
By Your Command: Extracting the User Actions
that Create Network Flows in Android

Shuwen Liu, Joseph P. Petitti, Yunsen Lei, Yu Liu, Craig A. Shue
Worcester Polytechnic Institute

{sliu9, jppetitti, ylei3, yliu25, cshue}@wpi.edu

Abstract—Given the complexity of modern systems, it can
be difficult for device defenders to pinpoint the user action
that precipitates a network connection. Mobile devices, such as
smartphones, further complicate analysis since they may have
diverse and ephemeral network connectivity and support users
in both personal and professional capacities. There are multiple
stakeholders associated with mobile devices, such as the end-user,
device owner, and each organization whose assets are accessed
via the device; however, none may be able to fully manage,
troubleshoot, or defend the device on their own.

In this work, we explore a set of techniques to determine the
root cause of each new network flow, such the button press or
gesture for user-initiated flows, associated with a mobile device.
We fuse the User Interface (UI) context with network flow data
to enhance network profiling on the Android operating system.
In doing so, we find that we can improve network profiling
by clearly linking user actions with network behavior. When
exploring effectiveness, the system enables allow-lists to reach
over 99% accuracy, even when user-specified destinations are
used.

I. INTRODUCTION

Mobile devices have varied and opportunistic network us-
age patterns, they are often personally-owned and used for
personal and professional purposes, and they are often vital in
modern organizations. These intertwined patterns complicate
efforts to manage the devices since no individual stakeholder
may have all the necessary technical knowledge or visibility
into the device to troubleshoot issues or enhance security.

IT system and network managers need visibility into end-
points to expedite problem diagnosis and reduce resource
usage and infrastructure costs [1]. However, even with detailed
logging infrastructure, the link between user actions and the
resulting behavior of a device may be unclear. When errors
occur, organizations need ways to localize the defect, which
can be more difficult when they do not own or have direct
access to the device. Further, proper security of mobile devices
is a concern since organizations need ways to ensure mobile
devices are not allowing adversaries a foothold into their
systems. Device owners and end users need to ensure a
device is protected without sacrificing their privacy. Further,
solutions in this space must avoid impractical requirements
(e.g., recompiling the Android kernel or gaining root access
to their device, which may incur its own security risks [2]),
which was a requirement in prior work [3], [4].

Since the network communication plays a key role in
troubleshooting performance or security concerns, an accurate
network sensor could help secure the devices in the network.

However, since mobile devices can connect to a wide range of
networks, it may be infeasible to ensure every network has in-
network sensors. Accordingly, we explore options to improve
network sensing on the mobile device end-point itself. Prior
work [5] shows it is applicable to implement software-defined
networking (SDN) tools as an effective network sensor on
endpoints running the Windows operating system. However,
while that prior work could leverage kernel device drivers
to perform its work, the mobile device space places greater
constraints on sensing software and access. In this work, we
explore SDN endpoint sensors that work within standard APIs
and permissions in Android devices.

This exploration leads to the research question: Can UI
interaction and network activity be used to successfully predict
and associate network flows with user actions on Android
devices? Mobile devices operating systems have isolation
techniques that may hinder such an association.

In the exploration, we make the following contributions:
• Create a UI-aware Endpoint Network Sensing System:

We create a new Android application, called APPJUDICA-
TOR, which leverages UI interaction and SDN principles
to determine whether network flows are legitimately user-
initiated (Section III).

• Characterize Network Profiling Potential for UI-
aware Systems: We explore APPJUDICATOR’s ability
to perform real-time network profiling and management
on Android devices. We enable dynamic allow-lists that
can leverage user actions to permit user-driven events.
We found that our system helps increase the accuracy of
allow lists for user-supplied destinations from less than
7% to over 99% (Section IV).

II. BACKGROUND AND RELATED WORK

Our approach is related to prior work in profiling Android
system and network characteristics, graphic user interfaces and
accessibility services, and end-point SDN techniques. We now
provide context and background in each of these areas.

A. Profiling Systems and Networks on Android

Prior work has shown the value of profiling communication
patterns on Android. ProfileDroid [6] characterized applica-
tion traffic and privacy concerns. They linked coarse-grained
user-level information with network flows to identify traffic
associated with advertising from primary application traffic.
Netsight [7] helped localize the root causes associated with



network failures. Other work demonstrated the effectiveness
of endpoint network logging by using browser data to explore
the end-to-end network path to distinguish on-path failures
from attacks [8].

While powerful, some network instrumentation on Android
devices may require root privileges to devices, raising security
concerns [9] and possibly complicating deployment. To avoid
such challenges, NoRoot [10] and NetGuard [11] configure
the built-in Android VPN client to route traffic to their own
local applications in order to enable profiling and firewalling
services. Meddle [12] enables inspection of network traffic
remotely using the VPN interface. Our work likewise uses
the VPN interface to obtain network traffic without requiring
root privileges; however, unlike prior work, we fuse this
information with the user’s activities in the UI to distinguish
user-driven traffic from automated processes.

Prior work has explored network logging on mobile devices
for network troubleshooting [13] and digital forensics [13].
Further, Sipola et al. [14] used deep learning methods on
network logs to identify malicious network activities. Our
approach augments traditional network logs with user activity
to help provide context for operations.

The instrumentation of Android devices can look at internal
interactions as well. Prior work has explored system calls
and their ability to reconstruct users’ intended actions [15],
[16]. While Android maintains a system log, analysts typically
need a debugger or root access to get the full logs. Using
static analysis, AppContext [17] found patterns that distinguish
malicious apps and benign apps. However, such approaches are
not amenable for real-time network profiling.

B. User Interface (UI) and Accessibility Sensors

End users control programs on mobile devices via the user
interface. That interface can provide context for different oper-
ations. AppIntent [18] uses static analysis to trace UI activities
to data transmission events; however, this technique cannot be
used in real-time traffic classification. The GUILeak [19] tool
traces UI actions and records user input, which is manually
compared with contractual and privacy policies described by
the vendor to detect privacy violations. Given the manual steps
involved, these processes are not amenable to real-time traffic
evaluation. SmartDroid [20] proposes to enforce a sequence
of system calls associated with UI elements. However, the
method is difficult to implement on average users’ mobile
phones since it usually requires rooting a device.

Tools to automate UI interactions have also been developed
to help with software testing. The Android Monkey [21]
tool is an official mechanism that allows developers to send
sequential events to the device via its adb debugger interface.
Appium [22] is a tool commonly used for software test
automation. We use Appium in our experiments.

Android provides an accessibility API [23] that allows ac-
cessibility services developers to cross the traditional boundary
of sandboxed applications. The services can send commands
and receive UI events invoked by a human user to other
applications. Chuluundorj et al. [24] apply this service to

leverage UI event information in securing IoT devices in home
networks, which shows UI events can be effectively used in
network profiling.

C. Software-Defined Networking (SDN) on Endpoints

SDN separates the data plane that forwards traffic from
the control plane that determines the appropriate data plane
table entries. SDN has been well studied in enterprise net-
works [25]–[28] and residential networks [29]–[31]. However,
these SDN agents are typically implemented in switches,
either in hardware or in virtual hypervisors. SDN can also
use agents on endpoints. Taylor et al. [27], [32] provide a
prototype to shift an SDN agent from a switch to an end-host.
Chuluundorj et al. [5] develop and implement a practical SDN
agent in the Windows operating system.

SDN has also been implemented in Android: meSDN [3]
and PBS-Droid [4] propose to deploy SDN agents in the
Linux kernel on Android. However, this method requires
recompiling the OS, which is an obstacle for many users.
HanGuard [33] proposes to install SDN technology on both
Android endpoints and home routers to enforce fine-grained
access control. Unlike these works, we focus on deployability
and enabling greater context from endpoints to enhance access
control decisions.

III. APPROACH: UI AND NETWORK SENSOR FUSION

Fig. 1. APPJUDICATOR sends UI and network data to an OpenFlow agent.

A. Instrumenting the Network via the Android VPN API

As described in Section II-A, prior work has established
that capturing network traffic through Android’s built-in VPN
client allows an application to intercept traffic device-wide
without requiring root access to the device. Such functionality
has also been used in Apple’s iOS for similar purposes. We
use this established approach to enable our novel data fusion
efforts.



In our configuration, the built-in VPN API provides an
interface that can tunnel all traffic to APPJUDICATOR’s local
VPN server component. We further use the interface to build
two streams: 1) a VPNInputStream that intercepts packets
from applications and 2) a VPNOutputStream that allows
the module to transmit reply packets to the application. We
depict the sequence of the module’s actions in Figure 2. The
VPN service allows APPJUDICATOR to control the intercepted
packets and implement an SDN agent. If the SDN agent has
a table entry for the flow, it will deliver the packet as directed
by that table entry (step m in Figure 2). Otherwise, the agent
will initiate the OpenFlow elevation process (steps d through
i in Figure 2).

Since TCP and UDP packets need different processing,
APPJUDICATOR divides packets and routes them to either
the TCPVPNService or the UDPVPNService. When a
connection is received in the TCPVPNService, it initiates
a connection to the remote system through a protected socket.
The protected socket designation ensures that the communi-
cation is not itself intercepted by our VPN service (and thus
creating a loop). Upon establishing the protected channel, the
TCPVPNService works as a translation device, stitching
together the connections between the local application and the
VPN service and the VPN service to the remote server (shown
as step n and o in Figure 2).

Finally, we need a mechanism to link packets back
to their associated application. We use the Android
ConnectivityManager API to identify the user ID (UID)
associated with the flow’s fields. Since each Android ap-
plication has a different UID, we can use the Android
PackageManager and the QUERY_ALL_PACKAGES per-
missions to determine the package name associated with the
UID. Accordingly, we can aggregate packets into flows using
the standard flow tuple (IPsrc, IPdest, protocol, Portsrc,
Portdest). To link the flow with a package, we first use
ConnectivityManager Android API to look up the UID
of the flow owner by (IPsrc, protocol, Portdest) information.
The PackageManager Android API further allows us to
obtain the package name and context for each UID. To support
SDN functionality, we use the flow tuple as the key in a
hash table combined with a queue data structure for packets
awaiting a verdict from the SDN controller.

B. Instrumenting the UI with Accessibility Services

The accessibility services and APIs on the Android platform
provide a way to gather data about UI events. These accessi-
bility services are designed to support alternative user inter-
actions, such as screen readers for individuals with impaired
vision. We leverage these services to correlate UI events with
networks flows to establish the origin for each network action.

We enable this service in our application by declar-
ing it in our application’s Manifest [23] file and spec-
ifying the BIND_ACCESSIBILITY_SERVICE and the
canRetrieveWindowContent permissions. Using the
intent-filter, we specify the scope of applications that
we monitor. In our prototype, we include all applications in

our scope but note that production deployment may tailor the
scope to achieve privacy goals. Given the potential privacy
and security implications of these permissions, the Android OS
itself provides a clear statement about the service’s capabilities
and the associated risks.

The accessibility services represent UI events as a
UI state change. Our application listens for all types
of UI events, including button presses, swipes, long
presses, and focus changes. For each event, we can ob-
tain a context description from the event object. With the
AccessibilityEvent.getSource() function, we can
extract more information about the layout hierarchy, includ-
ing information associated with parent and child widgets.
This function allows our system to identify text and la-
bels most closely associated with an action, allowing us
to create detailed context for an action. For example, for
the TYPE_VIEW_TEXT_SELECTION_CHANGED UI event
type, we can obtain the contents of an EditText UI ob-
ject, which often contains a user’s input. When these in-
puts contain an IP address, DNS host name, or URL, it
can aid correlation of network flows; otherwise, the data
can be ignored to preserve privacy. We further use the
FLAG_INCLUDE_NOT_IMPORTANT_VIEWS flag with ac-
cessibility services to obtain full visibility into the applica-
tion’s UI [23].

APPJUDICATOR obtains and stores all UI events in the scope
of monitoring on a per-application basis. When queried by the
SDN agent, the service provides the most recent events.

C. Fusing UI and Network Sensor Data via SDN

APPJUDICATOR implements a subset of the OpenFlow v1.0
specification. Since our software only operates on a single
device, it does not implement the full set of OpenFlow options.
We thus omit data about the data link layer headers, the
physical ports, or VLANs. As with traditional OpenFlow
agents, we allow wildcards in the rule match fields. Our SDN
agent finds the most specific matching rule and returns the
associated action to the VPN service to apply to any queued
or subsequent packets associated with the flow.

If the OpenFlow agent does not find a table match on the
packet received from VPNService, it elevates the packet to
the SDN controller, allowing the controller to profile the traffic
and provide direction on how to handle the packet. In our
prototype, we only implement the drop and forward actions,
which will discard or transmit packets, respectively. Future
work may support additional OpenFlow actions.

Unlike the traditional OpenFlow PACKET_IN message
sent to an SDN controller, our agent provides additional
UI context. Our SDN agent queries the accessibility mod-
ule for UI information associated with the flow (Sec-
tion III-B). The UI events are attached in reverse-chronological
order. However, the agent filters some UI events, like
TYPE_VIEW_CONTENT_CHANGED, that are very frequent
and have limited utility to the controller. Accordingly, APPJU-
DICATOR elevates the types of UI events that are most likely to
reveal user intentions to controller. As reported in Section IV,



Fig. 2. Depiction of APPJUDICATOR outbound packet processing as a
sequence diagram

we empirically found that limiting reports to UI events from
the last four seconds is most effective.

IV. EFFECTIVENESS EVALUATION: NETWORK PROFILING

In this Section, we follow a similar evaluation methodology
as Chuluundorj et al. [5]. Specifically, we compare ourselves
against traditional network-based sensors used in enterprise
networks, which only permit matched network flows. By
testing the sensors with legitimate and malicious data, we
generate the accuracy rates of different sensors. These sensors
can be categorized into three broad classes:

• IP Header Sensor: This sensor only considers a network
flow as a match if it has the same remote system’s IP
addresses and port numbers as in the idle or training data.

• DNS-aware Sensor: This sensor incorporates recent
DNS queries with the IP Header Sensor data. In addition
to matched network flows reported by the IP sensor, it
considers a network flow as a match if it has the same
host name as in the idle or training data.

• UI-aware Sensor: The UI sensor includes the matches
from the DNS sensor as a baseline. The UI sensor would
further consider a network flow as a match if the remote
server appears in the UI context data.

We start our exploration by analyzing the background
activity associated with an application without any end-user
activity. To do so, we record all the network activities for three

Data Samples Count Allow-List Match Rate
Application Idle Train Test IP Sensor DNS Sensor UI Sensor
Termius 236 1,587 1,669 6.6% 6.9% 99.1%
Gmail 180 1,052 1,313 43.6% 98.8% 100.0%
YouTube 315 1,162 1,845 57.3% 100.0% 100.0%

TABLE I
ALLOW-LIST MATCH RATE WITH IP, DNS, AND UI SENSORS FOR

LEGITIMATE, APPIUM-SUPPLIED DESTINATIONS. THE DNS ALLOW-LISTS
CAN SUCCEED WITH LIMITED-DESTINATION APPLICATIONS (E.G., AS

WITH GMAIL AND YOUTUBE). WHEN DESTINATIONS ARE DYNAMICALLY
SPECIFIED (E.G., TERMIUS), ONLY THE UI SENSOR IS EFFECTIVE AT

ALLOWING TRAFFIC.

different sensor types while each tested application is idle. We
create rules permitting all such network traffic to construct an
Idle Period allow-list that approves background activities
that do not need user intervention.

We next train our research set-up to construct an associa-
tion between end-user actions and network activity. We use
Appium [22] to automatically invoke a scripted sequence of
UI elements. Instead of traversing all possible UI elements, we
focus on the events that only occur when a user interacts with
the device. When Appium creates these inputs by simulating
users’ actions, every action is presented on the phone’s screen.
In this training phase, we record the UI events and network
behaviors observed at our sensors. We label this data as
the Training Data, which records what UI information
and network activity appears together in a non-compromised
application. During our later testing phase, each sensor can
construct allow-list rules using the training data to determine
if it can correctly classify traffic.

For our evaluation, we selected popular applications from
the Google Play Store that are widely used in people’s daily
lives, including Gmail and YouTube. We add Termius, an
SSH client, to cover a broad range of usage scenarios. We
note that Gmail and YouTube interact with a limited set
of remote systems such as the servers associated with the
application developer or advertisers. However, Termius allow
users to specify arbitrary destinations, as URLs or destination
IP addresses or host names, providing significant flexibility
but making profiling efforts more complex. Nonetheless, the
proposed UI sensor can provide useful information containing
URLs, IP addresses, and DNS host names, which can help
improve profiling efforts. In this experiment, we focused our
analysis on user inputs in the web browsers and SSH client.

During the Idle Period training phase, we activate
each application and leave the program running without user
input for two hours. For the Training Data stage, we
develop thirty work flow scripts for Gmail and YouTube. For
Termius, we create a specific work flow that randomly visits
different destination servers. We use the websites in the top
500 websites list from SimilarWeb [34] and divide them
equally into separate, non-overlapping groups for training and
testing. We collect the data set of idle period and training phase
at the SDN controller. During the testing phase, we execute
the same work flow scripts, while the controller employs three
rule matching sensors with rules constructed from the previous
training data.



In Table I, we show the allow-list match rates for Termius,
Gmail, and YouTube. The accuracy rate stands for how much
legitimate traffic has been matched in the sensors. In these
scenarios, all traffic is legitimate: it is initiated by Appium to
replicate end-user behavior. Focusing on Gmail and YouTube,
we see that the IP Sensor has the lowest accuracy for these
applications. The result appears to be influenced by DNS load
balancing or the effects of content distribution network (CDN)
deployments. The DNS sensor’s accuracy is higher than 98.8%
for Gmail and YouTube, demonstrating the value of host
name matching rules. When examining the SSH client, we see
that the IP Sensor and the DNS sensor have lower accuracy,
matching around 6.6% to 6.9% of traffic. In contrast, our UI
sensor enables a match rate that is 99.1% at the controller. This
highlights the importance of understanding the user-specified
destinations when profiling traffic.

V. CONCLUSION

In this work, we propose and evaluate APPJUDICATOR, an
SDN system for mobile devices that associates UI elements
with network flows. With the ability to consult external SDN
controllers for assistance, the APPJUDICATOR tool can respond
to evolving threats while providing sufficient context for access
control decisions. This mechanism helps increase the accuracy
of allow lists for user-supplied destinations from less than 7%
to over 99%. We believe the work holds promise for further
exploration.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1651540.

REFERENCES

[1] Sematext, “Log analysis tutorial: What it is, why, and when devops use
it,” https://sematext.com/blog/log-analysis/, Sep 2020.

[2] Google, “Security risks with modified (rooted) Android versions,”
2020. [Online]. Available: https://support.google.com/accounts/answer/
9211246?hl=en

[3] J. Lee, M. Uddin, J. Tourrilhes, S. Sen, S. Banerjee, M. Arndt, K.-H.
Kim, and T. Nadeem, “meSDN: Mobile extension of SDN,” in Workshop
on Mobile Cloud Computing & Services, 2014.

[4] S. Hong, R. Baykov, L. Xu, S. Nadimpalli, and G. Gu, “Towards sdn-
defined programmable byod (bring your own device) security.” in NDSS,
2016.

[5] Z. Chuluundorj, C. R. Taylor, R. J. Walls, and C. A. Shue, “Can
the user help? leveraging user actions for network profiling,” in IEEE
International Conference on Software Defined Systems (SDS), 2021.

[6] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Profiledroid: Multi-
layer profiling of android applications,” in International Conference on
Mobile Computing and Networking, 2012.

[7] N. A. Handigol, Using packet histories to troubleshoot networks. Stan-
ford University, 2013.

[8] S. Burnett, L. Chen, D. A. Creager, M. Efimov, I. Grigorik, B. Jones,
H. V. Madhyastha, P. Papageorge, B. Rogan, C. Stahl et al., “Network
error logging: Client-side measurement of end-to-end web service re-
liability,” in USENIX Symposium on Networked Systems Design and
Implementation, 2020, pp. 985–998.

[9] H. Zhang, D. She, and Z. Qian, “Android root and its providers: A
double-edged sword,” in ACM Conference on Computer and Communi-
cations Security, 2015, pp. 1093–1104.

[10] G. Shirts, “Noroot firewall,” https://play.google.com/store/apps/details?
id=app.greyshirts.firewall&hl=en US&gl=US, 2020.

[11] M. Bokhorst, “Netguard - no-root firewall,” https://play.google.com/
store/apps/details?id=eu.faircode.netguard, 2021.

[12] A. Rao, J. Sherry, A. Legout, A. Krishnamurthy, W. Dabbous, and
D. Choffnes, “Meddle: middleboxes for increased transparency and
control of mobile traffic,” in Proceedings of the 2012 ACM conference
on CoNEXT student workshop, 2012, pp. 65–66.

[13] A. J. Slagell, Y. Li, and K. Luo, “Sharing network logs for computer
forensics: A new tool for the anonymization of netflow records,” in
Workshop of the IEEE International Conference on Security and Privacy
for Emerging Areas in Communication Networks, 2005.

[14] T. Sipola, A. Juvonen, and J. Lehtonen, “Anomaly detection from
network logs using diffusion maps,” in Engineering Applications of
Neural Networks. Springer, 2011, pp. 172–181.

[15] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” Journal of computer security, vol. 6, no. 3,
pp. 151–180, 1998.

[16] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,
“Accessminer: using system-centric models for malware protection,” in
ACM Conference on Computer and Communications Security, 2010.

[17] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcon-
text: Differentiating malicious and benign mobile app behaviors using
context,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1. IEEE, 2015, pp. 303–313.

[18] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“Appintent: Analyzing sensitive data transmission in android for privacy
leakage detection,” in Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, 2013, pp. 1043–1054.

[19] X. Wang, X. Qin, M. B. Hosseini, R. Slavin, T. D. Breaux, and J. Niu,
“Guileak: Tracing privacy policy claims on user input data for android
applications,” in Proceedings of the 40th International Conference on
Software Engineering, 2018, pp. 37–47.

[20] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-
droid: an automatic system for revealing ui-based trigger conditions in
android applications,” in ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, 2012, pp. 93–104.

[21] Android Studio, “Ui/application exerciser monkey,” https://developer.
android.com/studio/test/monkey, 2020.

[22] J. Foundation, “Appium: Automation for apps,” https://appium.io/docs/
en/2.0/, 2021.

[23] Android Studio Devs., “Create your own accessibility service,” https:
//developer.android.com/guide/topics/ui/accessibility/service, 2019.

[24] Z. Chuluundorj, S. Liu, and C. A. Shue, “Generating stateful policies
for iot device security with cross-device sensors,” in IEEE International
Conference on Network of the Future (NoF), 2022.

[25] D. Levin, M. Canini, S. Schmid, and A. Feldmann, “Incremental
sdn deployment in enterprise networks,” ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4, pp. 473–474, 2013.

[26] C. Lorenz, D. Hock, J. Scherer, R. Durner, W. Kellerer, S. Gebert,
N. Gray, T. Zinner, and P. Tran-Gia, “An sdn/nfv-enabled enterprise
network architecture offering fine-grained security policy enforcement,”
IEEE communications magazine, vol. 55, no. 3, pp. 217–223, 2017.

[27] M. E. Najd and C. A. Shue, “Deepcontext: An openflow-compatible,
host-based sdn for enterprise networks,” in 2017 IEEE 42nd Conference
on Local Computer Networks (LCN). IEEE, 2017, pp. 112–119.

[28] Y. Lei and C. A. Shue, “Detecting root-level endpoint sensor compro-
mises with correlated activity,” in International Conference on Security
and Privacy in Communication Systems. Springer, 2019, pp. 273–286.

[29] N. Feamster, “Outsourcing home network security,” in ACM SIGCOMM
Workshop on Home Networks, 2010, pp. 37–42.

[30] C. R. Taylor, C. A. Shue, and M. E. Najd, “Whole home proxies:
Bringing enterprise-grade security to residential networks,” in IEEE
International Conference on Communications, 2016.

[31] Y. Liu, C. R. Taylor, and C. A. Shue, “Authenticating endpoints and
vetting connections in residential networks,” in 2019 International
Conference on Computing, Networking and Communications (ICNC).
IEEE, 2019, pp. 136–140.

[32] C. R. Taylor, D. C. MacFarland, D. R. Smestad, and C. A. Shue,
“Contextual, flow-based access control with scalable host-based sdn
techniques,” in IEEE INFOCOM, 2016.

[33] S. Demetriou, N. Zhang, Y. Lee, X. Wang, C. A. Gunter, X. Zhou,
and M. Grace, “Hanguard: Sdn-driven protection of smart home wifi
devices from malicious mobile apps,” in ACM Conference on Security
and Privacy in Wireless and Mobile Networks, 2017.

[34] SimilarWeb, “Top websites ranking,” https://www.similarweb.com/top-
websites/, 2023.


