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ABSTRACT
The function-as-a-service (FaaS) paradigm, often called “serverless
computing,” allows computing providers to scalably perform short-
lived computational tasks at low cost. While the benefits of FaaS
have been demonstrated for ephemeral computational tasks, the
research community has not fully explored the applicability of FaaS
platforms for longer-term, periodic tasks, like network controllers.

In this work, we explore the fusion of FaaS platforms with the
controllers used in the software-defined networking (SDN) par-
adigm. Traditional SDN controllers are conceived as long-lived,
logically-centralized, critical infrastructure for the networks they
control. While such “always on” functionality would be a poor fit
for the FaaS model, we re-envision the SDN controller as a small,
distributed, and tailored entity that handles a single PACKET_IN re-
quest per instance. We explore this approach with edge computing
environments from content delivery network (CDN) providers. In
a CDN deployment, we observed a median PACKET_IN response
time of 15.8 ms from a residential host. The controllers can scalably
support both stateful and stateless policy using provider databases
and can support geographically-distributed organizations while
providing logically-centralized management.
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1 INTRODUCTION
The function-as-a-service (FaaS) paradigm, which is commonly
called “serverless computing” since FaaS applications do not re-
quire dedicated servers, allows software developers to write simple
functions using a computing provider’s API to perform distributed
tasks. These self-contained functions run on the provider’s compute
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nodes. The provider may distribute these functions arbitrarily and
independently across the servers they own, without need for server
affinity. This approach can increase programming productivity and
improve scalability while decreasing management costs [24]. These
platforms often provide distributed databases for storing records.

While FaaS platforms have proven value for short-lived opera-
tions, the research community has not fully explored FaaS support
for more traditionally long-running jobs. A software-defined net-
working (SDN) controller is a useful example of a long-running
process. The controller’s identity is well-known and often manually
and statically configured in the SDN agents on the switches that
consult that controller. While controllers may be implemented in
a redundant or distributed fashion, these controllers are largely
viewed as logically-centralized and closely synchronized. These
controllers need to have low latency, distributed processing, and
scalability [2] and may be deployed at the network edge [1].

Adopting a serverless architecture for SDN controllers offers
scalability, cost efficiency, and reduced latency. FaaS platforms of-
fering automatic scaling allow an SDN controller to handle sudden
spikes in control plane load without the need for pre-provisioning.
For deployers, the pay-per-use model eliminates idle-time costs and
infrastructure maintenance costs, since those are handled by the
FaaS providers. Many FaaS platforms can automatically use nodes
that are close to clients for executing functions, lowering network
latency. The FaaS service platforms provide always-on support to
functions, ensuring an SDN controller instance can respond to a
client’s request without maintaining persistent servers. All these
properties make FaaS a compelling option for SDN controllers.
While adopting a serverless architecture may introduce additional
complexity to the SDN control plane, the deployment complexity
is minimal, since the FaaS platform manages the function logistics.

To gain all the benefits of the FaaS model, the FaaS provider’s
platform must be able to dynamically instantiate all parts of an
SDN controller that only exists while processing and responding
to a given SDN flow rule request. In particular, the design must
be always-available to the clients and avoid any centralized com-
ponents that could become a single point-of-failure. A FaaS de-
sign eliminates computational overheads in between SDN agent
requests, supports scaling via parallelization, and allows the plat-
form provider to arbitrarily select computational nodes for handling
a given request. The FaaS model naturally supports scalable oper-
ations since it spawns a function instance automatically to serve
each request. A FaaS SDN controller can thus gain the aggregate
capacity of the available computing power of the cloud provider’s
platform. Finally, for geographically distributed organizations, the
FaaS model may dramatically reduce SDN agent-to-controller la-
tency when the FaaS platform is able to service agent requests on
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nearby nodes. Prior work [37] found that cloud-hosted SDN con-
trollers could provide reasonable support even for widely-varying
residential networks using only public cloud infrastructure. With
support for FaaS languages like WebAssembly [41] at content de-
livery network (CDN) nodes [18], providers may leverage existing
edge infrastructure to minimize network propagation times.

While the research community has made an initial foray into ex-
ploring FaaS SDN controllers, prior work has not fully implemented
a FaaS controller that provides all the FaaS model benefits. Banaie
and Djemame [6] created a long-running, centralized platform us-
ing the ONOS [33] SDN controller. While the ONOS controller uses
OpenFaaS [17] to run individual controller application functions,
the ONOS base itself remains a centralized always-on component
that could be a single point of failure. FaaS platforms improve fault
tolerance through distributed, stateless execution and built-in re-
tries, reducing single points of failure [35]. Therefore, we propose
an SDN controller deployment model that avoids any centralized
components that could be such single points of failure so that the
entire control plane benefits from the automatic scalability and
resilience to availability attacks that FaaS platforms enable.

The deployment scenario for a network can greatly affect the
rate at which an SDN controller receives requests from SDN agents.
In a fully proactive rule deployment, in which the SDN controller
specifies in advance all the rules that should be cached by an SDN
agent, the controller may only be consulted rarely (e.g., when a
switch boots and needs a copy of the rules). In a reactive deploy-
ment model, the controller may be consulted more frequently, such
as when new flows are created or a cached entry expires. In a
host-based SDN deployment model [13], the controller may com-
municate directly with endpoints and only receive queries when
the endpoint is active and establishing new connections. In the
case of a host-based mobile device SDN agent that provides per-
connection access control [28], the SDN agent may issue multiple
requests to a controller in a short window, with long periods of
inactivity. Our target use cases include edge deployments where
SDN controller workloads are inherently distributed and bursty,
such as in host-based SDNs or multi-site organizational networks.
A serverless deployment model is particularly attractive since it
provides cost-efficient scaling and automatically executes functions
on the platform nodes closest to the demand without the need for
planning deployment locations. The serverless controller design
is also compatible with P4-based data planes [8] that perform ac-
tions, such as rule installation or telemetry collection, based on
instructions from the FaaS SDN controller.

With this context, we explore five research questions (RQs):

RQ1. To what extent can an SDN controller leverage the FaaS com-
puting paradigm’s efficiency, scalability, and performance
benefits?

RQ2. To what extent can an SDN controller work with distributed
and semi-centralized FaaS computing platforms?

RQ3. To what extent can a FaaS SDN controller adapt to residential
networks, organizational networks, and IoT networks?

RQ4. To what extent can a FaaS SDN controller implement various
policy sets, including stateful policy?

RQ5. What end-to-end experience would a FaaS SDN controller
offer to geographically-distributed clients?

In exploring these questions, we contribute the following:

Create aWebAssembly SDN controller and Publish it on FaaS
Computing Platforms: We create an SDN controller in the Rust
programming language and then we compile it into aWebAssembly
application for the WasmEdge [40] runtime (Section 3). We deploy
this SDN controller on the Fastly Compute platform [18] with
distributed computing nodes and the Amazon Web Service (AWS)
Lambda platform [3] nodes.

Compare Server-based and FaaS SDNControllers:We compare
the prototype’s performance with popular open-sourced controllers
(Section 4.1). We evaluate each with four metrics: the local response
time, the cold start start-up latency, the end-to-end round-trip time,
and the usage of computational resources (e.g., CPU and RAM).

Evaluate the Impact of CDN and Various Types of Networks
on FaaS SDN Controllers: We deploy the SDN controller on two
popular serverless computing platforms. We compare SDN agent
request response times from a controller hosted at our organization,
in a cloud data center, and on CDN nodes (Section 4.2). We explore
support for IoT, residential, and corporate networks (Section 4.3),
the support for stateful and stateless policy (Section 4.4), and the
impact of varying SDN agent locations (Section 4.5). Our results
show CDN-hosted controllers can quickly respond to SDN agents
while scaling to meet high demand.

2 BACKGROUND AND RELATEDWORK
We discuss the cloud computing model and its supporting tech-
niques and existing SDN deployments.

2.1 FaaS, WebAssembly, and Edge Computing
The cloud computing model has been popular with industry with
varying deployment models [24], which range from Platform-as-
a-Service (PaaS), that allow full-fledged virtual machines, to the
Function-as-a-Service (FaaS) model, which is associated with mi-
croservices. The FaaS serverless computing approach offers scaling
advantages and opportunities to reduce cost by deploying microser-
vices [21, 39]. Boucher et al. [9] provide an example of an access-
control proxy that uses a recurring microservice pattern in which
the proxy receives an API request from a user, validates it, and
accesses a backend storage service.

Djemame [16] describes technologies and challenges in server-
less computing. They summarize several underlying metrics con-
sidered in the serverless applications: communication performance,
start-up latency, stateless overhead, and resource efficiency. They
argue that care must be used in the composition of serverless ap-
plications to avoid high communication overheads, particularly
when serverless functions are composed in a chain. McGrath and
Brenner [30] note serverless computing offers scaling advantages,
but introduces challenges for coherent function management.

WebAssembly [41] is a binary instruction format designed as
a portable compilation target, enabling deployment on the web
for client and server applications. The growth of WebAssembly
offers promise for serverless computing. Gackstatter et al. [20]
introduce a prototype WebAssembly runtime for Apache Open-
Whisk. They show their prototype reduces cold-start latency by up
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to 99.5% compared to the standard container-based runtime for vari-
ous serverless workloads. Kjorveziroski and Filiposka [25] evaluate
the execution performance of WebAssembly runtimes integrated
with Wasmtime and find that the WebAssembly runtimes achieve
better execution times than directly running in a container, but
required more computation time for intensive operations.

WebAssembly applications in a serverless platform can support
network interactions via an HTTP API. Lee et al. [26] evaluate
the concurrent invocation of different trigger types to demonstrate
the performance and throughput of serverless computing. Their
experiments shows HTTP triggers have reasonable concurrent
request processing support. With overlay HTTP messages, an SDN
client can query a controller request messages.

Edge computing aims to place services as close to endpoint de-
vices as possible. For example, Cicconetti et al. [14] introduce a
framework for IoT devices that includes serverless edge computing.
They suggest that every edge node (or small cluster of edge nodes)
could host a serverless platform, such as OpenWhisk [4].

2.2 SDN Deployments
SDN divides the traditional network routing platform into a control
plane and a data plane. The controller is required to communicate
with the data plane for managing network applications. Aditya et
al. [1] describe needs for SDN adoption, including resources for
virtualized network function execution. They also note many net-
work applications are short-lived and cannot afford high start-up
latency. This places pressure on SDN controllers to quickly serve
each incoming request. They note that the serverless computing
paradigm could be used for implementing SDN controllers.

Comer and Rastegarnia [15] introduce a distributed microservice
architecture that divides the monolithic SDN controller into a set
of cooperative microservices to avoid overheads. Banaie et al. [6]
introduce a serverless computing platform with a layer for the SDN
core service, a communication interface, and a set of serverless
functions. The core service is a long-term ONOS open-source SDN
controller. The core service transmits events to a specific FaaS
function through the communication interface. This “always-on”
core design consumes computing resources for the core service
without fully leveraging the FaaS model.

Our approach fuses the FaaS model with SDN controllers using
WebAssembly and distributed compute nodes with the aim to offer
high performance and low-latency to end devices while capitalizing
on the resource efficiency and scalability associated with the FaaS
model. We avoid long-running SDN components and instead use
providers’ triggers to spawn SDN controller instances.

3 A WEBASSEMBLY SDN CONTROLLER
We describe how we transform the traditional long-running SDN
controller to deployments of serverless computing. Our implemen-
tation’s source code is publicly available [27].

The Rust programming language can be used to create stand-
alone executables and to compile into other languages, such as
WebAssembly. To compare and contrast a FaaS controller with a
server-based one, we start by creating a Rust-based SDN controller.
Our implementation uses the rust-ofp [7] crate to implement an
OpenFlow protocol-compatible SDN controller.

Figure 1: FaaS SDN controllers can be deployed on local in-
frastructure (top green box) or on FaaS providers’ platforms
(bottom green box).

In Figure 1, we provide a diagram of our WebAssembly SDN con-
troller prototype. In the upper portion of the diagram, we show how
an organization could have a minimal long-running TCP listener
that could trigger the instantiation of an SDN controller function for
processing.That controller is activated, processes a single OpenFlow
request, sends a response, and terminates. To create it, we compile
our Rust controller program into a WebAssembly application bi-
nary. To support TCP streams, we use the WasmEdge Runtime [40]
to create a TCP listener process and an invoker process to launch
our compiled SDN controller function.

Prior work found that the round-trip time (RTT) between the
SDN agent and the SDN controller can have a significant impact on
end-user experiences with applications such as web browsing [37]
and traffic network control [11]. Since CDNs are designed to po-
sition resources closer to client endpoints to reduce RTTs and the
number of network links that must transmit packets, they may be
candidates for hosting FaaS SDN controllers.

In the lower portion of the diagram, we show how this ephemeral
SDN controller can be integrated into a CDN provider’s platform.
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To provide a concrete example, we illustrate our use of the Fastly
Compute Platform; with modest changes, we also use our approach
with AWS Lambda.

In the Fastly platform, a developer registers a FaaS application
and receives a DNS hostname that clients may use to access the
application. When a client issues a request for the host name asso-
ciated with our SDN controller, Fastly’s DNS infrastructure selects
the appropriate CDN node, often the node with the lowest latency
to the client, to process the request and returns that node’s IP ad-
dress. The client then connects to an HTTP server running on that
CDN node. Since each node services multiple customers, the HTTP
server uses the requested host name to determine the appropriate
customer function to call. The HTTP server completes a TCP hand-
shake with the client, creates an instance of our SDN controller
function, and then forwards the HTTP request to that controller
instance. As it is launched, the SDN controller function can pull
configuration information from a Fastly database. The SDN func-
tion processes the request and sends a response to the client via the
Fastly HTTP server. The function logs entries to the Fastly database
and terminates. While we used the WasmEdge Runtime on our own
server, we used the WasmTime [10] Runtime for deploying to Fastly.

There are significant differences between our approach and that
of Banaie et al. [6]. They use the ONOS controller to host a long-
term SDN core server that dispatches specific services to serverless
function. In contrast, we transform the whole SDN controller into
a truly FaaS application. Whether our SDN function is deployed
to Fastly’s platform or not, the DNS and HTTP infrastructure is in
place to service other client requests. When we deploy our SDN
controller function on the Fastly infrastructure, the platform does
not immediately start any processes associated with our SDN con-
troller. The platform only runs our function to respond to a given
client’s OpenFlow PACKET_IN request and the function terminates
upon sending a response and logging the event.

4 EMPIRICAL STUDY: FAAS DEPLOYMENT
Our earlier research questions were: To what extent can an SDN con-
troller leverage the FaaS computing paradigm’s efficiency, scalability,
and performance benefits? To what extent can an SDN controller work
with distributed and semi-centralized FaaS computing platforms? To
what extent can a FaaS SDN controller adapt to residential networks,
organizational networks, and IoT networks? To what extent can a
FaaS SDN controller implement various policy sets, including stateful
policy? What end-to-end experience would a FaaS SDN controller offer
to geographically-distributed clients?

In Table 1, we show how we explore these research questions
across five phases. We vary a single parameter in each phase. We se-
lect and hold constant the bold face option in each phase’s list for all
the other phases. In Phase 5, we additionally look at a FaaS controller
variant that emulates the OpenFlow handshaking process. In all
other phases, we use a process where the HELLO, SWITCH_FEATURES,
and PACKET_IN messages are combined into a single request. This
simplified message set is used as a proof-of-concept to evaluate
the feasibility and performance of our serverless controller design.
While this abstraction does not fully implement the OpenFlow spec-
ification, it enables an evaluation of the performance properties of

SDN applications that require a controller’s vetting of each new
flow.

In Phase 1, we explore the impact of programming language
and design structure on controller performance. We construct a
baseline of a set of traditional, open-source server-based SDN con-
trollers. We then examine our prototype SDN controller, both as a
more traditional server-based Rust implementation and with our
FaaS WebAssembly variant. We use the cbench [31] and perf [34]
benchmarking tools to compare these controllers across a variety of
metrics to capture efficiency, scalability, and performance character-
istics. We deploy each controller in a VM at our organization with
a straightforward IP address blocklist policy. For all subsequent
phases, we use our WebAssembly controller implementation.

In Phase 2, we deploy the WebAssembly controller on two pop-
ular FaaS computing platforms and our organization server. We
share the code for our implementation in a GitHub repository [27].
These controllers are hosted by distributed, semi-centralized, and
centralized computing nodes, letting us observe the impact of con-
troller locations and distribution. In Phase 3, we explore prior data
sets of network traffic in an IoT network, a residential network, and
an corporate/industrial network. By replaying that traffic, we can
see how a FaaS controller would perform. In Phase 4, we explore
varied policy sets. While packet header rule policies are common in
controller implementations [32, 33], we also include a policy based
on a state machine to explore the extent to which stateful policies
can be supported. In Phase 5, we vary the SDN agent location to
observe the end-to-end performance.

4.1 Efficiency, Scalability, and Performance
We explore efficiency, scalability, and performance of the imple-
mentations across a series of experimental scenarios, starting with
the processing time and query throughput rate.

The amount of time it takes for a controller to process a request is
a critical measure of the controller’s performance. We consider the
response time to be the time between when a client sends the con-
troller a PACKET_IN request and when that client receives the con-
troller’s PACKET_OUT response. To eliminate network propagation
factors, we use a client hosted on the same system as the controller.
We examine the response time of four SDN controllers including:
POX (gar version), Floodlight v1.2, our SDN controller running in
Rust, and our WebAssembly SDN controller (using the WasmEdge
runtime [40]). The POX controller [29] is written in Python and the
Floodlight controller [19] is written in Java.

We install each controllers on a virtual machine with two cores
and 8GBytes ofmemory.We use the cbench benchmarking tool [31]
which is commonly used to profile SDN controllers and has mi-
crosecond (`s) timing resolution. During the experiments, we con-
figure cbench to send a PACKET_IN and wait for a PACKET_OUT to
return. We then count the number of sequential PACKET_OUT re-
sponses received in one second. We calculate the mean response
time by dividing one second by the number of PACKET_OUT re-
sponses received. Each second represents one mean response time
data point; we collect 1,000 such data points for each controller.

In Table 2, we show results of the mean response times across
1,000 trials for each of the four controllers. The low standard de-
viation shows that the results across trials were fairly consistent.
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Table 1: To feasibly explore multiple parameters related to serverless SDNs, we vary only one parameter in each phase and hold
that parameter steady in other phases. This table summarizes the explored parameters in Section 4.

Phase and Re-
search Questions
Explored

Phase 1: Controller
Implementation Im-
pact

Phase 2: Controller
Location Impact

Phase 3: Type
of Underlying
Network

Phase 4: Types of Pol-
icy Implemented

Phase 5: Client Loca-
tion Impact

Options for the
parameter that is
varied in the indi-
cated phase. The
bold face option
is used for that
parameter in all
other phases.

• Floodlight
• Pox
• Rust
• WebAssembly

• Fastly Compute
(Distributed)

• AWS Lambda
(Semi-Centralized)

• Centralized Server
at our Organiza-
tion

• IoT SDN
• Residential

SDN
• Organization
SDN

• IP Address Block-
list

• Flow Header
Rules

• State Machine
Rules

• Residential Net-
work Computer

• VM at Our Organi-
zation

• AWS EC2 Instance
• Alibaba Cloud VM

The Floodlight controller has the lowest mean response time; the
median of its data points is 28.4 microseconds (`s). The Rust and
WebAssembly variants of our controller have response times that
are close to each other, with median response times of 55.0 `s and
52.4 `s, respectively. This similarity is likely due to being compiled
from the same source code. The POX controller shows a higher
response time than other three controllers with a median result
of 91.0 `s. In this table, and in many of the following tables, the
standard deviation is affected by data points that are significantly
higher than the rest of the distribution. These outliers could be due
to unrelated activity in the network or system. We simply note
their presence and preserve them in the reported data.

Table 2: The results of mean response time of tested con-
trollers. Each series includes 1,000 independent second-long
trials of the controller response rate.

Mean Response Time (microseconds)
Controller 10th percentile median 90th percentile std. dev.
POX 72.1 91.0 93.0 7.0
Floodlight 26.6 28.4 30.1 5.2
WebAssembly 50.8 52.4 54.4 1.6
Rust 49.2 55.0 58.5 4.1

We then use cbench to examine the maximum throughout rate
that each controller can achieve under the same test environment.
We configure cbench to continuously send and queue PACKET_IN re-
quests while the buffer is not full. We count the number of sequen-
tial PACKET_OUT responses received in one second and calculate
the throughput rate as the number of responses received in one
millisecond. Each second represents one throughput rate data point
and we collect 1,000 data points for each controller.

Table 3 represents the results of the throughput rates across 1,000
trials for each tested controller. The Rust controller has the highest
throughput rate as the median of its data points is 124.5 packets per
millisecond (ms). The WebAssembly controller achieves a slightly
lower throughput rate compared to the Floodlight controller, with
median throughput rate of 65.3 packets per ms and 71.9 packets per
ms, respectively. The POX controller shows the lowest throughput
rate with a median result of 40.6 packets per ms.

While query response time and throughput rate are important,
the resource usage of the controller implementations affects the

Table 3: The results of throughput rate of tested controllers.
Each series includes 1,000 independent second-long trials of
the controller throughput rate.

Throughput Rate (packets per millisecond)
Controller 10th percentile median 90th percentile std. dev.
POX 36.1 40.6 42.8 2.9
Floodlight 66.0 71.9 77.3 7.3
WebAssembly 61.5 65.3 74.9 5.0
Rust 108.4 124.5 133.0 10.1

deployment costs. When we examine the resources used by the four
SDN controllers, we first observe their usage of CPU and memory
after completing the initial start-up (e.g., binding the OpenFlow port
and awaiting the first client’s connection). We show these results in
the second and third columns of Table 4. We note that the Floodlight
controller consumes around 5% more CPU and 280 Mbytes more
than the other controllers. The Rust controller consumes the least
CPU and memory among the tested controllers.

Table 4: CPU and RAM usage of the tested controllers

Avg. Idle Usage Avg. Active Usage
Controller CPU (%) RAM (MBytes) CPU (%) RAM (MBytes)
POX 0.3 14.7 41.1 14.8
Floodlight 5.2 296.8 56.2 529.2
WebAssembly 0.3 13.1 14.3 13.1
Rust 0.1 0.8 20.8 79.0

We then collect the resource usage while these controllers are
active and handling PACKET_INmessages sent from another virtual
machine with a packet arriving rate of 1,000 packets per second.
Each of the controllers have increased CPU usage, with the Flood-
light controller still consuming the most CPU cycles. While the
memory usage of theWebAssembly and POX controllers are largely
stable, the Floodlight and Rust controllers consume significantly
more memory than during the idle stage. The WebAssembly con-
troller, which is built with FaaS deployment in mind, has good
resource usage during high-demand bursts.
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We examine the number of CPU cycles used by these controllers
using the perf tool [34] in two measurements. The first measure-
ment reports the cycles used to start and then immediately termi-
nate the SDN controller. The second measurement records CPU
cycles used during one second after the controller has started. In
Table 5, we see results that are consistent with CPU usage percent-
ages. The WebAssembly controller consumes the least CPU cycles
to simply start and exit while the Floodlight controller consumes
the most CPU cycles. The perf tool did not report any CPU cycles
used by theWebAssembly or Rust controllers during the idle second.
Between the Floodlight controller and the POX controller, Flood-
light has significantly higher CPU cycle usage in the idle second
period.

Table 5: CPU cycles used by tested controllers for start-exit
and idle

Avg. CPU cycles used in
Controller start-exit idle for one second
POX 449,907,900 344,584
Floodlight 7,496,986,849 2,075,673
WebAssembly 38,826,770 [none reported]
Rust 146,909,126 [none reported]

Finally, we examine the amount of time required to initiate each
of the SDN controllers and have them ready to serving new clients.
While this factor is less important for long-running SDN controllers,
since the servers infrequently restart, it is important for controllers
that regularly start and stop, such as in the FaaS model. In the
same virtual machine that runs previous experiments, we develop a
timing program to record two timestamps. The first timestamp (C1)
is the time at which the program invokes the SDN controller. Im-
mediately upon invoking the controller, our measurement program
continuously sends packets to attempt to connect to the controller.
The second timestamp (C2) represents the time at which the SDN
controller successfully replies to a connection request. We consider
the difference (C2 − C1) as the start-up latency of the controller.

Table 6: We compared the start-up (cold start) latency of four
controllers. Each series includes 1,000 independent trials of
the controller start-up.

Start-up Latency (milliseconds)
Controller 10th percentile median 90th percentile std. dev.
POX 263.8 283.2 306.5 17.8
Floodlight 4,619.6 4,735.8 4,843.0 250.3
WebAssembly 11.6 12.1 16.7 2.0
Rust 70.0 78.8 85.1 6.4

In Table 6, we show the start-up latency of the four controllers
across 1,000 trials for each controller. The Floodlight controller
spends a much longer time in its starting process as compared to
other controllers; it takes a median of 4,735.8 ms for Floodlight to
be ready to accept its first client. The POX and Rust controller have
median start-up latencies of 283.2 ms and 78.8 ms, respectively. The
WebAssembly controller has the shortest start-up latency among
these controllers, with a median of 12.1 ms. This highlights the

WasmEdge runtime’s success at minimizing the start-up cost of FaaS
applications.

In summary, the results we present in this section show there
are tradeoffs inherent in SDN controller designs. The Floodlight
controller has median response time that is just over half that of
the next closest competitor, but it pays for that in CPU and RAM
usage and a longer start-up time. The WebAssembly controller
starts quickly and has, at worst, the second-lowest CPU usage
and memory usage. These tradeoffs align with the long-running
deployment design of Floodlight and the shorter-lived design for
WebAssembly.

4.1.1 Concurrency and Scalability. In the FaaS model, the provider
platform automatically spawns SDN controller instances on de-
mand. The platform provider may perform load balancing and
choose which node to host each new instance. For CDN platforms,
the selection often prioritizes CDN nodes with lower latency to the
client. This CDN mechanism has been effective at handling large
“flash crowds,” with billions of requests during spiking demand [42].

We explore the impact of running four concurrent SDN agents
elevating traffic to the FaaS SDN controller on the Fastly CDN plat-
form. We use the organization network data set [23], which we
describe in more detail in Section 4.3. To avoid exact synchroniza-
tion between SDN agents, we replay four distinct business hours
of the organization network traffic from Tuesday to Thursday in
each of the four agents. We host these SDN agents in different
geographic regions and each agent transmits a PACKET_INrequest
for each new TCP flow it witnesses. These SDN agents record the
elapsed time between sending a request and receiving a response.

In Table 7, we show the results of the experiments. Given that dis-
tributed nodes are generally able to accurately synchronize clocks
to the nearest second, we use a second as the time resolution for
the study. We mark an SDN controller instance as running for each
second in which it receives a request. With our earlier throughput
rate findings of tens of requests per millisecond and results in Sec-
tion 4.2 showing full SDN request round-trip times in the tens of
milliseconds, the second granularity we use may overestimate the
degree of concurrency since multiple requests could occur serially
in the same one-second duration window. Nonetheless, we see in
Table 7 that over 25% of the 3,600 seconds in the hour-long experi-
ment had zero controller instances running and another 37% had
only a single controller instance running. With an organizational
data set in which the SDN agent issues a controller review request
for every new flow, at most 37% of the time had concurrent requests.
Of the 1,329 seconds with concurrent requests, over 71% (960) had
only two concurrent SDN controller instances.

The degree of concurrency and the number of requests per hour
of a real-world organization appear low in comparison to the ca-
pacity required for CDN platforms to support flash crowds.

4.2 Impact of Distributed Deployment
The round trip time (RTT) between the client application and
the SDN controller makes a significant impact on users’ experi-
ences [37]. When considering a residential network, does a CDN
provider have a lower latency than a near-by server? We empir-
ically explore the RTT between the SDN agent’s request and its
receipt of the controller’s response.



Functional Control: Leveraging Function-as-a-Service Platforms for Software-Defined Networking Controllers MobiHoc ’25, October 27–30, 2025, Houston, TX, USA

Table 7: Concurrency measurement when four geographically-distributed SDN agents issue per-connection controller review
requests based on data from the organization data set on of one-hour periods selected from different week days.

Response Time (milliseconds) # of Number of Seconds in which : Controller Instances Run
Client Location 10th median 90th Packets : = 0 : = 1 : = 2 : = 3 : = 4
VM at Our Organization 12.3 13.0 13.8 85,755
AWS EC2 Instance in US West 3.3 3.9 4.6 35,905 924 1,347 950 321 58
AWS EC2 Instance in US East 2.3 3.1 4.0 27,472 (25.7%) (37.4%) (26.4%) (8.9%) (1.6%)
Alibaba Cloud VM in Japan 4.8 5.3 5.7 38,209

We first install the Fastly Command-Line Interface (CLI) and the
Fastly Compute platform [18] on a server in our organization. The
Fastly CLI allows us to use our own infrastructure with the Fastly
Compute software, including a local toolchain with features for
creating, debugging, and deploying WebAssembly services. This
lets us “deploy” the WebAssembly SDN controller on an instance
running on our own organization’s server as a baseline (using
our own organization’s DNS host names). We then publish the
WebAssembly SDN controller on the Compute platform built on
Fastly’s CDN nodes. Fastly automatically generates a domain name
for the service, which can be accessed by the test client to access
the CDN node instances.

Then we install a Rust runtime [5] for AWS Lambda [3] on the
same server in our organization. We use the Rust runtime client
to build a Lambda function of the SDN controller locally. Lambda
runs the compiled executable directly and does not require a We-
bAssembly executable, unlike Fastly. As with Fastly, we can use this
local controller instance with our test client. We likewise publicly
deploy the function of the SDN controller on AWS Lambda services
that is served by an AWS server in the US East data center. The test
client uses an AWS Lambda host name to access the service.

To evaluate the performance of the FaaS SDN controllers de-
ployed on different platforms and servers, we use an SDN agent
running on a laptop in a residential network. From the client,
we repeatedly send an HTTP request wrapping the OpenFlow
PACKET_IN message to the domains of four tested controllers, wait
for the matched response, and record the elapsed time.

Table 8: The SDN agent request response time for SDN con-
trollers running the Fastly and AWS Lambda platform soft-
ware, both running on our server (self-hosted) and on the
platforms’ respective servers. Each row has data from 34,974
independent trials.

Response Time (milliseconds)
Platform 10th median 90th std. dev.
Compute (Distributed) 14.1 15.8 20.2 7.4
Compute (Self-Hosted) 22.5 24.5 27.3 3.1
Lambda (Semi-Centralized) 37.0 41.8 48.9 14.8
Lambda (Self-Hosted) 25.1 26.2 29.2 3.0

In Table 8, we show the results of data points of response time
collected from the above experiments. By replaying one hour of
traffic from an organization’s network [23], we use the same SDN
agent to conduct 37,974 trials to each of the four different SDN
controllers: a) the controller running on Fastly’s CDN nodes, b)
the Fastly SDN controller instance running on our organization’s

server, c) the AWS Lambda instance running in the AWS US East
data center, and d) the AWS Lambda instance running on our or-
ganization’s server. The two self-hosted results are similar; while
these show Fastly’s software stack has slightly better performance
characteristics for our prototype than the AWS Lambda instance,
future optimization efforts may eliminate that difference.

In exploring the results when the platforms host the instances
themselves, we see that the Fastly CDN has significantly lower
request response times than AWS Lambda. This difference is likely
due to the server deployment models of the providers: Fastly’s
highly distributed CDN aims to place servers geographically close
to clients while AWS Lambda uses a semi-centralized approach
using a smaller number of larger data centers that serve larger
geographic regions. With network propagation delays potentially
being a significant component of the differences, it is possible the
Fastly server is simply closer to the client.

The RTT between the SDN agent and the SDN controller can
affect the user experience. Prior work found using a cloud-hosted
controller at a 50 ms RTT would add a two-second delay to the
web page load time in the worse case scenario [37]. With lower
RTTs associated with distributed controllers, the page load time for
clients would decrease, improving the user experience. By using
distributed CDN infrastructure, deployers may minimize RTTs for
many SDN agents.

4.3 Home, IoT, and Organization Networks
With the potential for highly distributed FaaS SDN controllers, we
explore the research question: To what extent can a FaaS SDN con-
troller adapt to residential networks, organizational networks, and
IoT networks? We leverage prior data sets from varied networks
including home networks, IoT device networks, and organizational
networks. By replaying these network traffic, we evaluate the ap-
plicability of the FaaS SDN controller for real-world networks.

We use public network data sets that were generously provided
to the research community. Vaccari et al. [38] create an IoT network
composed of eight IoT sensors and record the network traffic for
seven days (which we refer to as the “IoT Network”). Hjelmvik [22]
performs network forensic analysis in a real Internet-connected
network, which provides 40 days of network traffic (which we refer
to as the “Home Network”), including web browsing, chat, and
email. The ICS Lab [23] hosts an organizational network composed
of various equipment including PLCs, servers, switches, and fire-
walls. They share three days of captured network traffic from the
organization’s network (which we refer to as the “Organization Net-
work”). All of these data sets are available in the pcap data format.
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We create a tool to replay the network traffic and send associated
OpenFlow SDN agent messages to the FaaS SDN controller.

By using two Rust libraries, pcap and pdu, we create a tool to
parse raw data sets into packet level information.We collect the flow
header information to construct an HTTP request that contains
an OpenFlow PACKET_IN message as the payload. Since we are
replaying traffic, we can choose whether to simply send these HTTP
requests as fast as the tool can parse each packet or we can use the
timestamp of every packet to match the real-world delay between
requests. We provide results from both of these options.

We next consider which packets should be sent to the controller.
In some cases, SDN agents may request a controller review for only
the first packet in each new network flow, particularly if an SDN
controller makes use of FLOW_MOD messages to cache decisions at
the SDN agent. In other work [12, 28], the SDN agent may request
a controller review of all the packets associated with particular
network flows to enable stateful policy enforcement at the SDN
controllers. We provide results for both deployments, using the
“Full Flow Mode” label when the SDN agent sends every packet to
the controller and the “Initial Packet Mode” label for SDN agent
requests for only the first packet in each flow.

After creating the replay tool supporting two replay modes, we
install it on a residential network computer and send requests to the
serverless SDN controller deployed on Fastly Compute. We replay
packets from a one-day period in the IoT network data source and
a similar period for the home network. We use a two-day period
for the organization’s network data set. For the data sets, we set
the packet replaying tool in Full Flow Mode for each and in Initial
Packet Mode for the home and organization networks. We do not
examine Initial Packet Mode for the IoT Network due to a small
number of continuing flows, which yields a small sample size. We
measure the performance of the SDN controllers by measuring the
time between when the agent issues the HTTP request and when
the client receives the HTTP response. Table 9 shows the results of
these experiments under the maximum transmission-rate setting.
We found most response times range from 12.5ms to 20.8ms.

Table 9: The SDN agent request response times for the FaaS
SDN controller and the SDN agents with different request
scenarios when maximizing packet arrival rate

Response Time (milliseconds)
Network Type 10th median 90th std. dev.
IoT Network (Full Flow) 12.5 14.5 19.3 9.0
Home Network (Initial Packet) 14.0 15.6 20.8 6.9
Home Network (Full Flow) 13.2 14.4 17.6 6.8
Organization Network (Initial Packet) 13.4 15.7 20.4 5.1
Organization Network (Full Flow) 13.3 15.2 18.7 6.0

In Table 10, we show the results when the packet replaying tool
sends OpenFlow query messages at a pace that matches the real-
world arrival rate seen in the packet captures. We replay the traffic
from a one-hour period associated with the data sets of the IoT
network, home network, and organizational networks. Given the
slower arrival rate, we use the Full Flow Mode for each. Table 10
indicates that most response times range from 12.3ms to 19.0ms.

In examining the results from Tables 9 and 10, we find that the
FaaS SDN controllers can support the real-time SDN agent requests

Table 10: The response time for the FaaS SDN controller and
the SDN agent with different network traffic when replaying
real-world packet arrival rate.

Response Time (milliseconds)
Network Type 10th median 90th std. dev.
IoT Network (Full Flow) 12.3 14.3 17.3 7.9
Home Network (Full Flow) 13.3 15.2 18.9 7.5
Organization Network (Full Flow) 13.1 15.0 19.0 8.4

associated with the IoT, residential, and organizational networks
without performance degradation. Even when we expedite the
packet captures to transmit at an artificially high rate, the SDN
controller results are similar. When hosted on a CDN platform, the
SDN controller can scalably support different types of networks.

4.4 Stateless and State-Based Policy
We now explore the research question: To what extent can a FaaS
SDN controller implement various policy sets, including stateful pol-
icy? Even stateless controllers need some form of policy to apply
in making decisions. Fortunately, the FaaS computing platform
providers supply mechanisms for loading data to be used by the
customer’s serverless functions.

We use two types of data stores, ConfigStore and KVStore, pro-
vided by the Fastly Compute platform to implement three policy
sets. The ConfigStore provides storage that is organized in a hash
map data structure. Each edge CDN node can read this data struc-
ture. That data structure can be updated using a back-end server,
which will then be synchronized and propagated globally. This is
useful for distributing enforcement policy. For stateless policy, this
is the only data structure that we need to read.

For the first set of policy, we compile 500 IP address rules from
an open-sourced malicious IP list [36] into a blocklist that we store
in the ConfigStore. An example policy rule can be to drop a flow
if it has source IP or destination IP in the malicious IP list.

As a second set of policy, we explore more detailed matching
rules. Prior work [32] indicates that a typical flow rule includes a set
of flowmatch fields, a flow priority, and a flow action set. ONOS [33]
supports flow match fields including MAC address, IP address, TCP
port, and transport-layer protocol. To replicate such functionality,
we create 500 flow rules using a variety of these header fields to
compile a set of rules in the ConfigStore. As an example, the flow
rule policy can support allowing every network flow on port 22.

In other work [12], the SDN controller uses a state machine
policy to secure IoT devices in home networks. The state machine
policy needs to keep track of the state of every flow. The prior
ConfigStore data structure cannot support our need to write en-
tries at the CDN node running the controller. Instead, we use
Fastly’s KVStore data structure, which has an “eventual consis-
tency” guarantee (i.e., writes are immediately consistent intra-node
and later become consistent between nodes). The KVStore allows
CDN nodes to both read and write entries. We use this to maintain
the flow state when handling each PACKET_IN. Specifically, after
the platform invokes an instance of the controller function upon
receiving a request, such cold-started instance can retrieve its state
by reading the KVStore from the edge node. This instance also
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Figure 2: Response times for the experiments for the SDN
agent and FaaS controllers with different policy sets. The
lines representing the IP address rule policy and the flow
rule policy have significant overlaps and appear on the left.
The line on the right shows the state machine policy.

reads the state machine rules from the ConfigStore. It then sends
the response based on its current state and the state machine rules.
Finally, it writes the updated state to the KVStore which will be
available for other edge nodes instantly. We insert our read-only
policy of 500 state machine rules into a ConfigStore.

We then evaluate the SDN controller’s performance when im-
plementing these three policy sets. We use a residential network
computer to replay one hour of traffic from the organization net-
work described earlier [23]. We configure the SDN agent to send
a request to the controller for every packet in the packet capture
to the controller deployed on the Fastly Compute platform and
record the time difference between sending the HTTP requests and
receiving the HTTP responses.

Figure 2 shows the results of these experiments. We note that
the two leftmost lines have significant overlap. They show the data
points associated with the IP rule policy and the flow rule policy.
The median and 90th percentile data points for the IP rule policy are
14.7 ms and 18.4 ms, which are slightly lower than the median and
90th percentiles of the flow rule policy, which are 15.7 ms and 23.1
ms, respectively. It takes longer for the SDN controller to parse flow
rules that include more information than an IP address blocklist.

The results for the state machine policy are quite different: the
median and the 90th percentile for the state machine rule policy are
135.6 ms and 286.6 ms, respectively. The approach incurs a signifi-
cant delay at the SDN controller, likely due to the tracking of the
flow’s state. This requires frequently read and write operations on
the KVStore data structure. While the read latency for the KVStore
is typically under a millisecond, Fastly’s documentation [18] notes
it may take up to 300ms to read data that has recently changed. The
bends in the curve for the stateful policy results align with KVStore
performance reported in the Fastly documentation.

These results show that stateless policy can be faster than stateful
policy, at least in some platforms. Deployers may need to deter-
mine whether they can accept such delays for applications that
require such stateful analysis, such as the relatively low-traffic IoT

applications in prior work. However, since the SDN controllers
operate as ephemeral functions that run in parallel, deployers can
design their deployments so that stateful and stateless application
policies run in separate controller instances. This will allow agents
and applications with stateless policy to achieve high performance
while only incurring delays for the agents that need stateful pol-
icy. In the future, platform providers may choose to optimize data
structures like the KVStore for lower latency. Until then, deployers
may explore other controller deployment models for applications
requiring low-latency, stateful policies.

4.5 Geographically Distributed SDN Agents
To examine the impact of the geographic location associated with
an SDN agent, we publish the FaaS SDN controller on the CDN
nodes associated with the Fastly Compute platform and access it
from SDN agents in different networks. We use the DNS host name
provided by the Fastly platform for clients to access the service.

We placed a typical SDN agent in four different locations to
simulate potential deployment sites. The first SDN agent we explore
is installed in a computer in a residential network. A second SDN
agent is located in a server at our organization, whichmay represent
a typical corporate network deployment. We then install agents
in two public data centers, one in the Amazon Web Services US
East data center and one in the Alibaba cloud server in Hong Kong,
China. These data center installations can illustrate the impact for
well-connected data centers accessing CDN FaaS controllers.

We simulate an organization’s usage by replaying the traffic
from an organization’s network [23] from each of these four SDN
agent locations. The SDN agents send review requests for the re-
played traffic to the FaaS SDN controller and record the elapsed
time between transmitting the SDN agent request and receiving the
controller’s response. In Table 11, we show the results of an hour
of SDN agent requests for the organization network’s traffic from
clients in these locations, with 34,974 requests from each client. The
median request response time is less than 10ms for an SDN agent
hosted on our organization server or at either of the data centers.
From the residential network, the median response time is 14.1ms.

Table 11: The results of the validation time for clients in
different locations with the combined request method

Request Response Time (milliseconds)
Client Location 10th median 90th std. dev.
VM at Our Organization 9.2 9.7 10.3 6.0
Residential Network Computer 12.9 14.1 17.7 6.1
AWS EC2 Instance in US East 3.1 3.4 4.3 1.7
Alibaba Cloud VM in China 4.7 5.2 6.1 3.1

For all the results we have presented thus far for the FaaS SDN
controller, we have used an aggressive bundling of OpenFlow mes-
sages. We compiled the OpenFlow HELLOmessage, PACKET_INmes-
sage, and SWITCH_FEATURES_REPLY message into a single HTTP
request’s payload. This allows the SDN controller to identify clients
and handle query messages, but it does not allow for a negotiation
between the parties. The trade-off is that it consumes only a single
round-trip time for requests rather than three round-trips.
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Table 12: The results of the validation time for clients in
different locations with the three-way handshake method

Client Validation Time (milliseconds)
Client Location 10th median 90th std. dev.
VM at Our Organization 18.7 19.5 20.4 5.7
Residential Network Computer 25.7 28.9 37.2 8.6
AWS EC2 Instance in US East 6.5 7.0 7.8 2.0
Alibaba Cloud VM in China 10.4 11.3 13.3 5.1

We explored a faithful recreation of the standard OpenFlow hand-
shake to determine the performance aspects of each. That hand-
shake process includes three steps. The agent sends an OpenFlow
HELLO to the controller. The controller responds with a HELLO and a
SWITCH_FEATURES_REQUEST message. The SDN agent replies with
a SWITCH_FEATURES_REPLY message. We record the time when
the SDN agent sends its HELLO and the time at which the SDN
agent receives the controller’s acknowledgment of the agent’s
SWITCH_FEATURES_REPLY message. We report the elapsed time be-
tween these measurement points across 35,000 trials of the hand-
shake process for each agent with the distributed SDN controller.
We show the results in Table 12. The handshake time for all the
agents are consistent with low standard deviations. For 90% of trials
of tested agents, the controller handshake time is 37.2 ms or less.

5 CONCLUSION
In this work, we explore the viability of a FaaS SDN controller. We
find that we can reasonably construct such a controller using We-
bAssembly and deploy it on commercially-available CDN provider
networks. The on-going resource costs are lower than production
open source SDN controllers. While the Floodlight controller can
respond to requests around 25 `s faster than our WebAssembly
implementation, the network propagation times of messages could
quickly dwarf that difference. With a cloud provider’s natural abil-
ity to create multiple instances of the WebAssembly controller
dynamically, the approach can easily scale to support even large,
busy networks. Finally, leveraging widely distributed CDN nodes
can significantly decrease the request latency to SDN controllers,
minimizing an impact to the user experience.
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