
Analysis of IPSec Overheads for VPN Servers

Craig Shue, Youngsang Shin, Minaxi Gupta, Jong Youl Choi
Computer Science Department, Indiana University, Bloomington, IN, U.S.A.

{cshue, shiny, minaxi, jychoi}@cs.indiana.edu

Abstract

Internet Protocol Security (IPSec) is a widely deployed
mechanism for implementing Virtual Private Networks
(VPNs). This paper evaluates the performance overheads
associated with IPSec. We use Openswan, an open source
implementation of IPSec, and measure the running times of
individual security operations and also the speedup gained
by replacing various IPSec components with no-ops. The
main findings of this study include: VPN connection es-
tablishment and maintenance overheads for short sessions
could be significantly higher than those incurred while
transferring data, and cryptographic operations contribute
32− 60% of the total IPSec overheads.

1. Introduction

IP packets do not have any inherent security, making it
easy to forge and inspect their content, including the IP ad-
dresses contained in them. As a result, there is no guarantee
that a received IP packet: 1) is from the claimed sender,
2) contains the original data that the sender put in it, or 3)
was not sniffed during transit. IPSec [10], [5] (short for
IP Security) provides a method to protect IP datagrams by
defining a method for specifying the traffic to protect, how
that traffic is to be protected, and to whom the traffic is sent.
For both IPv4 and IPv6, it offers the choice of two pro-
tocols: Encapsulating Security Payload (ESP) [9] or Au-
thentication Header (AH) [8]. AH provides data integrity,
anti-replay protection, and proof-of-data origin on received
packets. ESP provides data confidentiality in addition to all
that AH provides. In order to establish and periodically re-
fresh the necessary cryptographic parameters for both these
protocols, IPSec defines another protocol called the Internet
Key Exchange (IKE) [7] protocol.

Both ESP and AH protocols can be used either in tunnel
mode or in transport mode. The transport mode leaves the
original IP header untouched and is used to protect only the
upper-layer protocols. As a result, it can only be used be-
tween two end hosts that are also cryptographic end points.

The tunnel mode protects the entire IP datagram by use of
encapsulation and can be used to protect traffic between two
end hosts, or two gateways (e.g. routers, firewalls), or be-
tween an end host and a gateway.

A popular and widely deployed use of IPSec is in estab-
lishing Virtual Private Networks (VPNs). Through the use
of cryptographic primitives, VPNs allow off-site personnel
to access organizational resources over the public Internet
as if they were on-site. Figure 1 shows an example of a
popular VPN configuration. In order to access a resource,
say Resource 1, the client establishes an IPSec tunnel with
the organization’s VPN server. Typically, the ESP protocol
is used to ensure the confidentiality of data traversing the
Internet. To communicate with Resource 1, the client forms
a IP datagram with the organization’s local IP address (pro-
vided by the VPN server) as the source address and the IP
address of Resource 1 as the destination address. It then
encapsulates this datagram in another IP datagram with its
present IP address as the source and organization’s VPN
server’s IP address as the destination. Upon receipt of this
IP-in-IP datagram, the VPN server strips off the outer IP
header, decrypts the inner IP datagram, and sends it to Re-
source 1. To Resource 1, the datagram appears as though the
client was on-site. Tunnel mode is preferred to the transport
mode because the client can later utilize the same tunnel to
access Resource 2 remotely as well.

IPSec tunnel

Internet

Server
VPN

Resource 2

Resource 1

Client

Figure 1. A popular VPN configuration.
While performance of Transport Layer Security (TLS)

has been characterized [2, 1], very little research has been
conducted thus far in understanding the overheads involved
in using IPSec. IPSec was the focus of work in [6], where
the authors examined the ESP and AH encapsulation over-
heads. However, a comprehensive picture of IPSec over-
heads was not presented because the performance penalty
associated with the IKE process was not examined. This
aspect needs to be understood because the IKE protocol is

usually not just run once during the establishment of a VPN
connection. It is periodically run during longer VPN ses-
sions for stronger security. Also, frequent disconnections
may cause IKE to be run multiple times for clients in wire-
less environments. Further, the difference in overheads due
to different encryption algorithms and key sizes was not in-
vestigated in the previous IPSec work [6].

In this work-in-progress paper, we present the prelimi-
nary analysis of the performance overheads associated with
IPSec using Openswan [3], an open source implementation
of IPSec. We focus on the tunnel mode of operation and the
ESP protocol because it is the most widely deployed con-
figuration for creating VPNs. We utilize two methods in
order to analyze the performance impact of the ESP proto-
col, the IKE protocol, various encryption algorithms, and
various cryptographic key sizes: measuring run-times for
individual security operations, and replacing various IPSec
components with no-ops and recording the speed-up in the
run-time of various IPSec phases. The main findings from
this work include: 1) overheads of the IKE protocol are con-
siderably higher than those incurred by ESP for process-
ing a data packet, 2) cryptographic operations contribute
32− 60% of the overheads for IKE and 34− 55% for ESP,
3) digital signature generation and Diffie-Hellman compu-
tations are the largest contributor of overheads during the
IKE process and only a small amount of the overheads can
be attributed to the symmetric key encryption and hashing,
and 4) symmetric key encryption is the most expensive op-
eration during the ESP process.

2. Background

IPSec integrates security at the IP layer. In order to pro-
vide higher layer services that are IPSec oblivious, it defines
two new protocols, Encapsulating Security Payload (ESP)
and Authentication Header (AH). Both ESP and AH pro-
tocols encapsulate IP packets using ESP and AH headers
respectively. In the case of transport mode of operation,
the original IP header is retained and the new ESP or AH
header is inserted between the IP header and the header of
the higher layer transport protocol like TCP. As a result, us-
ing transport mode implies using IPSec between the actual
source and destination of the IP packets. In the case of tun-
nel mode of operation, the entire IP packet to be protected is
encapsulated in another IP datagram and an IPSec header is
inserted between the outer and inner IP headers. The com-
munication end points in tunnel mode are those specified in
the inner header and the cryptographic end points are those
appearing in the outer IP header. Due to this flexibility of-
fered by the tunnel mode, it is the most widely used in cre-
ating VPNs. Hence, we focus on the tunnel mode in this
paper.

The choice between ESP and AH protocols depends on

the desired level of protection for the IP datagrams. As men-
tioned earlier, the AH protocol offers data integrity, anti-
replay protection, and data source authentication but does
not offer data privacy. The ESP protocol offers data privacy
in addition to all the features offered by the AH protocol
and is the protocol of choice for VPN deployment. Conse-
quently, the subsequent description in this section focuses
on the ESP protocol used for forming VPNs, even though
much of it applies to AH as well. Also, the performance
evaluation presented in this paper focuses on the ESP pro-
tocol.

The selection of a cryptographic mechanism is required
before any IP data can be encrypted using the ESP protocol.
The available primitives include using a symmetric key be-
tween the two cryptographic end points or the public keys of
the end points. Since using public key encryption is compu-
tationally expensive, IPSec uses symmetric keys. But, be-
fore IPSec can use symmetric key to encrypt data, the sym-
metric keys must be exchanged. While out-of-band means
can be used, it would not be possible to scale them for large
networks. Moreover, they are not conducive to changing
keys in the event the key is compromised. To accomplish
this goal, IPSec defines the Internet Key Exchange (IKE)
protocol. We now describe the IKE and ESP protocols in
sections 2.1 and 2.2 respectively.

2.1. IKE Protocol

The goal of the IKE protocol is to establish and main-
tain shared security parameters and authenticated keys be-
tween the two IPSec end points. It uses a series of messages
contained in UDP datagrams, typically directed to port 500.
The IKE protocol consists of two distinct phases. The first
phase establishes a symmetric IKE key between the initia-
tor (VPN client in our case) and the responder (VPN server
in our case). This key is used in the second phase to es-
tablish a symmetric IPSec key for use during ESP or AH
encapsulation.

IKE defines two possible modes for the first phase of
the protocol: the main mode and the aggressive mode. The
main mode consists of 3 exchanges (6 messages in total) be-
tween the initiator and the responder. The aggressive mode
requires half the number of messages but provides less ne-
gotiating capabilities; furthermore, it does not provide iden-
tity protection for the end points of the IPSec tunnel. The
second phase is also called the quick mode and involves 3

messages.
IPSec uses the notion of Security Association (SA) in two

different contexts. In the context of the IKE protocol, the
SA defines the manner in which two end points communi-
cate; for example, this involves agreeing on the algorithm
used to encrypt traffic, the hash algorithm, and the mech-
anism to authenticate the other end point. IKE defines 3

categories of authentication methods (5 in total) for phase
one: the first method involves the use of pre-shared keys,
the next two methods use digital signatures (using RSA or
digital signatures algorithms), and the last two methods use
public key encryption.

ResponderInitiator

Header + IKE SA

Header + IKE SA

Header + g + N I
I

R
Header + g + N R

R

I

I I SK

R SK

R

Header + { ID + [CERT] + Signature }

Header + { ID + [CERT] + Signature }
I

R

P1; R3. verification and signature

P1; I3. signature issue

P1; R2. D−H key exchange

P1; I2. D−H key exchange

P1; R1. IKE SA selection

P1; I1. IKE SA offer

Figure 2. IKE Phase 1, Main Mode

Figure 2 shows the message exchanges for the first phase
of the IKE protocol in main mode with digital signature
scheme for authentication. In the first exchanges of I1 and
R1, the initiator I suggests multiple SAs for the IKE proto-
col (IKESAI) along with its cookie CI and the responder
R chooses one (IKESAR) of them with its cookie CR. In
the second exchanges (I2 and R2), the initiator and the re-
sponder exchange Diffie-Hellman (D-H) public values, gI

and gR respectively, and nonces, NI and NR respectively,
to prevent replay attacks. In the last I3 and R3, each party
computes independently the shared key SK from the previ-
ous exchanges – cookies, nonces, and D-H values – sends
encryption of each identity (IDI and IDR respectively), a
certificate for the public key verification (which is optional),
and a signature on the hashed value of cookies, D-H values,
SK, SAs, and identities. As a result, two parties will agree
on the IKE symmetric key (SK).

When using a pre-shared secret as the authentication
mechanism for phase one, the first two exchanges are iden-
tical to the digital signature approach described in figure 2.
The only difference is in the third exchange, when only the
identity of the end-point and a hash are sent encrypted, in-
stead of the signature.

When aggressive mode is used instead of the main mode
for phase one, the first two messages on the initiator’s side
are combined into a single message. Also, the responder’s
first, second, and third messages are combined into a sin-
gle message. This cuts down the total number of messages
required to establish the IKE key using phase one in half.

The second IKE phase is done in quick mode and ac-
complishes two tasks: 1) it establishes an IPSec Security
Association (SA)1 and 2) it produces an IPSec key for use
during the ESP or AH encapsulation. Quick mode uses the

1The IPSec SA is different from the IKE SA. In the context of IKE,

IKE key derived from the first phase exchanges to encrypt
its messages.

Initiator Responder

Header + {Hash }
SK

P2; I1. IPSec SA offer

P2; R1. IPSec SA selection

P2; I2. liveness proof

I I

R R
Header + {Hash + IPSec SA + N +[g]}

I2

SK

SK

Header + {Hash + IPSec SA + N + [g]}I

R

I1

R1

Figure 3. IKE Phase 2, Quick Mode

As shown in figure 3, the second phase of the IKE pro-
tocol is done by three message exchanges. For the first and
second messages I1 and R1, the initiator I and the respon-
der R exchange IPSec SAs (IPSecSAI and IPSecSAR),
nonces NI and NR (for replay attack protection), optional
D-H values gI and gR, and hashes of these values and mes-
sage IDs (to prove liveliness), HashI1 and HashR1. After
the initiator sends one more hash (HashI2) using both NI

and NR and the message ID as the third message, both par-
ties will agree on the IPSec symmetric key for use during
ESP or AH encapsulation.

For better security during longer VPN sessions, IPSec
provides a mechanism to periodically refresh both IKE and
IPSec keys. Refreshing the IKE key entails running both
IKE phases but refreshing the IPSec key only requires run-
ning the second phase (quick mode) again.

2.2. ESP Protocol

We now describe the processing of IP packets when ESP
protocol is used in tunnel mode in IPSec VPNs. For pro-
cessing outbound packets, the transport layer forwards data
to the IP layer, which has been enhanced with the IPSec
functionality. The IP layer consults a locally maintained Se-
curity Policy Database (SPD) that defines the security ser-
vices afforded to this packet. The output of the SPD dictates
whether the IP layer drops the packet, bypasses security, or
applies security.

If security is to be applied, the appropriate IPSec SA is
consulted by looking up the SA database (SADB)2 and the
entire IP packet is encrypted and placed inside another IP
packet. To facilitate the processing of this packet at the
other end, an ESP header containing SA mapping informa-
tion and sequence number (to prevent replay attacks) is in-
serted between the new IP header and the original encrypted
IP packet. An ESP trailer containing Integrity Check Value

the SA meant agreeing on the authentication mechanism, encryption and
hash algorithms. But, in the context of IPSec the SA defines the processing
done on a specific IPSec packet by choosing between tunnel and transport
modes, and between ESP and AH protocols.

2An IPSec SA negotiated through IKE second phase should exist at this
point, if not IKE is invoked to establish it.

(ICV) is also inserted at the end of the new IP packet before
sending it out.

Upon arrival of an inbound ESP packet, the SADB is
consulted. If no SA exists, the received packet is discarded.
Otherwise, it is de-capsulated and the appropriate IPSec key
to decrypt the original IP packet is retrieved using the infor-
mation contained in the ESP header of the received packet.
Also, the sequence number contained in the ESP header is
used to prevent replay attacks and the ICV value contained
in the ESP trailer is verified to guarantee that the packet was
not modified during transmission.

3. Methodology

We used Openswan [3], an open source implementation
of IPSec, to examine various aspects of the IPSec protocol.
This section describes the methodology used to understand
the IPSec overheads, including the software and hardware
used and the tests performed.

3.1. Experimental Environment

To conduct our experiments, we used two x86 Dell Op-
tiplex GX Pentium IV machines. The first, used as the
VPN server, had a 1.66GHz processor and a 100Mbps net-
work interface card, while the second, which was used as a
VPN client had a 1.8GHz processor and a 1000Mbps net-
work card. Both the machines had 512MBytes of RAM and
were connected to each other through a 100Mbps Ethernet
switch.

The machines ran Debian Linux [4] with a 2.6.8 kernel.
We disabled the native IPSec support due to compatibility
issues and instead used Kernel Level Internet Protocol Se-
curity (KLIPS), the shim provided by Openswan for IPSec
support. The Openswan version used was 2.3.1dr3, the lat-
est version at the time our experiments began.

For measuring both IKE and ESP overheads we used two
different approaches: 1) measuring the time taken for indi-
vidual security operations (referred to as timing measure-
ments subsequently) and 2) replacing various IPSec com-
ponents with no-ops (referred to as no-op measurements
subsequently). In order to characterize the amount of time
spent on various cryptographic operations, we inserted as-
sembly codes3 to capture the CPU cycle count at which
a cryptographic function started and the count at which it
completed. We determined the elapsed time for each opera-
tion by gathering the elapsed cycles and multiplying this cy-
cle count with the processor’s clock speed. This technique
yields nanosecond resolution, allowing for highly accurate
results and minimum overhead. To get an alternate view

3On Intel Pentium processors, RDTSC (Read Time Stamp Counter)
instruction returns the number of clock cycles since the CPU was powered
up or reset. This value is stored as a 64-bit number.

on the overheads we replaced the computationally expen-
sive cryptographic operations with no-ops. For both IKE
and ESP, we experimented with AES and 3DES symmetric
encryption schemes with key sizes of 128 and 256 bits for
AES and 192 bits for 3DES. For the hashing algorithm, we
tested the MD5 hashing algorithm.

3.2. Tests Performed

IKE Testing. Out of the three categories of authenti-
cation methods prescribed for IKE phase one, Openswan
supports only two: digital signatures and pre-shared secret.
We examined the overheads of both of these.

The pre-shared secret authentication mechanism is the
most commonly used method in real-world VPN deploy-
ments using IPSec because it does not require that the
clients possess public keys. It does require additional au-
thentication measures because organizations often keep the
pre-shared secret used to establish the IKE key in public
domain for easy access for their personnel. Since the over-
heads for the digital signature authentication mechanism
are a superset of those incurred when pre-shared secret ap-
proach is used, we focus on the overheads for the digital
signature approach and elaborate where the two methods
diverge.

We evaluated the overheads for both main mode and ag-
gressive mode for IKE phase one and for quick mode for
phase two. The public and private keys required for the dig-
ital signatures method were manually configured for both
the client and server. To communicate with the running IKE
daemon, Openswan uses a wrapper that connects to the dae-
mon. We timed this wrapper to measure the time to com-
plete the IKE exchanges. We conducted 25 trials of IKE
daemon start-up, connection initiation, connection termina-
tion, and tear-down.

ESP Testing. The IPSec ESP module uses the sym-
metric key obtained through IKE to encapsulate and de-
capsulate outgoing and incoming IP packets respectively.
For testing its overheads, we conducted 25 trials of the time
it took the IPSec VPN server to process a ping request
packet from the client connected via an ESP tunnel.

4. Experimental Results

This section reports on the experimental results obtained
for timing and no-op measurements for ESP and IKE pro-
tocols for AES (key sizes 128 and 256) and 3DES (key size
192) encryption schemes with MD5 hashing algorithm.

4.1. Timing Measurements

IKE Timings. Table 1 shows the cryptographic timing
measurements for phases one and two of the IKE proto-

col for the responder (VPN server in our case) when main
mode with digital signatures as the authentication method
was used for phase one. The reported numbers are averaged
over 25 trial runs. Here, and subsequently, the encryption
algorithms and key sizes are denoted by a concatenation
of the name of the algorithm and the key size (3DES192,
AES128, AES256 respectively). The cryptographic opera-
tions are labeled in the same manner as in figures 2 and 3,
with P1 and P2 prepended to disambiguate between the
two IKE phases.

Table 1. IKE cryptographic overheads for VPN
server (in ms).
MSG OPERATION 3DES192 AES128 AES256
P1, R2 D-H comp. 17.59 17.64 17.55
P1 IKE key gen. 0.18 0.13 0.13
P1, R2 Decryption 0.17 0.06 0.06
P1, R2 Signature verif. 1.07 1.09 1.06
P1, R3 Hash verif. + gen. 0.04 0.04 0.04
P1, R3 Signature gen. 78.82 79.10 78.96
P1, R3 Encryption 0.06 0.16 0.16
P2 Decryption 0.11 0.03 0.03
P2 Hash verif. 0.02 0.02 0.02
P2, R1 D-H comp. 17.91 17.95 17.95
P2, R1 Hash gen. 0.03 0.03 0.03
P2, R1 Encryption 0.08 0.18 0.18
P2 Decryption 0.07 0.02 0.02
P2 Hash verif. 0.01 0.02 0.01
P2 IPSec key gen. 0.09 0.10 0.10

Total: 117.59 117.93 117.66

As table 1 shows, the biggest contributer to the crypto-
graphic overheads at the VPN server was the RSA signature
generation. Out of the total 373.82ms recorded at the server
for the IKE process for 3DES1924, including 117.59ms for
the cryptographic operations as shown at the end of table 1,
this one operation took approximately 21% of the total time
required for the IKE process for all key sizes and encryption
algorithms tested. However, verification of signatures sent
by the client was much more efficient (1.07ms, 1.09ms, and
1.06ms for 3DES192, AES128, and AES256 respectively).

The D-H computations were the second biggest over-
head at the server, consuming a total of 35.50ms (17.59ms
and 17.91ms during phases one and two respectively) for
3DES192. These overheads varied little across encryption
algorithms. The overheads associated with symmetric key
encryption and decryption operations in both phases are
quite low and vary with the size of the data being encrypted.
Due to the small difference in the key sizes available for
testing, no clear conclusion about the relationship of over-
heads and key sizes or encryption algorithms can be drawn.
Finally, hashing contributed the least to the cryptographic
overheads.

The details of the overheads recorded at the initiator

4This includes the IKE message processing at the client (including the
cryptographic operations) because IKE messages happen in lock-step.

(VPN client) were similar to those presented here and are
omitted due to space constraints. Overall, the client over-
heads were less since the machine used as the initiator
had a 200MHz processing edge. In particular, the crypto-
graphic overheads at the client were 107.27ms, 107.53ms,
and 107.41ms for 3DES192, AES128, and AES256 respec-
tively.

Changing the authentication method in IKE phase one
main mode to pre-shared secret changed the total IKE over-
heads at the server to 214.99ms, 213.71ms, and 214.30ms
for 3DES192, AES128, and AES256 respectively. These
overheads differ from the digital signature overheads only
by twice the digital signature generation overheads, one at
the client and one at the server. This is expected because the
remaining operations are very similar in both authentication
methods. For conciseness, we have omitted the details of
these results as well.

Next, we replaced the main mode by aggressive mode
for IKE phase one and measured the total IKE overheads
for both phases for digital signature authentication mech-
anism. This reduced the number of messages exchanged
between the client and the server but did not change the
cryptographic operations performed. The results reflected
this and no difference in cryptographic overheads was ob-
served. The overall IKE overheads decreased by only about
5ms.

Overall, the cryptographic operations contributed about
60% to the total running time of the IKE protocol for all en-
cryption schemes and key sizes when digital signature au-
thentication was used in main mode (32% when pre-shared
key was used in main mode and 60% when digital signa-
tures were used in aggressive mode). The remaining time
was spent in the actual transmission of the messages, mem-
ory management, and other non-cryptographic operations.

ESP Timings. To infer the ESP overheads we measured
the processing time of a ping packet at the server. Fig-
ure 4 shows the average overheads for 3DES192 over 25
trial runs when the client sends a 736 byte ping request to
the server. The top to bottom of the y-axis in figure 4 shows
the journey of an inbound ping request until the server pre-
pares an outbound ping response packet. The inbound and
outbound ESP overheads are demarcated by the dashed ver-
tical lines and the rest of the overheads are the standard ping
processing overheads incurred by the Linux TCP/IP imple-
mentation.

The key observation from figure 4 is that ESP processing
for a packet is considerably faster than IKE. Also, out of the
total 148.61µs inbound processing time, around 58% was
contributed by symmetric key decryption. Similarly, 55%

of the outbound processing time was contributed by the en-
cryption operation. While the overheads for the hash com-
putations were negligible in comparison with other over-
heads for IKE, this is not the case for ESP.

Figure 4. Server ESP overheads (3DES192).

Figure 5. Comparison of ESP overheads.

Figure 5 shows the comparison between 3DES192,
AES128, and AES256 for the same ping packet process-
ing. While all other operations incur the same overhead as
expected, AES256 is almost two and a half times faster than
3DES192 in spite of the bigger key size. It remains to be in-
vestigated whether this observation is hardware dependent
and whether it holds true for larger transfers.

4.2. No-op Measurements

In order to infer the non-cryptographic IPSec overheads
we no-oped cryptographic operations selectively and mea-
sured the speed-up. This section reports on the no-op ex-
periments conducted.

IKE No-ops. Table 2 compares the server overheads be-
tween the full IKE implementation and its no-oped skeleton
implementation where the cryptographic operations have
been stripped off. Digital signatures were used for authen-
tication during phase one, which was run in main mode.

Table 2. Comparison of full and skeleton IKE
code (in ms).

3DES192 AES128 AES256
Full IKE 373.82 370.86 371.06
Skeleton IKE 141.48 141.16 141.05

The difference between skeleton and full IKE implemen-
tations for all encryption schemes is very close to what we

observed using the timing measurements and the minor de-
viations can be attributed to compiler optimizations that oc-
cur when the code is no-oped. The results for pre-shared se-
cret in main mode and digital signatures in aggressive mode
have been omitted due to space constraints.

ESP No-ops. Table 3 compares the processing times at
the server for native TCP/IP ping processing, the skele-
ton ESP version where all the cryptographic operations have
been no-oped, and the full ESP implementation (3DES192,
AES128, AES256). It is noteworthy that even when all
cryptographic operations are no-oped, substantial ESP over-
head remains, just like in the case of IKE. The crypto-
graphic operations contribute 55%, 34%, and 37% to the
overall ESP overheads for 3DES192, AES128, and AES256
respectively. 3DES192 performs the worst of three but it re-
mains to be investigated whether this observation holds true
for larger transfer sizes as well.

Table 3. Comparison of full and skeleton ESP
code (in µs).

3DES192 AES128 AES256

Full ESP 345.69 244.13 252.16

Skeleton ESP 182.37

Native TCP/IP 46.44

Acknowledgments
We would like to thank Tom Zeller and Rob Henderson

for insights on deployed VPNs and assistance in conducting
the experiments respectively.

References

[1] G. Apostolopoulos, V. Peris, and D. Saha. Transport Layer
Security: How much does it really cost? In IEEE INFO-
COM, June 1999.

[2] C. Coarfa, P. Druschel, and D. Wallach. Performance analy-
sis of TLS Web servers. In NDSS, February 2002.

[3] X. Corporation. Openswan Web-site, 2004. http://
www.openswan.org/.

[4] Debian Linux Web-site. http://www.debian.org/.
[5] N. Doraswamy and D. Harkins. IPSec: the new security

standard for the Internet, intranets, and virtual private net-
works. Prentice Hall, 1st edition, 1993.

[6] G. C. Hadjichristophi, N. J. Davis IV, and S. F. Midkiff.
IPSec overhead in wireline and wireless networks for web
and email applications. In 22nd IEEE IPCCC, April 2003.

[7] D. Harkins and D. Carrel. The Internet Key Exchange (IKE).
RFC 2409 (Proposed Standard), Nov. 1998.

[8] S. Kent and R. Atkinson. IP authentication header. RFC
2402 (Proposed Standard), Nov. 1998.

[9] S. Kent and R. Atkinson. IP encapsulating security payload.
RFC 2406 (Proposed Standard), Nov. 1998.

[10] S. Kent and R. Atkinson. Security architecture for the in-
ternet protocol. RFC 2401 (Proposed Standard), Nov. 1998.
Updated by RFC 3168.

