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Abstract

In computer security, there is often a disconnect between
the trust placed in a device to meet a security goal and
the actual ability of the device to meet these goals. In
organizational environments, this disconnect may become
larger as users increasingly use their personally-owned com-
puting devices for work purposes. These users often lack
IT backgrounds and do not properly secure their devices,
creating greater security risks. In this work, we pro-
pose using a Trusted Platform Module (TPM) to enter a
“late-launch” environment, where it will exclusively exe-
cute trusted, organization-provided code to create a thin-
terminal on user devices. This thin-terminal will interact
with centralized IT servers, providing useful functionality
to the user while ensuring the device itself will pose no risk
to the organization’s security goals. We have implemented
a proof-of-concept version of this environment and showed
how simple text-based interactions can be performed with a
trustworthy client. In doing so, we highlight the challenges
and tradeoffs inherent in such an approach.

Keywords: Trusted computing; dynamic root of trust;
trusted platform module.

1 Introduction

A fundamental problem with respect to computer security
lies in the disparity between the trust and trustworthiness
of today’s systems. A system, B, is considered trusted by
another system, A, if the actions of B can influence the se-
curity goals of A. However, that same system, B, is only
considered trustworthy if it will ensure that A’s security
goals are met. While conceptually straightforward, many
systems are implicitly trusted by organizations and users
without any evidence that the systems are actually trust-
worthy.
Software defects are a significant barrier to a system’s

trustworthiness, since a single defect may be sufficient for
an adversary to exploit. Defects are common in software,
with software validators considering code to be high-quality
when it has only a single defect (or less) per thousand lines
of code [1]. However, modern operating systems are large:
Linux 3.6 has roughly 16 million lines of code [2] while
Microsoft Windows XP had 45 million lines of code [3]1.

1Microsoft has not disclosed the number of lines of code in Windows

Accordingly, a modern operating system may have tens of
thousands of defects, even if they have less than the average
1.0 defect per thousand lines of code.

While the inherent size of modern operating system may
undermine their trustworthiness, the management of these
systems may also be a cause for concern. A recent Cisco
study of roughly 600 U.S. business found that 95% of em-
ployers allowed employees to use their personally-owned de-
vices for work-related matters [4]. These employees, who
may not have IT backgrounds, are responsible for man-
aging these devices. Untrained users often practice poor
password management [5], [6] and device security practices
(such as 20% of systems not using anti-virus [7]). With
poor system administration by users without IT skills, or-
ganizations must consider many employee-owned devices to
be untrustworthy.

In this work, we aim to address the security issues cre-
ated by acceptance of Bring Your Own Device (BYOD)
policies by organizations. Specifically, we intend to create
the Trusted Thin Terminal (TTT), a tool designed to sup-
port BYOD policies while concurrently meeting the follow-
ing goals:

1. Support Centralized IT Administration: Rather
than use the possibly compromised functionality of an
employee-owned device, we will keep functionality on
organizational servers which are maintained by skilled
IT professionals. While users may have the convenience
of mobile device interfaces, the actual organizational
assets will remain on IT infrastructure.

2. Make Client Systems Trustworthy: We will ensure
client systems can be considered fully trustworthy by
an organization. In particular, an organization will be
able to provide an execution environment to a client
and have assurances that the provided code, and only
that code, is executing on the client while accessing
organizational assets. These clients will function as
thin-terminals that allow their users to interact with
remote organizational assets.

3. Provide Evidence of Authenticity: The client sys-
tems will have an ability to attest to their running state
and prove they are running code provided by the orga-
nization.

Vista, 7, or 8.



To create the TTT, we will use features of the Trusted
Platform Module (TPM), a hardware component that is
present in many computing systems. In particular, we use
a recent addition in the TPM in version 1.2, called “Late
Launch,” that allows the creation of a Dynamic Root of
Trust for Measurement (DRTM). When done correctly, this
feature allows a system to enter a hardware-protected mode
where a specific segment of code will execute without inter-
ference from the traditional operating system or the appli-
cations running on it. Even if the employee’s device is com-
promised with malware, the software running in the late
launch environment will be properly isolated and can be
trusted by the organization to execute properly.

We envision a deployment scenario where each employee-
owned device is registered with the IT staff. As part of
this process, the IT staff will install an application on the
device that can trigger entry into the late launch environ-
ment, along with the code required to implement the TTT.
To enter this mode, a user would simply launch the organi-
zation application, which would transition the device into a
thin-terminal mode and connect to an organization server.
The device would then attest to its running state, providing
the organization with assurances that it is executing safely.

To demonstrate the feasibility of the approach, we have
created a proof-of-concept implementation of the TTT. In
only 6, 294 lines of code, our implementation supports user
I/O and network communication, allowing the client to in-
teract with a server in a trustworthy manner. This imple-
mentation can be further extended to provide full graphi-
cal interaction with the remote server while minimizing the
amount of code on the client.

The remainder of this work is organized as follows. Sec-
tion 2 provides background and a discussion of related work.
Section 3 describes the design of the TTT, including the
adversary model. Section 4 describes the TTT architec-
ture and implementation. We provide discussion and future
work in Section 5 and conclude in Section 6.

2 Background and Related Work

The trusted computing field is broad, with many areas of re-
lated work. Hardware implementations such as IBM’s 4758
[8] and Copilot [9] created a base for trusted computing
work. Other hardware, such as ARM’s TrustZone platform
can be used as a base for mobile devices [10]. However, in
this work, we focus on the Trusted Platform Module and
how it has been previously used by the community since
this serves as the base for our own work.

The Trusted Computing Group (TCG), a consortium of
roughly 110 technology-related companies including AMD,
Cisco, IBM, Intel, and Microsoft [11], created the specifica-
tion and implementation of the Trusted Platform Module
(TPM). The TPM is a secure, tamper-proof integrated cir-
cuit that is designed to generate cryptographic keys and
provide secure storage, remote attestation, and a pseudo-
random number generator. TPMs can be found on a large
number of devices including those manufactured by Dell,
HP, Acer, Lenovo, and Toshiba [12]. The U.S. Army and
Department of Defense require all purchased machines to

include a TPM [13, 14].

2.1 TPM Attestation

TPMs have several functions to support secure operations.
One of the most well-known TPM features is its ability to
create an attestation. An attestation allows a machine to
make a claim to a remote party, called the appraiser, with
evidence that supports the claim [15]. The TPM serves as
the root of trust for system measurements, sealed storage,
and reporting.

Many attestations include a measurement. In TPMs,
a measurement is a SHA-1 cryptographic hash of an in-
tended target, usually an executable binary on the sys-
tem. The measurement hash is extended into one of the
TPM’s Platform Configuration Registers (PCRs) by taking
the SHA-1 of the measurement concatenated with the previ-
ous value of the PCR. This can be denoted as PCRi ←SHA-
1(m|PCRold

i
). These PCRs are controlled by the TPM and

can only be altered in this manner and during a system boot
(at which point they are initialized to zero). This controlled
interface provides rich functionality while minimizing TPM
complexity.

Trusted boot, sometimes called “measured boot,” is an
example of using TPM measurements. In trusted boot, the
TPM computes a measurement of the BIOS software prior
to executing the BIOS software. The TPM will store this
value by extending one of its PCRs. The BIOS is then
tasked with repeating this process of measuring and report-
ing on the bootloader, prior to allowing its execution and
the process is continued until the operating system has been
loaded. This process is generally referred to as creating a
chain of trust (CoT) as the integrity of each piece of software
is reliant on the software history prior to its execution, hence
its trust is “chained” to the previous software units. Once
a piece of software has been measured, a verifier is then
able to make a judgment on its trustworthiness to continue
measuring subsequent software. If malware is present in the
chain of trust, it is unable to hide its presence and can only
discontinue the CoT after it has received control of the pro-
cessor. This is because before the malware receives control,
it would have already been measured and reported to the
TPM by its predecessor. The control structure of PCRs,
only allowing for extensions to the register value means the
malware is unable to erase its measurement. This measure-
ment can then be signed by the TPM’s Attestation Identity
Key (AIK) and verified by a remote system. However, the
verifier must have a similar platform to the target and have
previously measured each application present in the Chain
of Trust (CoT) [16]. A variant of trusted boot, called “se-
cure boot,” proceeds similarly, but halts the system if an
invalid measurement is reported. [17]

The trusted boot platform was further extended by IBM
to encompass the entire software history of a device since
boot [17]. The Integrity Measurement Architecture (IMA)
modified the Linux kernel to allow for measuring and report-
ing applications to the TPM after the operating system has
loaded. The measurement points of IMA included all user-
level executables, dynamically loaded libraries, dynamically
loaded kernel modules, and scripts. In addition, IMA added



a measurement list of the software history of the device and
each application’s associated measurement. In Policy Re-
duced Integrity Measurement Architecture (PRIMA) [18],
the IMA process was enhanced to overcome the limitations
of load time attestation while reducing the required chain of
trust. It accomplishes this task by applying a Clark-Wilson
model [19] to the system, in which trusted applications are
required to filter low integrity input before processing the
data. This allows attestation of a target application to only
require measurements of those applications which must be
trusted in order to maintain the target’s integrity. However,
even the PRIMA approach requires a strict Mandatory Ac-
cess Control (MAC) policy to manage information flow and
trust. PRIMA is also hampered by the required inclusion
of the operating system as a trusted entity, as this requires
extensive modifications to the OS.

Attestation is affected by Time Of Check, Time Of Use
(TOCTOU) attacks. These attacks occur when a malicious
actor has access to attested memory following a subsequent
measurement, indicating the memory at the “time of check”
does not match the subsequent memory at the “time of use.”
Kovah et al. [20] postulate there are three requirements that
all must be met for a TOCTOU attack to be possible: 1)
The attacker must know when the measurement is about to
start, 2) the attacker must have some unmeasured location
to hide in for the duration of the measurement, and 3) the
attacker must be able to re-install as soon as possible after
the measurement has finished. Kovah et al. indicate that
both Direct Memory Access (DMA) access and Symmetric
Multi-Threading (SMT) are manifestations of the general
attestation problem of TOCTOU.

Each of these attestation approaches face a TOCTOU
concern due to timing and possibly malicious behavior on
the client. In our approach, we will use an isolated envi-
ronment that is known to the remote system. Accordingly,
the remote system can verify the environment, confirm the
attestation came from that environment, and knows how
long that environment will continue to run. This disrupts
the TOCTOU attack requirements and allows our system
to behave in a more trustworthy manner.

2.2 TPM Late Launch

Late launch, a recent addition to the TPM as of v1.2, allows
for the creation of a Dynamic Root of Trust for Measure-
ment (DRTM). The previous technique of a Static Root
of Trust for Measurement (SRTM) ties the known state
of a PCR to system boot in which PCRs 0-16 are reset
to zero, effectively binding system integrity to its history
since reboot. The Dynamic Root of Trust for Measurement
(DRTM) significantly reduces complexity by allowing PCRs
17-23 to be reset to a known state following the issuance of
a late launch command. In the DRTM, the dynamic PCRs
are first reset to a known state and a code module is pro-
vided to the late launch procedure. This code module is
subsequently measured and extended into PCR 17 and pro-
vided an environment for secure execution. The ability of
late launch to dynamically reset specific PCRs to a known
state and follow a hardware enforced procedure for load-
ing, measuring, and executing a code segment effectively

removes analysis and processing complexities of a system’s
history.

Both AMD and Intel CPUs provide hardware support for
the setup and execution of a late launch environment. While
there are a few design differences between AMD’s Secure
Virtual Machine (SVM) Technology and Intel’s Trusted Ex-
ecution Technology (TXT), the variations are inconsequen-
tial for this work and we focus on the latter for simplic-
ity. Intel Trusted Execution Technology (TXT) relies on
two hardware extensions to execute a code module in a late
launch environment, a procedure it terms Measured Launch
Environment (MLE). TXT utilizes Safer Mode Extensions
(SMX), which introduced a specialized leafed instruction
called GETSEC[SENTER] to launch an Measured Launch En-
vironment (MLE). It subsequently relies on Intel Virtual-
ization Technology (VT-x) to protect the MLE from corrup-
tion. When loading the MLE, the system will measure and
extend the MLE into PCR 18. While executing, interrupts
are disabled and all other processing cores on the system
are idled until the MLE exits or manually reactivates these
features.

McCune et al. [21] created a tool, called Flicker, that is
built around the late launch functionality of a TPM. Flicker
is designed to allow small pieces of security sensitive code,
termed Pieces of Application Logic (PALs), that execute in
the secure late launch environment. These code segments,
which can perform operations such as password verifica-
tion, can be performed in a trustworthy manner, even in an
otherwise untrusted system. The intended goal of Flicker
is to allow short security sensitive operations to be per-
formed with frequent and rapid transitions to and from the
legacy system. While the architecture provides its intended
functionality, the frequency of late launch’s use, coupled
with the extensive overhead incurred in setting it up, limit
Flicker’s application.

In our approach, we will use the late launch environment
and use the Flicker tool to create a PAL that allows us to
implement the TTT. However, we will avoid the frequent
transitions that hinder Flicker’s utility.

2.3 TPMs for Isolation

Other work extends late launch to provide isolation between
the secure environment and the general computing base. In
Terra, Garfinkel et al. [22] create a “trusted Virtual Ma-
chine Monitor” hypervisor-based approach that is loaded
via trusted boot. Terra provides isolation between virtual
machines (VMs) with different security requirements, in-
cluding data confidentiality and integrity, by utilizing its at-
tested state by the trusted boot process and trust in Terra’s
correct implementation as assurance of the security mecha-
nisms integrity.

McCune et al. [23] extended their work on Flicker to
create TrustVisor, which like Terra, is a hypervisor-based
VM approach. However, it uses a DRTM, as opposed to
the Static Root of Trust for Measurement (SRTM) utilized
by Terra. TrustVisor overcomes the overhead incurred by
the Flicker architecture through a single invocation of late
launch, in which it the TrustVisor hypervisor is loaded and
measured. The legacy operating system is then loaded on



top of the hypervisor and allowed to run unrestricted. The
hypervisor’s sole virtualization capability is to allow legacy
applications to register PALs, which will be executed in
a secure environment separated from the legacy system.
The secure environment is isolated from the legacy sys-
tem through the use of virtualization techniques including
nested page tables for memory protection and an IOMMU
for DMA protection. Each registered PAL, prior to being
executed, will be measured and reported to a correspond-
ing software-based virtual TPM (vTPM). The trust placed
in each vTPM is extended from the hardware-based late
launch functionality and supported virtualization capabili-
ties of the platform and the minimalist design of TrustVi-
sor. While TrustVisor effectively overcomes the overhead
incurred by the Flicker design, it still requires software de-
velopers to partition components of each application based
on their security requirements.

Vasudevan et al. [24] implemented Lockdown, a partition-
based platform for security applications on commodity sys-
tems. While lockdown is in fact a hypervisor, it is de-
signed to fully partition an untrusted “red” environment
from a trusted “green” system for security sensitive appli-
cations. Lockdown, like TrustVisor, is loaded into a MLE
and its measurement is stored in a PCR on the TPM. Lock-
down leverages the Advanced Configuration and Power-
management Interface (ACPI) to save and switch between
the “red” and “green” environments. The normal use of
ACPI is to transfer a system into one of four sleep modes
for power conservation. Instead, Lockdown employs ACPI
to save the memory and system configurations of one en-
vironment and then wake (i.e. restore) the other environ-
ment. The hypervisor implementation is then tasked with
intercepting and routing storage device access from the en-
vironments to partition available storage between the two
environments. Lockdown provides code integrity and local
attestation by first measuring applications prior to allow-
ing them to load in the secure “green” environment. The
measurement is checked against a list of pre-approved ap-
plications and if the application passes this process, its code
is loaded into memory and Lockdown subsequently disables
write access to the code to prevent interference from other
“green” applications. Drawbacks to this approach, as stated
by the authors, are the tradeoffs between security and us-
ability. Lockdown provides greater assurance of security as
compared to previous hypervisor approaches by requiring
minimal functionality of the hypervisor, allowing Lockdown
to only require 10k lines of code (LOC). However, usabil-
ity suffers when switching between environments, which can
take 13-31 seconds to perform.

While each of these approaches create a trustworthy hy-
pervisor to allow a simultaneous “trusted” and “untrusted”
environment, we simply omit the “untrusted” environment.
We place the system into a minimalist OS mode where all
operations occur in the trusted state, allowing the system to
act as a simple interface to a fully-functional remote server.

3 Trusted Thin Terminal Design

Our Trusted Thin Terminal design is specifically aimed at
minimal functionality on the client. The client gains all its
functionality from a central IT server. This model is sim-
ilar to remote execution through the X11 windowing pro-
tocol [25] and the Secure Shell (SSH) [26] protocols. We
explicitly put the functionality and difficulty in securing
those environments in the hands of IT professionals rather
than attempt to secure the devices owned by users.

We use the late launch TPM functionality as a base for
our approach. Accordingly, our approach has some similar-
ities with Flicker and TrustVisor. However, unlike Flicker,
which invokes late launch for short periodic bursts, we en-
ter the late launch mode for a prolonged period. TrustVi-
sor makes a similar design decision to create a trusted hy-
pervisor that provides a secure execution environment for
Flicker-like invocations. However, programmers must al-
ter their code to comply with TrustVisor to perform these
functions.

In our approach, we enter the late launch environment to
create a micro-OS for the user. Once in the late launch en-
vironment, we perform simple polling of input and network
devices. Upon obtaining new network input from the re-
mote server, we update our video display. When we receive
new user input, we transmit it over the network to the re-
mote server. This functionality is sufficient for many inter-
active processes and replicates the functionality of VNC’s
Remote Framebuffer Protocol [27] clients. However, the
minimal code base allows comprehensive evaluation to re-
duce the errors associated with the program.
We now describe our threat model and then describe the

process of invoking the TTT.

3.1 Adversary Model and TPM Limita-

tions

In our design, we assume that the adversary has full access
to the general computing environment, including privileged
access to the operating system and all applications. The
adversary may have full control of the network communica-
tion between the client and the remote server. The adver-
sary may alter the TTT software on the client arbitrarily.
However, such alterations have the same result of a denial-
of-service (DoS) attack, which the adversary can already
launch in a more straightforward manner (such as deleting
the executables entirely). Essentially, if the executable is
corrupted, it will either not run or it will fail to properly
attest to the remote server and thus the attack is equivalent
to a DoS.

We include both the remote server, the system’s CPU,
and the TPM inside our trusted computing base (TCB).
CPUs and IT servers are often already in an organization’s
TCB and TPMs are designed to be inside the TCB. We
assume the attacker has not physically altered the system.
The remaining assumptions for the adversary model are

simply to address inherent limitations of the TPM and its
implementation. These limitations are common across all
systems that make use of the late launch functionality and
are being investigated by manufactures and the commu-



nity. In particular, attacks using peripheral software [28],
weaknesses in the TPM hashing algorithms [29], System
Management Interrupts (SMIs) [30], the GETSEC[SENTER]

modules [31], or TPM hardware attacks [32] are excluded
from our model. As the community addresses these vulner-
abilities, our assumptions may be relaxed. Until then, these
assumptions make the problem tractable.

3.2 Invoking Late Launch

To implement the TTT, we use the Flicker architecture to
create a Piece of Application Logic (PAL) that implements
the TTT functionality. This PAL is then provided as a
MLE for the late launch call. We group all this function-
ality into a logical unit that we label the “Trusted Thin
Terminal Launcher.” The launcher is executed by the user
as a regular application on the device. It then performs
the GETSEC[SENTER] call on the TTT executable, disabling
interrupts and suspending other computation cores while
causing the TPM to measure the executable, hash the exe-
cutable, and extend the hash value into the PCR 18 register.
Once this process completes, the CPU begins executing the
TTT program. The TTT can then request a measurement
and quote of the TPM, reflecting the new value of PCR 18,
as evidence that it can then supply to the remote server to
prove that it is executing in a known good state. We depict
this process in Figure 1.
Once in the TTT program, the system begins a looping

process where the user inputs are relayed to the remote
server and the server inputs are used to update the user’s
screen.
Importantly, our design and use of the late launch ap-

proach avoids the concerns with TOCTOU attacks. In par-
ticular, since the measurements of the relevant PCRs can
only be made in the late launch environment, the remote
server knows that the legitimate code was executing at the
time of the measurement. By coupling the measurements
with keying information, the remote server can ensure mes-
sages will only be processed by a client in the trusted en-
vironment. This provides protection against information
leakage were the client to prematurely leave the trusted en-
vironment.

4 Trusted Thin Terminal Architec-

ture

The TTT architecture is focused on handling user input and
display and communication with the remote server. The
TTT functions as a micro-OS by polling each of these in-
puts and taking the appropriate actions. In developing each
of these functions, we are constrained by our design deci-
sion to keep our TCB small. The inclusion of graphics li-
braries, USB device drivers, or network card device drivers
would dramatically simplify the implementation process,
but would do so at the expense of drastically increasing
the size of the trusted computing base. Instead, we aimed
for minimalism to create a small code base (amounting to
6, 294 lines of code) that could be verified, while still pro-
viding essential functionality for the user.

We now describe the system we used for our client and
then describe the approach to add a user display, keyboard
input, and network communication.

4.1 Client Machine

For our client machine, we used a Dell Optiplex 990 desktop
computer with an Intel Core i5-200 processor and Intel Q67
Express chipset. We used the integrated Intel 82579LM
Ethernet LAN NIC and the integrated Intel HD Graphics
2000 display adapter. We used Flicker v0.7 [33] and the
Authenticated Code module (AC module) available directly
from Intel termed “2nd-gen-i5-i7” [34]. We updated the
BIOS to version A17 and enabled the TPM, Intel TXT,
and VT-x in the BIOS. We note that a BIOS upgrade is
strongly advised since older BIOS versions may not properly
wipe and unlock the system’s memory during an improper
shutdown, rendering the system nonfunctional.

4.2 Creating the Trusted Thin Terminal

Display

The most straightforward approach to implementing a video
display as part of a MLE is to simply use or replicate the
available display device drivers. Unfortunately, such as de-
sign decision would run contrary to our goals of a minimal
TCB since the include device drivers constitute a significant
segment of programming code. Further, the device drivers
are hardware-specific. Even if we included the device driver
for our Intel HD Graphics 2000 video card, it would only
work for a subset of Intel video cards.

To address this issue, and to make our task tractable,
we focused on a minimalistic display. We used the Video
Graphics Array (VGA) standard text mode that provides a
generic display that is supported by a large range of com-
mercially available machines. This text mode is part of
the VGA standard and is often used by some system BIOS
versions to provide low-level control. While this mode con-
strains us to ASCII text, it allows us to demonstrate a suc-
cessful remote-login system.

While the system BIOS has a special option that can
place the video card into VGA mode, the process can also
be invoked manually, allowing us to exclude the BIO from
the TCB. To do so, we manually configure the 61 single-
byte VGA registers that control the video card configuration
and memory mapping. Finally, to switch to a 80 column
by 25 row text display, we modify a total of 125 registers,
according to available resources [35],[36].

Once in VGA text mode, each of the 256 characters can
be represented by at 8x16 bit field, with each bit indicat-
ing whether a bit is present or absent. These bits are set
using a set of three VGA memory planes, where the first
plane represent the index of the character to be displayed,
the second plane contains foreground and background color
attributes, and the third plane contains the font data used
to render each character. When initializing the TTT video
environment, we populate the latter two planes. Then, as
data is received from the remote server or user, we populate
the first plane to reflect the appropriate text characters.



Figure 1: Process to Launch the Trusted Thin Terminal Client

4.3 Accepting Trusted Thin Terminal User

Input

Given our constrained video environment, we focus on user
input from the keyboard. Two keyboard types are popular
in modern computers: PS/2 keyboards and USB keyboards.
As with the video display environment, we must make prag-
matic design decisions to support the functionality required
for a thin terminal while minimizing the size of the TCB.
While USB keyboard interfaces are gaining in popularity,

it is challenging to support a USB keyboard in a simple way
with little additional code in the TCB. The most straight-
forward option is to use the BIOS USB Legacy Keyboard
support interface. In this approach, the BIOS sends an
interrupt when the keyboard keys are pressed. However,
this method requires the inclusion of the BIOS in the TCB,
which we want to avoid, while only functioning on the dwin-
dling legacy USB keyboard support in BIOS versions. The
second option is to include USB device drivers in the TTT
that supports these devices directly. This option may be vi-
able, but the complexity of the USB interface would make
such implementation time-consuming. For now, we simply
defer such support and focus on the PS/2 interface.
To support a PS/2 keyboard, the TTT must properly

handle peripheral hardware interrupts. In single core sys-
tems, peripheral interrupts were processed by the Pro-
grammable Interrupt Controller (PIC) included as part of
the device’s Platform Controller Hub (PCH). When a key
is pressed, the PIC receives an interrupt on one of its in-
put pins and then alerts the CPU. To accommodate mul-
ticore processors, PIC was upgraded to the Advanced Pro-
grammable Interrupt Controller (APIC), which is now a
standard component in the PCH. In APIC, each core has
a Local APIC instance and a central IO APIC receives the
hardware interrupts and directs it to the appropriate Local
APIC instance. Accordingly, our MLE must configure each
of these components, along with the CPU’s Interrupt De-
scriptor Table (IDT), upon initialization to ensure the ap-
propriate Interrupt Service Routine (ISR) is invoked when
the CPU receives an interrupt. While the Flicker architec-
ture provides a foundation for many of these operations, it

does not provide the appropriate configuration functional-
ity for the IDT when initializing a MLE. Accordingly, we
modified the Flicker architecture to load the IDT upon ini-
tializing the MLE.

Once the TTT PAL begins execution, it disables all inter-
rupts except for the interrupts from the keyboard. It then
configures the Local APIC of the single executing proces-
sor to interrupt the CPU each time it receives a keyboard
interrupt. It then updates the IDT to reflect the correct
keyboard ISR inside the TTT. This ISR then obtains a scan
code, which is a multi-byte representation of the keyboard
key that has been pressed. The ISR must then convert these
scan code notations from the keyboard into the appropri-
ate ASCII value for display and transmission to the remote
server.

4.4 Network Interface Card Support in the

Trusted Thin Terminal

To communicate with the remote server, our TTT must be
able to control the Network Interface Card (NIC) that is
used to send communication. While we were able to create
generic drivers for the video display and keyboard input,
control of a NIC is inherently platform-specific. While other
similar NICs may be controlled with only slight variations
to the driver code, an abstract, minimalistic network card
driver is an open topic.

In our implementation, we focus on supporting the In-
tel 82579 GbE PHY NIC present in our own system. We
note that we must reuse data structures that were initially
populated by the legacy OS. While we have made a con-
certed effort to avoid information passing between these en-
vironments, we note that the complexity of this interface is
worthy of future study.

Most communication with the NIC is through the use of
two circular tables, a receive descriptor table and a transmit
descriptor table. Both tables are stored in the system’s
main memory and the NIC accesses the tables using DMA
to the memory region. While the addresses of both tables
are dynamic, we obtain the memory location of these tables



by accessing the PCH. The functionality of the two tables
is similar, so we focus on describing the transmission table
for brevity. The transmit descriptor table contains a set of
structures that have configuration options and a memory
reference to a buffer containing a full Ethernet frame to be
transmitted.

To coordinate between previously transmitted and cur-
rently pending frames, the NIC contains both a descriptor
table head and tail pointer. The head pointer is controlled
by the NIC to indicate the descriptors that have been pro-
cessed by the NIC. To transmit a frame, the TTT allocates
a memory buffer and copies the frame to that buffer. It
then configures the descriptor pointed to by the tail pointer
to reference the newly allocated frame buffer and moves the
tail pointer to the next available descriptor in the table to
indicate to the NIC there is new data to be transmitted.
The NIC will subsequently process and transfer pending
frames using DMA to a FIFO buffer located directly on the
NIC for transmission and will update the head pointer once
this transfer is complete. The process is very similar for
packet reception; however, to receive a packet, the TTT
must allocate an empty buffer and present it to the NIC by
writing a descriptor to the location indicated by the receive
tail pointer and then advance the tail pointer. The NIC, in
a similar fashion, writes to empty buffers referenced in de-
scriptors between the head and tail pointers and updates the
head pointer to indicate frame reception. For convenience,
the TTT also can activate checksum offloading in the NIC,
causing the network hardwired to compute the checksum
values for the TCP, UDP, IP, and Ethernet headers.

Once the TTT has initialized and configured the NIC, it
must determine the data to be transmitted. In particular,
it must construct the network layer headers and the head-
ers and payload for all layers above the network layer in the
ISO stack. In our proof-of-concept, we create IPv4 pack-
ets using UDP. We implement simplistic DHCP and DNS
implementations and provide a primitive UDP datagram
socket. Upon initializing, we issue a DHCP lease request,
allowing us to learn our IP address and routing information,
while not relying upon the legacy operating system.

The current TTT is capable of using the TPM to generate
quotes that can be transmitted to a remote server to show
that the proof-of-concept system functions.

4.5 Performance Discussion

In reusing the Flicker environment, we obtain performance
that is similar to the Flicker late launch environment’s
SK INIT invocation time, which was reported as around
15ms [21]. However, unlike Flicker, the late launch over-
heads are amortized over the length of a thin-terminal ses-
sion. Accordingly, the overhead time required to transition
into a thin terminal mode will be insignificant in practice.

While in the late launch environment, we essentially op-
erate a micro-OS using a single CPU processor. Since all
of our operations consist of polling for inputs and sending
outputs, this lack of parallelism is not a concern. While
unnecessary for a thin-terminal, future work could explore
enhancements to securely re-enable additional cores to op-
erate in the late launch environment.

5 Discussion and Future Work

We have created a basic foundation for creating a trustwor-
thy thin terminal system within the confines of a general
processing system. While the general computing system
may have rich functionality to support its users, the thin-
client allows the device to transform itself into a conduit
for a remote login session with a trusted remote system. In
doing so, the system provides strong isolation assurances,
allowing the system to engage in protected communication,
even if the legacy system is compromised by an adversary.
Such a system can be used to support organizational “Bring
Your Own Device” policies while still granting organiza-
tional IT departments strong control over the organization’s
assets. In particular, virtual desktop interfaces can be used
to provide these devices with access to organizational re-
sources, even on untrusted devices.

While this work represents a proof-of-concept implemen-
tation of a trustworthy thin terminal, there are opportuni-
ties to extend the work and improve its usability. In this
section, we describe some future work opportunities before
concluding the work.

5.1 Future Work

Enhancements to the input and output device drivers can
significantly improve the usability of the approach. While
our approach supports a keyboard and VGA interface for
the user, these are insufficient for modern computing en-
vironments. We must support higher resolution displays
with arbitrary pixel mapping support. In particular, the
VGA standard does describe a higher resolution, but it is
unclear if this approach would be hardware agnostic. Any
implementation that would allow the TTT to simply ac-
cept a (possibly compressed) pixel value map from the re-
mote server would likely suffice, since a similar approach
has been successfully used in VNC systems.

Driver support for USB devices is also an important con-
sideration. Support for a USB mouse and keyboard would
significantly increase the coverage of modern system com-
ponents. While other input devices exist, such as touch
interfaces in mobile devices, the driver for each of these de-
vices must be kept minimal to be verifiable by deployers.
We note that increased driver support is a tradeoff: they
enable basic functionality, but come with a security risk.
As an example, a study of two years of the Linux kernel
found that device drivers had a three to seven times greater
likelihood of containing software defects than the rest of the
kernel [37].

Finally, in future work, we can construct an authentica-
tion protocol to allow the trustworthy client to authenticate
to a remote server at the system granularity. This would
allow the remote server to have assurances about the oper-
ating state of the client before attempting to authenticate
the user associated with the client. This would essentially
allow the system to act as a second factor of authentication
for the session.



6 Conclusion

The goal of this work was to provide a Trusted Thin Ter-
minal that addresses the security issues created when a
BYOD policy is allowed in a corporate setting. These issues
include an asymmetrical imbalance between the trustwor-
thiness and required trust in today’s commodity operating
systems, along with the challenges the general public must
overcome to correctly manage the security of their devices.
We proposed three design goals for the BYOD problem:
1) shift security responsibilities to IT control, 2) provide
a trustworthy thin client for access to organizational re-
sources, and 3) provide evidence to attest to the thin client’s
state.

To accomplish these goals, we built upon previous re-
search using a Trusted Platform Module, a secure coproces-
sor providing a Dynamic Root of Trust for Measurement,
to design the Trusted Thin Terminal. This allowed us to
develop a proof of concept proving a user interface and net-
work capabilities. These capabilities are essential compo-
nents in developing a remote access program that interfaces
with IT-controlled servers. We leveraged the Flicker archi-
tecture, with noted modifications, to provide a gateway into
a secure Measured Launch Environment, in which our TTT
executes. This environment allows our client software to
operate in isolation from the other software on the device.
The use of this late launch architecture allows the TTT
to provide trustworthy authentication to a remote server,
effectively addressing our goal of authentication.

Our efforts provide a proof-of-concept text-based remote
client. In doing so, we describe the inherent challenges of
creating a minimalistic micro-OS capable of supporting a
thin terminal client. We highlight several opportunities for
future work that can dramatically improve the user expe-
rience at the cost of a larger trusted code base. While the
effort may be challenging, we note that the construction
of well-vetted, minimalistic device drivers could empower
organizations to create trustworthy thin-clients for BYOD
devices.
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