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Abstract—The software-defined networking (SDN) paradigm
offers significant flexibility for network operators. However, the
SDN community has focused on switch-based implementations,
which pose several challenges. First, some may require significant
hardware costs to upgrade a network. Further, fine-grained flow
control in a switch-based SDN results in well-known, fundamental
scalability limitations. These challenges may limit the reach of
SDN technologies.

In this work, we explore the extent to which host-based SDN
agents can achieve feature parity with switch-based SDNs. Prior
work has shown the potential of host-based SDNs for security and
access control. Our study finds that with appropriate preparation,
a host-based agent offers the same capabilities of switch-based
SDNs in the remaining key area of traffic engineering, even in
a legacy managed-switch network. We find the approach offers
comparable performance to switch-based SDNs while eliminating
the flow table scalability and cost concerns of switch-based SDN
deployments.

Keywords-Software-defined networking, OpenFlow, traffic en-
gineering, performance

I. INTRODUCTION

In the software-defined networking (SDN) paradigm [1],
network operators can run logically-centralized controllers to
manage a network. With the OpenFlow protocol [2], these
controllers manage SDN agents on switches to install match
criteria for packet forwarding and to dictate the actions that
the switch should perform on matching packets. Such switch-
based SDNs can be implemented using physical hardware
switches that support the OpenFlow protocol or even in virtual
bridges, such as Open vSwitch [3], that can run with virtual
machine (VM) hypervisors to manage inter-VM traffic. The
SDN paradigm offers operators extensive control and visibility
into their networks, allowing fine-grained traffic engineering
and security.

Unfortunately, switch-based SDNs have some significant
limitations. The most obvious is cost: the physical switch
hardware must support SDN, so capital and installation costs
may be incurred to upgrade network infrastructure before its
normal end-of-life [4]. Some physical switches use general-
purpose CPUs for the OpenFlow agent, which may lead to
constraints in the number of flow elevations each switch can
perform [5]. Finally, because hardware-based switches are an
aggregation point and have limited high-speed memory for
the flow tables, fine-grained flow rules can easily exceed their
memory capacity [6]. Previous work proposed using Open
vSwitch implementations on near-by servers to address these
scalability issues [7], but at the cost of additional latency.

To encourage the widespread deployment of SDN technolo-
gies, we propose shifting the SDN agent from the switch to
the end-host to avoid these cost and scalability issues. In our
prior work with host-based SDNs [8]-[10], we explored how
the endpoints could provide additional contextual information,
such as the application originating the flow and the associated
user account, to make informed access control and security
decisions. The approach scales with reasonable performance
overheads even when controllers use fine-grained rules.

To be a true replacement for switch-based SDNs, host-based
SDNs must have equivalent capabilities for visibility, control,
traffic engineering, and prioritization. While our prior work
attained equivalence in visibility and control, the community
has not explored the capabilities of host-based SDNs to
engineer or prioritize traffic.

Here, we ask two research questions: To what extent can
host-based SDNs achieve the same traffic engineering capa-
bilities as current switch-based SDNs? Can host-based SDNs
achieve all the original goals of the SDN paradigm? In
exploring these research questions, we make the following
contributions:

o Building SDN Infrastructure for a Legacy Network:
We leverage features in managed switches, such as their
support for multiple spanning trees in different virtual
local area networks (VLANSs), to manipulate forward-
ing paths on legacy switches. We create an OpenFlow-
compatible SDN controller to build custom topologies
and configure the legacy switches. Our controller supports
OpenFlow clients and manipulates state to allow arbitrary
forwarding paths (Section III).

o Designing and Implementing an Endpoint SDN agent:
Given the popularity of Microsoft Windows in enterprise
networks, we implement an SDN agent in the Windows
operating system (Section IV). The agent uses a kernel-
mode network driver to implement the SDN controller’s
orders and to rewrite packet headers to implement VLAN
selection and quality-of-service (QoS) packet tagging.

o Evaluating Traffic Engineering, Performance, and
Scalability: We evaluate our approach in an experimental
network environment and show that the host-based SDN
can implement flow rules, QoS field manipulation, and
path selection equivalent to switch-based SDNs with
latency overheads of 2 ms or less (Section V).



II. BACKGROUND AND RELATED WORK

While the SDN subfield has a rich background of prior
work, we focus our discussion on SDN fundamentals and
traffic engineering efforts. We also examine prior work in
legacy networks surrounding multiple spanning trees.

A. SDN Traffic Engineering and Limitations

Software-defined networking separates the control logic
from the routers and switches that forward the traffic. This
separation changes routers and switches into general purpose
data forwarding hardware that executes commands from a
logically-centralized controller. The OpenFlow protocol [11]
provides a standard API for communication between the
control and data planes. In OpenFlow, an agent runs on each
switch. The agent examines incoming packets to determine if
they match an existing rule, and, if it finds a match, applies
the action associated with the rule. If the packet does not
match any rules, the agent sends a copy of the packet to
the controller and requests instruction. The controller then
provides a policy rule to handle the packet and subsequent
packets in the flow. This approach allows the controller to
monitor the network [12], manipulate the forwarding path [13],
and perform Quality of Service (QoS) [14], [15].

Unfortunately, OpenFlow switches have limitations. Previ-
ous work found that utilizing fine-grained rules in OpenFlow
comes at a cost [6]. While MAC and VLAN entries can be
managed in SRAM, SDN rules involving other fields must
be stored in ternary content addressable memory (TCAM).
TCAM memory is expensive, in both financial cost and in
energy consumption. Some switches can store around 2,000
entries while others, such as the Dell PowerConnect 8132F,
only store 750 entries [16]. OpenFlow-enabled switches also
have a price premium compared to similar-capacity traditional
managed switches. To make efficient use of the TCAM,
Katta et al. proposed CacheFlow [17]. Their system caches the
most popular rules in the TCAM. To handle table cache misses
caused by unpopular rules, they use a “splicing” technique
that creates new rules to cover the less popular rules. In
a different direction, Wen et al. proposed RuleTris [18], a
SDN flow table update optimization framework that leverages
dependency graphs to minimize update delays. They achieve
a 15 ms end-to-end per-rule update latency.

These prior approaches focus on switch agents. Our work, in
contrast, focuses on hosts as SDN agents. We observe that the
host already maintains the status for the different connections
used to communicate with remote entries. If each host acts as
an SDN agent, we avoid the inherent hardware limitations of
the switch SDN agent. We explore moving the SDN agent to
the endpoint and the functionality that can be achieved with
only commodity legacy switches.

B. Spanning Trees in Local Area Networks (LANs)

Virtual local area networks (VLANSs) create a logical net-
work segment with its own broadcast domain on top of a
physical network. Hosts in different VLANSs cannot directly
communicate without traversing a middlebox or router that

spans the VLANs. VLANs can span physical switches by
tagging each Ethernet frame with a VLAN ID. Each physical
switch interface is configured as an access port that accepts
only a single VLAN, or a trunk port, that carries traffic
from multiple VLANSs. Regardless of port type, an interface
must have exactly one native (or default) VLAN for untagged
traffic. In a VLAN-enabled network, switches maintain a MAC
address table that stores entries matching VLAN identifiers,
MAC addresses, interface ports, and an aging timer. The
switch uses both the VLAN identifier and MAC address to
determine which interface port to use for each packet. Packets
without tags are assigned to the native VLAN identifier
associated with the interface.

Since each VLAN has its own set of interface port re-
strictions, each VLAN can have its own spanning tree. The
multiple spanning tree protocol (MSTP) [19] allows interface
ports to trunk multiple VLANs to create multiple logical
links for the underlying physical links. Despite the loops in
the physical infrastructure, each VLAN spanning tree can
selectively disable ports to create a tree.

The multiple spanning tree approach can address the scala-
bility concerns in Ethernet. To build scalable Ethernet for the
data center, Mogul et al. proposed SPAIN [20], which consists
of a host driver program that randomly chooses a path from a
set of usable spanning trees. They can achieve high throughput
and fault tolerance when a forwarding path fails to deliver
packets. The PAST [21] approach uses a per-address spanning
tree, which requires entries to be stored in the TCAM table of
an OpenFlow switch, rather than a per-VLAN spanning tree.

Our work leverages the multiple spanning tree technique
to enable hosts to send packets through arbitrary paths by
manipulating the VLAN identifier. By moving the SDN func-
tionality to the end-host, we avoid the limitations of SDN-
enabled switches.

III. HOST-BASED SDN TRAFFIC ENGINEERING

First, we examine the functionality required by host-based
SDNs to achieve feature parity with switch-based SDNs.
We then describe our design and approach to create this
functionality.

A. Required Functionality in Host-Based SDNs

In an SDN implementation, the SDN agent can be located
either in a switch or in the end-point. Figure 1 compares the
switch-based and host-based SDNs. The agent location does
not affect SDN’s ability to logically centralize the controller.

OpenFlow switches have multiple interface ports and can
prioritize queued traffic or forward packets through arbitrary
interface ports. These capabilities are key for traffic engineer-
ing and quality of service. However, it is unclear if host-
based SDN agents can achieve similar functionality on legacy
switches. To be considered equivalent, a host-based agent
would need to be able to achieve the following requirements:

o Influence the Forwarding Path: While a host-based

SDN cannot specify the forwarding path of a packet,
it can influence how switches will treat a packet. With
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carefully preallocated VLAN spanning trees, a host-based
SDN agent may be able to select a VLAN to determine
the path. Such functionality is a key component for host-
based SDNs to achieve traffic engineering goals.

o Rewrite Packet Headers: Rewriting packet headers is
necessary for quality of service. This functionality can
trigger prioritization and QoS when host agents are used
with managed switches. It also allows the host agent to
implement packet transformations (e.g., NAT) or packet
tunneling protocols (e.g., MPLS).

Combined, these features allow network operators to
achieve the same level of traffic engineering as a switch-based
SDN.

B. Design Goals

A key design goal is to support SDN in a regular legacy
network, such as a data center or even a large enterprise
network. These networks typically have managed switches
that support VLANs and traffic engineering options. While
networks can use unmanaged switches, those switches lack
VLAN, traffic engineering, and even loop protection, limit-
ing traffic to a single forwarding path between destinations.
Therefore, we design our approach with traditional, non-SDN
managed switches and routers in mind.

Our design requires only minimal host configuration via a
kernel driver that can be automatically installed with standard
software deployment tools. Further, it supports legacy hosts
that do not run the SDN software, such as printers or embed-
ded devices. Note that the traffic engineering functionality may
be unidirectional with legacy devices, since only the SDN-
enabled host would be able to use non-default VLANSs or QoS
fields.

Our traffic engineering is designed to support network path
selection through security middleboxes, such as firewall and
IDS systems. The approach is also designed to be scalable
even when fine-grained match rules are in place.

C. Strategic Preallocation of VLAN Spanning Trees

We leverage VLANS, and their support for multiple span-
ning trees, to allow hosts to influence forwarding paths.
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Comparison between switch-based SDN (on left) and host-based SDN (on right)

As described in Section II, both the VLAN identifier and
destination MAC address are used to determine which output
interface port to use when a VLAN-tagged packet arrives
at a switch. Managed switches support redundant links and
loops across switches, and the multiple spanning trees support
different forwarding paths across switches based on the VLAN
used. The network must be strategically configured with these
VLANSs and spanning trees to leverage these capabilities.

Spanning Tree Enumeration In a given network graph,
we can determine the total number of spanning trees, ¢, by
calculating the graph’s Laplacian matrix determinant. This
value may exceed the maximum number of VLANs that can
be used in a network (which is 4,094 in the IEEE 802.1Q
standard [22]). Therefore, when choosing spanning trees, we
select only those that cover a set of user-selected paths. Before
discussing the detail of the algorithm we used, we first define
some notation. Let S = {s1, o, ..., 8¢} be the set of spanning
trees for a network G = (V,E) where |V(G)| = n and
|E(G)| = m. Let P = {p1,pa, ..., pq } be the set of ¢ different
user-selected paths.

To compute the set S, we use Winter’s approach [23] to
enumerate the spanning trees for G = (V, E). That algorithm
recursively finds a partition to the spanning tree space by
determining whether or not the edges connecting the biggest
labeled vertex and its adjacent vertices belong to the spanning
tree. It contracts the biggest labeled vertex into its adjacent
vertices if such edge belongs to the spanning tree and deletes
the edge if it does not. The same process is repeated until there
is only one node left. This algorithm has a time complexity
of O(n + m + nt). Simply listing all the spanning trees of a
graph requires O(nt) time.

Path Selection To get the set P, we consider only those
cases in which an alternative forwarding path between two
switches is needed (since, in our design, all hosts on the
network are members of a default VLAN). This method allows
basic communication without requiring any special SDN rules.
Therefore, the user-selected path set, P, does not contain the
default path between each pair of switches. Also, the SDN
agent only needs to change the packets for flows in which a
non-default forwarding path is desired by the SDN controller.



We note that in many situations, an alternative forwarding path
might be desired. A user-selected path can be QoS-motivated;
in this case, an alternative forwarding path is selected to avoid
a congested spot in the network. A path could also be security-
motivated, in which case the traffic from a host is forwarded
to pass through a network firewall. The SDN controller can
arbitrarily select a different path for each network flow.

We generalize such cases into a constrained shortest path
problem. Given a set of ordered vertex, V' = {v1, v2,...,u4} €
V', which represent a set of switches along our forwarding
path, let set 3 contain all the possible permutations o =
(U(vlf;’(vj;)“’“qo(v )) of V'. Given a pair of nodes (a, b) and the
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set 2, Algorithm 1 will compute the shortest path between a
and b that visits all the nodes in V'. Algorithm 1 first computes
the all pair shortest path for the network represented by graph
G = (V, E) and stores the result into a two-dimensional array
d where d[i][j] represents the shortest path between vertices ¢
and j. In iteration k, the algorithm computes the shortest path
between a and b that visits vertices V' in an ordering specified
by Ofk.

Algorithm 1: Shortest walk including required nodes

initialize 6(a, b) = oo;

d = all_pair_shortest_path(G);

for each o), € P do

sp = da][o(v1)] + Y0 dlok(vn)][ok(vng1)] +
d[ok(ve)][b];

if sp < d(a,b) then
| d(a,b) = sp;

else
| continue;

end

end
return 0(a, b);

We show the correctness of the algorithm via a proof by con-
tradiction. First, we show that sp, calculated at each iteration,
is indeed the shortest path from a to b that visits each vertex
in V' in that specific order. Suppose there exists sp’ < sp, so
one of the sub paths in sp’ must have a shorter distance than
the same sub path in sp; this example contradicts the fact that
each sub path is already the shortest path calculated by the
all pair shortest path algorithm. Since our algorithm always
updates the d(a,b) when encountering smaller sp, it produces
the correct result at the end. When computing the shortest
path that goes through a single network firewall, Algorithm 1
can be reduced to the calculation §(a, f) + d(f,b), where f
represents the firewall node.

This approach allows us to construct a simple path between
any two nodes within at least one spanning tree. If the con-
troller decides to use a path that is not covered by any existing
spanning tree, then the controller must first configure a new
spanning tree to cover that path. This can be done proactively,
before a flow is created, or reactively, when a packet is elevated
to the controller. This VLAN tree configuration is equivalent

to the F1owMod rules in a switch-based SDN.

VLAN Spanning Tree Selection After computing the span-
ning tree set .S and the path set P, we apply our spanning tree
selection algorithm to compute the set S’ € S that covers every
path in P. As shown previously, the set P = {p1, p2, ..., Pq }
is the universe path we want to cover. For each spanning tree
s; € S, it covers a subset of paths in P. We let s; = P;
denote that the spanning tree s; covers every path of P; € P.
Computing S’ that contains the minimal number of spanning
trees is a set cover problem which is NP-Complete. Therefore,
to calculate S, we use a greedy algorithm that repeatedly adds
the spanning tree that covers the most paths in the remaining
part of the set P.

Suppose the spanning tree set S and path set P are already
calculated using algorithms mentioned above. For each span-
ning tree s; € S, we calculate the set of paths it can cover,
which we denote as P;. Algorithm 2 describes the greedy
algorithm that calculates S’.

Algorithm 2: Greedy spanning tree selection

initialize S’ = 0, P = {p1,p2;,...,pq};
while P £ () do
find s; that covers the most paths in P;
S =5 + {37},
P=P-P
end

This greedy approach is an approximation algorithm that
produces a sub-optimal solution within a logarithm factor to
the optimal solution. If the optimal solution needs r spanning
trees, then Algorithm 2 requires at most 7 In ¢ spanning trees,
with ¢ representing the total number of paths in set P. With
this knowledge, the user can decide whether to perform an
exhaustive search to find the optimal solution if the number
of required spanning trees exceeds the network configuration
limit.

D. Configuring QoS and Prioritization in Managed Switches

Traditional managed switches support queue prioritization
and QoS features. In a network packet, there are header fields
at different layers that are reserved for quality of service (QoS)
purposes. In the 802.1q header, a three-bit priority code point
field is reserved for QoS. In the IPv4 header, the differential
services code point field is used. These QoS fields, when set to
non-default values, can trigger quality of service on managed
switches. Depending on how the user configures the switches,
QoS can either be performed individually on each switch
to implement a per-hop QoS treatment, or systematically on
the entire network to implement end-to-end QoS. To leverage
such capabilities within host-based SDNs, network operators
must configure policies in the SDN controller to rewrite
packets with appropriate PCP or DSCP values for the desired
QoS treatment. When the SDN controller receives a flow
elevation, it decides whether the elevated flow requires this



QoS treatment and indicates the corresponding field to rewrite
in an OpenFlow F1lowMod packet.

E. Flow Header Rewriting at the Host SDN Agent

Our host-based SDN agent has two parts: 1) a kernel
network driver, which supports packet inspection and header
rewriting, and 2) a service that handles the OpenFlow com-
munication. When new flows are detected, the kernel driver
sends the packet to the OpenFlow service for instruction. This
service elevates the packet to the controller if there are no
relevant rules cached locally.

IV. IMPLEMENTATION

Implementation of the host-based SDN system centers
around two components: the SDN controller and the SDN
agent on the endpoint.

A. SDN Controller

The SDN controller must preconfigure the associated net-
work with VLAN and QoS settings. The controller can config-
ure these values remotely using an SSL/TLS, SSH, or Simple
Network Management Protocol (SNMP) API supported by the
network switches and routers.

To calculate the appropriate VLAN spanning trees, the SDN
controller needs to know the network topology, which can
be learned via routing and spanning tree protocols. In our
implementation, we assume the topology graph is already
available. Our controller reads the topology graph represented
in the dot [24] language. The dot language can specify the
relationship between different vertices, along with attributes
for each edge and vertex in the graph. In our implementation,
we include interface ports and network firewall information in
the dot file.

We implemented the controller in C++. The encryption
and decryption use the Botan library [25], and the dot file
parsing function uses the Cgraph library [26]. Currently, our
controller uses the OpenFlow 1.0 [27] standard. To command
a host agent to add the VLAN tag to a flow, we use the
SetVLANVID action. To command a host agent to perform
QoS functionality, we use the SetNWToS action. OpenFlow
1.0 only supports a limited number of SetField actions.
However, in OpenFlow 1.3 [11], the SetField action can
support the modification of multiple fields in one action
using a bit masking approach to enable flexible packet header
rewriting.

B. Host SDN Agent

Given the popularity of Microsoft Windows in enterprise
networks, we implement the host SDN agent as a Windows
kernel network driver that can be easily installed via software
deployment tools without requiring end-user configuration.

In OpenFlow, an SDN agent typically elevates only the first
packet of a flow to the controller, unless instructed otherwise.
Therefore, we need a mechanism to perform the following:
identify new flows when they are created, elevate the first
packet to the controller, and queue subsequent packets until

a response is received from the controller. To create this
functionality, we leverage the Windows Filtering Platform
(WFP) [28], a packet filtering engine that inspects and modifies
packets at different layers of the network stack. To identify
the creation of new flows, we register so-called callout func-
tions with layers of the special Windows Application Layer
Enforcement (ALE) group to monitor socket operations. ALE
is a set of layers that trigger on the packets associated with
the connect and accept system calls in TCP. For UDP
flows, ALE layers trigger on the first packet that is sent to, or
received from, a unique remote entity. Using this functionality,
we can elevate packets on a per-connection or per-socket level.

The controller communication module is implemented as a
user-space administrative service that implements the Open-
Flow protocol. The communication is authenticated and en-
crypted. To elevate a packet to the controller, the service first
receives the packet from the kernel driver and embeds it into
an OpenFlow Packet In. When the controller responds, the
service decrypts and verifies the packet and then delivers the
OpenFlow packet to the kernel driver for processing.

The kernel driver implements the controller’s instructions
for the flow. These instructions typically involve packet header
modifications, such as setting fields in the IPv4 header or
Ethernet VLAN headers. To modify a packet efficiently, we
adopt an in-line packet modification approach. We use callouts
in the WFP engine to intercept the packet’s header at different
layers in the network stack. In our implementation, we support
packet header modifications from the link layer up through
the transport layer. We offload checksum recalculation from
header modifications to the network interface card (NIC) along
with VLAN tag modifications, yielding high performance.

V. EVALUATION

In our evaluation, our goal is to determine whether host-
based SDNs can achieve the same traffic engineering ca-
pabilities as switch-based SDNs with similar performance
characteristics. Our results reveal feature parity and similar
performance between the two, while showing that host-based
SDNs have greater scalability than switch-based SDNs.

A. Experiment Setup

To test our system, we build a full-mesh network topology
of four switches, as shown on the left in Figure 5. We flash
four consumer-grade TP-Link Archer C7 routers with the
OpenWrt [29] firmware to act as our managed switches. Each
switch has its wireless and routing functionality disabled.

From our full mesh topology, we generate and test four dif-
ferent spanning trees and assign a VLAN ID to each, as shown
on the right side of Figure 5. As mentioned in Section II, each
interface must have one native VLAN for untagged packets
and has the option to trunk multiple other VLANs. The VLAN
spanning tree represented by the solid line supports the native
VLAN of the associated interfaces. The dashed lines represent
the VLAN spanning tree for the indicated VLAN identifier
that is trunked through that interface. In this way, interfaces
that connect switches are all configured to belong to exactly
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one native VLAN while trunking an additional VLAN. The
number of VLANs trunked by an interface can increase as
more spanning trees are needed. For the interfaces that connect
with each host, we configure the host to be a member of the
default VLAN (VLAN 1), and we configure each interface to
trunk the rest of the VLANS.

All of our endpoints run on a Windows 10 host machine
with 32 GB RAM and 6 core 2.21GHz CPU. This host
machine has multiple network interface cards that allow each
VM to be bridged to a separated NIC that connects to a
unique physical switch. The endpoints are Windows 10 virtual
machines with 4 GBytes of RAM and 2 CPU cores. We run
the controller on an Ubuntu 16.04 virtual machine on another
host machine, and we allocate it with 2 GBytes of RAM and
1 CPU core running at 2.6 GHz.

To evaluate the performance overhead of our host agent,
we selectively enable components to measure the cost of
each operation. We separately evaluate the kernel network
drivers (which perform flow table lookups and modify header
fields in software), the user space service (which performs
OpenFlow packet elevation), and the network interface card
(which performs hardware header field modifications).

B. Packet Header Modifications

We evaluate the host agent’s ability to modify the packet
based on the controller’s instructions. As mentioned in Sec-
tion IV, some header modifications, such as the VLAN tagging
and checksum recalculations, can be offloaded to the NIC. In
such cases, the kernel driver only needs to specify the offload
flag, and the NIC will fulfill the corresponding calculation
and insertion request. For other header field modifications, the
kernel driver must modify the packet header in software. We
will measure the hardware-based and software-based header
rewriting separately.

To evaluate both types of header rewriting, we use a TCP
socket program to generate network flows with different packet
generation rates. To determine the overhead of packet modifi-
cations, we measure the end-to-end round trip time (RTT) with
and without modification under the same forwarding path. In
both types of experiments, we exclude the time required to
elevate the packet to the controller by locally setting a rule to
modify the field to a pre-determined value.

Fig. 4. VLAN packet tagging in hardware

To evaluate packet modifications by the driver, which in-
clude header fields from the network or transport layer, we
use the Differentiated Services Code Point (DSCP) field in
the IPv4 header as a representative example. For the hard-
ware modifications, we use VLAN tagging in the NIC. In
both scenarios, we only perform the header rewriting on the
responding machine. We use Wireshark on the sender to record
the time that elapses between the first packet transmission and
the receipt of the response from the destination. This time
period captures exactly one packet header modification.

In Figure 2, we provide a baseline without any field mod-
ifications. In Figure 3, we show the results of modifying the
DSCP field in software. In Figure 4, we show the results from
inserting the VLAN tags in the NIC. For both the software
and hardware packet modifications, the delay caused by the
operation is minimal. The difference between the baseline and
the DSCP rewriting appears only in the 64Mbps case and
grows to around 1ms in about 50% of cases. Even in software
the driver is fast enough.

When comparing the results of no modification and VLAN
tagging, we see that when the packet rate is under 16Mbps,
the unmodified packet baseline has a slight advantage: 90%
of trials are completed under 3ms as compared to Sms for the
VLAN tagging case. But as the packet rate increases, the dif-
ference decreases between the two cases. When the packet rate
is 32Mbps, the difference is less than 1ms (roughly 9ms for the
baseline and 10ms for VLAN tagging). When the packet rate
becomes 64Mbps, both cases require around 17ms to complete
the round trip for 90% of trials. These results suggest that
the workload associated with regular packet processing greatly
outweighs the tagging costs, especially when the packet rate
is high. Hosts can easily perform these duties.

C. Evaluating Arbitrary Forwarding Path Functionality

We examine the host agent’s ability to influence the path
used to forward a packet. We confirm that a packet traverses
a specific path by using a simple repeater (also called an
Ethernet hub) that broadcasts every bit received on an interface
port to all other ports. We install a monitoring device to
perform packet captures on one of the ports, allowing us to
passively confirm the packet transmission on each segment.

While conducting this experiment, we also measure the
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time required to elevate a packet to the SDN controller,
since the controller dictates the path each flow will take. For
each new flow a host sends, we record the end-to-end RTT,
which includes the delay caused by the elevation, the over-
head of two VLAN tagging operations, and the propagation
delay. The SDN controller is configured simply to parse the
Packet In message, select the VLAN, and return its choice in
a PacketOut message. We conducted our experiment using
the following four scenarios:

e 1-hop-forwarding: Host 1 communicates with Host
2 using the VLAN 1 (default) spanning tree.

e 2-hop-forwarding: Host 1 communicates with Host
2 using the VLAN 3 spanning tree.

e 3-hop-forwarding: Host 1 communicates with Host
2 using the VLAN 10 spanning tree

e asymmetric-forwarding: Host 1 communicates
with Host 2 using VLAN 10 (3 hops) for the outbound
path and VLAN 20 (1 hop) for the return path.
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Fig. 6. End-to-end RTTs when different forwarding paths are used

Our experiments found that the prescribed path is indeed
used, that bi-directional communication functioned, and that
no TCP re-transmissions or packet losses were observed.
Dynamically selecting the forwarding path on a per-flow basis

Our experiment network topology (left) and the switch-to-switch VLAN configurations (right)

does not have side effects in terms of packet loss.

When examining the impact on RTT, we found only modest
differences. Figure 6 shows that hop increment and switch
processing that caused by the VLAN tagging has little impact
on the total delay. When comparing the results in Figure 6 with
our earlier VLAN packet modification results (the 8Mbps case
in Figure 4), we find that the difference of 3-4ms represents
the time required for a host agent to complete an elevation to
the controller and process the response.

In our own prior work [10], we explored the elevation
latency of host-based and switch-based SDNs. When compar-
ing an HP 2920-24G enterprise switch to host-based agents
connected via a simple learning switch and a minimalist SDN
controller, we find that the host agent is slightly faster than the
switch agents in 85% of trials. With slightly superior elevation
performance, host-based SDNs are at least as effective as
switch-based SDNs at handling new flows.

D. Impact on Host Flow Table Size

In a switch-based SDN, fine-grained flow rules that involve
matching more fields than just the VLAN and MAC address
need to be stored in TCAM [21]. As shown in Table I, prior
work has shown that some common SDN switches have a flow
table capacity of 5,000 entries or less while their MAC table
sizes are often larger by an order of magnitude or more.

TABLE I
SDN sWITCH TCAM TABLE COMPARISON

Switch TCAM Table MAC Table Data
Model Size (entries) | Size (entries) Source
Dell 8132F 750 128k [30], [31]
HP 540621 1,500 64k [30], [32]
Pica8 P-3290 2,000 32k [30], [33]
HP 3800 series 4,000 64k [34]
Cisco Nexus 9000 5,000 92k [35]

For our host-based SDN, we implement a flow table in our
network kernel driver. We examine the performance impact
as the flow table size grows. To populate entries in the flow
table, we first generate unique flows by varying the source
port, causing each flow to be approved by the controller and
associated with a Set VLANID action. After the flow table has
been populated, we randomly select previously approved flows
and reuse them to send traffic between two hosts running our



agents. In this experiment, we only enable the flow lookup
and the VLAN tagging operations in the receiver’s machine.
Using the same metric as the packet modification experiment,
we measure the RTT on the sender’s machine. For each flow
table size, we sample 30 flows and plot the result.
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Fig. 7. RTT as the flow table size varies

Figure 7 shows that the RTT increases as the flow table
size increases. This increase is likely the result of our current
linked-list data structure and could be improved with a binary
tree or hash table implementation.

This experiment shows that the host-based agent can easily
store the same entries as an enterprise-grade SDN switch
without noticeable overheads. Shifting SDN agents into the
host improves the SDN’s scalability significantly because each
host managess its own entries, avoiding the prior aggregation
of entries at switches.

E. Impact on Legacy Switch Table Size

With the common managed switches in Table I, the MAC
table capacities ranging from 32K to 128K entries. When a
per-VLAN spanning tree is used in a network, it can cause
a single MAC address to be associated with multiple VLAN
IDs, increasing the number of entries the switch must store.
However, this inflation only occurs when the SDN controller
orders a host to use a path other than the default. The controller
may thus optimize its orders to achieve its traffic engineering
goals while minimizing table inflation.

We analyze how the number of entries in a switch’s MAC
table are affected by multiple spanning trees. We first define
some notations and assumptions for the analysis. In a single
spanning tree network, a switch must store m entries in its
MAC table, with each entry having an aging time of ¢ seconds.
We further assume there are a total number of m’ unique MAC
addresses among those m entries and that each address belongs
to a different host. We consider a busy network where each of
the m’ hosts initialize a number of f flows to the other m’ —1
hosts during a time period of ¢.

We now consider the same network and switch when mul-
tiple spanning trees are used. We assume our SDN controller
only chooses to use a non-default spanning tree for p percent of
the flows from each host and that the spanning tree selected for
a flow is randomly selected from a set of ¢ total spanning trees.
Under this assumption, each of the m’ hosts will add extra
entries to the MAC table. The total number of flows needing
a non-default spanning tree for a single host is represented by
fp. However, these non-default flows will often share the same
spanning tree as other non-default flows. This is analogous to
the calculation of the number of unique values from a series
of dice tosses. Using expectation formulas from that setting,
the expected number of unique spanning trees used for the fp
flows that originated from a single host is g(1 — (1 — 2)7).
Therefore during a time period of ¢, the estimated number of
entries increased on that switch is ¢(1 — (1 — %)fp) xm/'.

With the above analysis, we consider a large busy, network
with 10,000 unique addresses in a switch MAC table. We
assume each host generates 15 flows per second to the other
hosts, and for 5% of flows, the SDN controller uses a non-
default spanning tree from among a total number of 10
spanning trees. Our formula results in the switch requiring
a table capacity of 110k entries. Despite these churn rates, a
switch with a capacity for 128k MAC tables can handle the
situation.

To address the table inflation, a short aging timer can be
set to prune unused entries. For a traditional managed switch,
a frame that does not match any existing (MAC, VLAN) pair
entry results in the switch broadcasting the packet out to each
interface. In our approach, each host is a member of VLAN 1
by default. Therefore, when a host is asked to use a non-default
VLAN ID to tag its outbound packets, the first packet will be
broadcast by the switch. Such broadcasts can be avoided by
tagging the ARP packet, which is already broadcast. In our
implementation, we allow such broadcasts to occur.

V1. DISCUSSION AND CONCLUDING REMARKS

Our analysis has examined the ability of a host-based
SDN to perform the same traffic engineering and inspection
capabilities of a switch-based SDN. In performing this work,
we found that, with careful advance planning, host-based
SDNs can achieve the same traffic engineering capabilities as
switch-based SDNs. With prior work already demonstrating
the capabilities of a host-based SDN for security and access
control purposes, host-based SDNs appear to achieve all the
goals envisioned for switch-based SDNs.

As we consider the future of networks, we believe this
approach offers organizations an opportunity to begin mass
deployments of SDN technologies, even in larger enterprise
networks, through simple software upgrades on end-points.
This can allow network operators to dramatically increase their
control and visibility, even in legacy Ethernet networks.
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