 1 USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15). pp. 117-130 (2015), https://www.usenix.org/conference/nsdilb/
technical-sessions/presentation/pfaff

Roesch, M., et al.: Snort: Lightweight Intrusion Detection for Networks. In:
LISA. vol. 99, pp. 229-238 (1999)

Seungwon Shin, G.G.: Cloudwatcher: Network Security Monitoring
Using Openflow in Dynamic Cloud Networks (or: How to Provide
Security Monitoring as a Service in Clouds?). In: IEEE Interna-
tional Conference on Network Protocols (ICNP). pp. 1-6 (2012).
https://doi.org/10.1109/ICNP.2012.6459946

Smith, S.W.: Secure Coprocessor. In: van Tilborg, Henk C. A.; J.S. (ed.)
Encyclopedia of Cryptography and Security, pp. 1102-1103. Springer US
(2011)

Taylor, C.R., MacFarland, D.C., Smestad, D.R., Shue, C.A.: Contextual,
Flow-Based Access Control with Scalable Host-Based SDN Techniques. IEEE
International Conference on Computer Communications pp. 1-9 (2016)
Trusted Computing Group: Trusted Platform Module 2.0: A Brief
Introduction (2019), https://trustedcomputinggroup.org/resource/
trusted-platform-module-2-0-a-brief-introduction/, [Ounline; ac-
cessed 10-April-2019]

Wagner, D., Soto, P.: Mimicry Attacks on Host-Based Intrusion Detection
Systems. In: ACM Conference on Computer and Communications Security.
pp. 255-264 (2002). https://doi.org/10.1145/586110.586145

Wang, A., Guo, Y., Hao, F., Lakshman, T., Chen, S.: Scotch: Elastically
Scaling up SDN Control-Plane Using vSwitch Based Overlay. In: ACM
International on Conference on Emerging Networking Experiments and
Technologies. pp. 403414 (2014). https://doi.org/10.1145/2674005.2675002
Xing, T., Huang, D., Xu, L., Chung, C., Khatkar, P.: Snortflow: A openflow-
based intrusion prevention system in cloud environment. In: 2013 Second
GENTI Research and Educational Experiment Workshop. pp. 89-92 (2013)

