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Abstract—The software-defined networking (SDN) paradigm
promises greater control and understanding of enterprise net-
work activities, particularly for management applications that
need awareness of network-wide behavior. However, the current
focus on switch-based SDNs raises concerns about data-plane
scalability, especially when using fine-grained flows. Further,
these switch-centric approaches lack visibility into end-host and
application behaviors, which are valuable when making access
control decisions.

In recent work, we proposed a host-based SDN in which we
installed software on the end-hosts and used a centralized network
control to manage the flows. This improve scalability and provided
application information for use in network policy. However, that
approach was not compatible with OpenFlow and had provided
only conservative estimates of possible network performance.

In this work, we create a high performance host-based SDN
that is compatible with the OpenFlow protocol. Our approach,
DeepContext, provides details about the application context to
the network controller, allowing enhanced decision-making. We
evaluate the performance of DeepContext, comparing it to tra-
ditional networks and Open vSwitch deployments. We further
characterize the completeness of the data provided by the system
and the resulting benefits.
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I. INTRODUCTION

Enterprise network operators typically lack a detailed under-

standing of the traffic that flows across their devices. While

these operators may deploy middleboxes, such as intrusion

detection systems (IDSes) or firewalls, these operators remain

blind to intra-subnet traffic that traverses a switched path

without reaching the middleboxes. Even for traffic that does

traverse a middlebox, these devices can only make inferences

about the type of traffic based on packet header information

or deep packet inspection on the packet payload. While such

inferences may be correct for legitimate traffic, malicious

traffic may attempt to blend in with innocuous traffic to avoid

detection.

The software-defined networking (SDN) paradigm has the

potential to greatly enhance network understanding for network

operators. Rather than using highly aggregated, coarse-grain

rules that forward solely on destination address or prefix, the

OpenFlow protocol allows network operators to specify fine-

grain rules to direct traffic based on the standard network flow

5-tuple (IPsrc, IPdest, Transport Protocol, Portsrc, Portdest) and

other header fields. When switches lack a rule that matches

a packet, they will consult a logically-centralized controller,

which makes a decision about the traffic and issues a set of

rules to the SDN switches to forward the packet. Unfortunately,

the memory available at physical OpenFlow switches is limited,

leading to well-documented scalability concerns when using

fine-grained flows [6], [19], [25]. As network aggregation

points, these switches see a large number of distinct flows,

but lack the capacity to maintain the detailed forwarding rules.

In our own previous work [22], called the TaylorSDN, we

eliminate the data-plane scalability concern in SDN switches

by moving the SDN agent into the communicating end-hosts

for fine-grained flows. The physical network switches can

be either traditional, non-OpenFlow switches or implement

OpenFlow with coarse-grained rules, as suggested by Curtis et

al. [6], to avoid the scalability concerns. The TaylorSDN

further addressed the lack of host context by sending appli-

cation information to the SDN controller. Unfortunately, the

TaylorSDN was not OpenFlow-compatible and relied upon its

own protocol. Further, the TaylorSDN used an on-demand data

collection approach for host context which introduced delays

in new flow processing.

Given the inherent limitations of switch-based SDNs and

our initial host-based SDN approach, we ask two research

questions: 1) How can we feasibly create a host-based SDN

that integrates with the existing OpenFlow community while

providing additional context? 2) What is the best design for

such a host-based SDN from both a performance and data

utility perspective? While the detailed context from such a

system would likely be useful for enhancing organizational

security, we focus on the performance and the utility of the

contextual data provided by the system. We consider the

integration of our system with security tools to be outside the

scope of this work.

We created a new host-based SDN system, which we call

the DeepContext SDN, that is designed to provide host infor-

mation to an SDN controller with minimal added latency. By

using hosts to store rules, DeepContext avoids the data-plane

scalability concerns in OpenFlow for fine-grained flows. In our

design, we leverage a popular existing OpenFlow agent, called

Open vSwitch [16], that we extend to provide host contextual



information that can aid controllers in making decisions.

In exploring this direction, we make the following contribu-

tions:

• Integration of Host Context into the OpenFlow Proto-

col: We have identified a straightforward means to include

host-context information into the existing OpenFlow pro-

tocol in a way that can support existing OpenFlow con-

trollers and applications without requiring modifications

for each.

• A New, OpenFlow-compatible Host-Based SDN: Our

DeepContext SDN agent provides detailed information

about the process creating new flows, including the appli-

cation’s name, executable path, associated user ID, group

ID, and even command line options. DeepContext uses a

custom module on the popular Floodlight controller [2]

to allow operators to make standard OpenFlow control

decisions that leverage the additional host context.

• Performance and Completeness Evaluation: To provide

context for the innovations in DeepContext, we compare

the system with an unmodified Open vSwitch network.

Further, we compare the DeepContext SDN with 1)

our own previous host-based SDN [22] and 2) with

ident++ [15], a reactive host querying approach. We

quantify the overheads of adding context and host-

controller communication to the network communication.

The remainder of this work is structured as follows. In

Section II, we describe related work. In Section III, we describe

extensions to the OpenFlow protocol design. In Section IV, we

introduce our DeepContext SDN approach. In Section V, we

evaluate each of the SDN approaches. We present discussion

in Section VI and conclude in Section VII.

II. RELATED WORK

We briefly describe OpenFlow, work related to fine-grained

flow scalability, and research surrounding host-context in

SDNs.

A. OpenFlow Fine-Grained Flow Scalability

OpenFlow switches maintain a local cache of rules to

forward packets. While OpenFlow allows the specification of

very fine-grain rules, the physical memory on the OpenFlow

switches is limited. In particular, Curtis et al. [6] raised

concerns that modern OpenFlow switches cannot handle the

large number of fine-grained flows that a medium-sized organi-

zation would need. To overcome this, those authors encouraged

coarse-grain rules with broad matching criteria to reduce the

switch storage requirements. Unfortunately, since these broad

rules will match multiple flows, they cannot be used to ensure

each new connection will reach the network controller. Other

work found that some switches could support only between

750 and 2,000 flows in hardware and that software tables

may be needed for additional flows [12]. Even some high-end

data center switches have a maximum of 97,000 OpenFlow

rules [9]. This capacity issue in OpenFlow switches makes

them a target for denial-of-service attacks [19].

Given these scalability concerns, Wang et al. [25] devised

a tunneling strategy in which the physical OpenFlow switches

use coarse-grained rules to divert traffic to host-based hyper-

visor virtual switches (using Open vSwitch) to provide fine-

grained flow enforcement. Unfortunately, this inflates network

paths by directing packets via hosts and adds latency. Our

proposed approach also uses a host-based SDN, but ours

runs within the host operating system itself, rather than in a

hypervisor. This allows us to provide detailed host feedback

while avoiding the need for virtualization or indirect paths.

B. Extracting Context from End-Hosts

The Ethane SDN [3] allows operators to write more detailed

network policy including entities such as end-host machines

and access points. However, Ethane, like OpenFlow, is switch-

based and lacks the end-host instrumentation needed for more

detailed specification.

The work in HoNe [8] correlates network traffic with pro-

cesses, but it is not an SDN approach and lacks centralized

coordination. Dixon et al. [7] allow network administrators to

use Virtual Machines (VMs) and Trusted Platform Modules

(TPMs) on the end-hosts to enforce network policy, but the

approach lacks the network visibility present in OpenFlow-

based SDNs. Similarly, Parno et al. [17] use end-host TPMs

to allow the hosts to attest to network state, such as the number

of packets sent, and use a set of network verifiers to query hosts

and provide time-limited authorization tokens for the hosts to

communicate. These approaches do not provide the proactive

controls of OpenFlow on a network-wide basis.

In another work, also named HONE [21], the authors in-

troduce a system that allows a network controller to query

end-hosts to gather statistics and measurements for traffic

engineering. Our approach likewise instruments the network

functions in the kernel, similar to our approach, and supports

SDN controllers. However, our approach focuses on fine-

grained flows and provides application context to a network

controller, which is not part of HONE’s design.

As a proposed successor to the ident [11] protocol,

Naous et al. [15] describe ident++, a protocol that would

allow a remote system to query for details about the ap-

plication and other information associated with a flow. In

conjunction with OpenFlow, the ident++ protocol would

allow a controller to reactively query a host for additional

information. While that position paper does not implement

the approach or address the scalability concerns of OpenFlow

switches, it adds valuable host-based context. To enable a

direct comparison, we implement their proposed approach and

evaluate its performance as part of our work.

Additional approaches have examined how to gather more

detailed context about end-hosts, such as mouse-clicks and

keyboard presses [5] and application-specific sensors (e.g., in a

web browser [13], [27]). Such sensors could be used to increase

the information available in our approach.

Finally, in our own prior work [22], we constructed a

host-based SDN that provides host context for its network



communication. While that host-based SDN was not named,

we will refer to the system as the TaylorSDN (named after

the first author) for easier reference. The TaylorSDN used

Python scripts to communicate with an SDN controller and

used the Linux netfilter_queue library to intercept new

flows. The approach took roughly 17ms to authorize each

flow and did not use the OpenFlow standard, making its

controller incompatible with the rest of the SDN community.

The TaylorSDN demonstrated the approach’s utility for security

by evaluating how one could detect drive-by download malware

and attacks from email attachments based on the application’s

process hierarchy. In this work, we propose a new approach to

enhance performance and interoperability and then compare it

with our prior work and that of other approaches.

III. EXTENDING THE OPENFLOW PROTOCOL

The OpenFlow protocol header does not support options

capable of expressing arbitrary data. Accordingly, encoding

host and application context data into existing OpenFlow

messages in a backwards-compatible way presents a challenge.

In Figure 1, we depict the headers and structure of an

OpenFlow OF_PACKET_IN message in the unshaded region.

This unshaded region represents the message an OpenFlow

controller receives when it must make a decision about a new

flow. Accordingly, we want to modify this message to include

additional host context. In our design, we simply append this

information to the end of the existing OpenFlow message, as

shown in the shaded region of the figure.

Fig. 1. The DeepContext OFPT_PACKET_IN modified packet with context
appended to the trailer.

While appending the contextual information to the existing

OpenFlow message is straightforward, it provides significant

advantages. Some existing OpenFlow controllers will process

the message and send it to applications without any negative

effects. Frequently, controller applications look into the initial

headers in the encapsulated packet to make their decisions,

without examining the application’s payload. Such applications

do not examine the encapsulated packet’s payload size or con-

tent and will not notice our additional contextual information.

Thus, our approach is backwards-compatible with this type of

controller application.

Applications that wish to consult the host context can

examine the encapsulated packet’s headers to determine the

length of the packet payload and skip past it to begin processing

our payload1.

A final complication is the network’s maximum transmission

unit (MTU). Appending information to an OpenFlow message

that is already at or near the boundary of the largest transmit-

table frame size may cause the packet to be too large for the

underlying media. In this case, we would need to determine the

size of the context and truncate the encapsulated packet to al-

low the context to fit. This is the same approach that OpenFlow

takes when its own header would cause the packet to exceed

the MTU. The only complication in our approach is that we

must update the header lengths of the truncated encapsulated

packet so that context-aware controller applications are able to

correctly find the appended host context.

IV. DEEPCONTEXT: DETAILED PROCESS CONTEXT

In building the DeepContext SDN, we have multiple design

goals. We want to be OpenFlow-compatible to ensure the work

appeals to the existing OpenFlow community. We further want

to achieve high performance to ensure the approach is feasible

in production networks. We want minimal modifications to the

host’s operating system, and avoid modifications to existing

applications. Finally, we want to provide useful context about

each process as it creates new flows to enable more detailed

network policy.

To achieve these goals, we designed the DeepContext system

to integrate with two existing SDN systems: Open vSwitch

(OVS) and the Floodlight SDN controller. We provide a visual

depiction of the system in Figure 2. We first describe the

contextual information we acquire and why it is useful and then

describe our modifications to OVS and Floodlight to leverage

this context.

A. Context Tracking and Policy Impact

The end-host operating system must keep track of the infor-

mation associated with each process. In the Linux operating

system, this information is stored on a per-process basis in

a kernel-level data structure called the task_struct. This

data structure contains information about the user running the

process, the executable path used to run the application, the

command line options, the associated group, and even detailed

information about process ancestry and threads. We call this

task information the process’s operating context.

The process context can be valuable information for a

network controller. Network operators may wish to write policy

on a per user, group, or application basis. For example, network

operators may wish to write a policy such as “Only Alice

may connect to 1.2.3.4 on port 80 and only if she uses

/usr/bin/chrome with the --disable-javascript

option.” Such a policy can easily exclude any user-installed

programs, unapproved browsers, and browsers with undesired

features. Since our approach will provide this additional infor-

mation when flows are elevated to the controller, the controller

1Naturally, the sending host will need to validate those packet sizes upon
transmission to avoid applications being able to forge contextual information
by manipulating the length field in headers.



Fig. 2. When a program issues a network system call (1), the DeepContext system hooks network system calls using a kernel module (2) and gathers this
information in a user-space application (3) then releases the hooks (4). Once the packet is intercepted by the Open vSwitch Kernel Module (5) and Elevated to
the Open vSwitch (OvS) Daemon (6), the daemon queries the user-space application for context (7). The OvS Daemon receives the context (8), appends it to
the trailer of the packet and sends it to the controller (9). The controller replies with the corresponding rule (10) that gets relayed to the kernel module (11).
If the controller rule allows it, the packet gets released to the network (12); else, it’s dropped.

can leverage this information when authorizing or denying a

network flow.

Our context tracking application, shown in the red ring in

Figure 2, is responsible for collecting, storing, and providing

this information upon demand. The tracker is essentially a

multithreaded user-space application that manages data stored

in an internal map data structure. To populate this data struc-

ture, we use a kernel module to hook each of the Linux

networking functions. Whenever a process calls a network

function, our special function hooks are executed in kernel

mode. We then extract relevant information from the process’s

task_struct, including the process’s PID, group ID, asso-

ciated user ID, the name of the process, and the executable path

associated with the process. We then use a netlink socket

to transmit this information, along with the full network flow-

tuple, to our user-space context tracker for storage.

When our modified OVS needs to elevate a flow to the

controller, it queries the context tracking system via a Unix

socket. OVS provides the network flow tuple (i.e., IPsrc, IPdest,

Transport Protocol, Portsrc, Portdest) for the flow in question.

The the context tracker looks up the appropriate context in

its map data structure and returns it to OVS. OVS then sends

the context data and the packet to the controller machine, as

explained in the following subsection and Figure 1.

B. Modifications to Open vSwitch

While Open vSwitch (OVS) is often used in a hypervisor

between virtual machines, it can also be installed without

virtualization as a kernel module on a Linux system. In this

configuration, the OVS essentially acts as an OpenFlow agent

for a single system. However, even in this mode, OVS does

not provide any details about the host context when elevating

requests to the controller.

We extend the host-based installation of OVS, shown in

the purple ring in Figure 2, with our own functionality. In

particular, we have modified existing OVS functions to include

additional context on OFPT_PACKET_IN messages before

OVS transmits those messages to the OpenFlow controller.

The altered functions use a Unix socket to request information

from the context tracker application. Once the context tracker

responds with context, the OVS functions appends the supplied

context to the end of the OFPT_PACKET_IN before it is trans-

mitted, as shown in Figure 1. At that point, the message is sent

to the OpenFlow controller for a decision. The OVS system

then implements any orders it receives from the controller.

By leveraging Open vSwitch to implement DeepContext,

we inherit many of its features. We can transmit the Open-

Flow packets, including the modified OF_PACKET_IN, over

encrypted channels. DeepContext can bind to any network

interface (e.g. WLAN, Ethernet), making it topology agnostic.

Furthermore, our flow tables can contain around a million flow

rules [18].

C. Controller Module Customizations

To leverage the additional context from the end-host, we

created an SDN controller module. For our solution, we

have chosen to use the Floodlight controller due to its solid

performance and common use in the community. We modified



the default Forwarding module in Floodlight, which simply im-

plements packet forwarding. We altered the module to include

code to parse the trailer information in the OFPT_PACKET_IN

message to extract the additional context we encoded in OVS.

That controller module then considers the standard network

flow-tuple and the context in making decisions using preconfig-

ured policy rules. As a proof-of-concept, our module approves

all network traffic unless the application’s absolute path begins

with /home or /tmp, in which case the policy dictates that

the flow be dropped. While just an example, other policies

could focus on other elements of context to provide particularly

detailed control.

Importantly, when the Floodlight controller sends a

OFPT_FLOW_MOD message to the end-host OVS, it authorizes

or denies the full network flow tuple. It does not specify any

of the extra host context in this message since the full flow

information is sufficient to uniquely identify the flow. As a

result, the flow state in the host’s OVS is the same as an

unmodified OVS.

V. EVALUATING HOST-BASED SDNS

We begin by evaluating the DeepContext SDN approach’s

performance in a virtual network setup and then evaluate it in

a physical LAN. We evaluate the scalability, performance, and

the completeness of the enhancements of our approach.

A. Virtual Network Experiment Setup

We performed our initial virtual network performance eval-

uation using a single VM hosting server running Ubuntu 14.04

with a 64 bit kernel and a Kernel-Based Virtual Machine

(KVM) hypervisor. That server has 16 cores, each running

at 2.8 GHz. The server has 64 GB of RAM. Each of the

VMs, excluding the network controller, runs with a single

core and 1024 MB of RAM using Ubuntu 14.04 with Linux

kernel version 3.13.0-24. The controller runs with the same

specifications, but has an additional core assigned to avoid

performance bottlenecks on the controller. In this experiment,

we pin each VM core to a specific physical core to avoid over-

provisioning.

B. Performance Evaluation of DeepContext

We evaluate DeepContext in a virtual network and compare

it to Open vSwitch and previous work that leverages appli-

cation context. We then evaluate DeepContext in a physical

LAN.

To better understand the performance of our SDN technique,

we compare it with an unmodified Open vSwitch implemen-

tation to obtain a baseline. However, OVS does not actually

gather host context that can be used for detailed-oriented deci-

sions, such as access control decisions. Accordingly, we look

at two other approaches to provide host context: ident++ and

the TaylorSDN.

The ident++ approach [15] essentially uses traditional

OpenFlow network switches in combination with a user agent

on each system that can be queried by an SDN controller for

more details about the packet. This system requires an existing

OpenFlow network and requires the controller to queue the

packets while awaiting a response from the end-host agent.

Our own work in the TaylorSDN took a similar approach to

DeepContext, pushing the SDN agent from switches to end-

hosts and instrumenting those hosts for context. However, it

was not OpenFlow-compatible and was written in a scripting

language, which may affect performance and hinder its deploy-

ment. Rather than repeat the experiments, we directly use the

results from that work’s publication [22].

We begin by measuring the performance characteristics of

an unmodified OVS implementation. We perform two exper-

iments. In the first experiment, we generate 1,000 new flows

sequentially using a script running on the host. This allows

us to measure the elevation latency between when a packet is

queued at the kernel and when it is placed on the wire. This

captures the flow elevation and controller decision-making time

for each of the SDN approaches. For the round-trip time (RTT),

we measure the amount of time between when the packet is

first queued and when the reset response from the responder is

received. In each network type, the responder is a traditional

network host without any SDN functionality.

In the second experiment, we evaluate the number of flows

each host can create sequentially in a given time window. We

created a program that creates as many sequential flows per

second as it can in a 300 second period. Essentially, once

the program receives the reset response from the receiver, the

program closes the socket and opens a new one. We then divide

the new flow count by the duration to obtain a base flow-per-

second rate.

TABLE I
PERFORMANCE COMPARISON OF EACH NETWORK TYPE. THE ELEVATION

LATENCY AND RTT METRICS ARE THE MEDIAN OF 1,000 TRIALS WHILE

THE NEW FLOW RATE WAS DETERMINED OVER A 5 MINUTE PERIOD.

Open
Metric vSwitch TaylorSDN ident++ DeepContext

Median Elevation (ms) 1.98 16.72 4.25 2.739
Median RTT (ms) 6.25 34 10.17 7.390
New Flows/sec 103.19 27.4 48.19 86.80

We show the results of these experiments in Table I. The

Open vSwitch system has the best performance of the SDN

techniques, since it does not spend any time gathering host

context. The TaylorSDN is significantly worse than the Open

vSwitch approach, likely due to its Python implementation

and its polling-based approach for gathering host context. For

both the DeepContext and the ident++ approaches, we use

the same kernel modifications, Open vSwitch daemon, and

context-gathering agent. However, in the ident++ approach,

the host agent provides the entries reactively when prompted

by the controller. In essence, the ident++ gains the benefit

of DeepContext’s performance optimizations, but still performs

worse due to the extra round-trip time from the controller.

When examining the results in Table I, we see that the

host context instrumentation present in DeepContext adds 0.76

milliseconds to the median elevation time (the difference of

DeepContext’s 2.74ms elevation with the 1.98ms elevation in

Open vSwitch).



TABLE II
CPU AND MEMORY USAGE OF AN UNMODIFIED OPEN VSWITCH SYSTEM AND THE MODIFICATIONS RELATED TO THE DEEPCONTEXT COMPONENTS.

CPU RAM (of 1024 MB Total)
Component Median Mean Max Std. Dev. Median Mean Max Std. Dev.

Context Tracking System 1.00% 0.97% 1.30% 0.19% 0.10% 0.10% 0.10% 0.00%
Unmodified Open vSwitch 44.00% 43.40% 47.30% 4.65% 0.40% 0.39% 0.40% 0.01%
Open vSwitch with Context 48.30% 47.40% 49.00% 3.86% 0.90% 0.89% 0.90% 0.01%

We next test the DeepContext system on a physical local area

network. In this experiment, we deploy DeepContext on two

VMs, each running on a separate physical VM hosting server.

Each VM machine has a 2.8 GHz processor and 1024 MB of

RAM each. Both hosts run Ubuntu 14.04 with Linux Kernel

3.13.0-24. The controller runs in a VM on a third physical

machine and has two 2.8 GHz Cores and 1024 MB of RAM.

All the VMs use a bridged network interface and connect to

our organization’s production network via a gigabit Ethernet

network switch. Table III shows the results we obtained by

generating 1,000 new flows sequentially in the same fashion

as in the virtual network experiment. The elevation time is

consistent with the virtual environment while the RTT has a

slightly higher median RTT (9ms versus 7.4ms), likely due to

the forwarding in the physical hardware’s switch and network

interface cards.

TABLE III
EVALUATION OF DEEPCONTEXT IN A PHYSICAL LAN. ALL METRICS ARE

IN MILLISECONDS AND ARE THE MEDIANS OF 1,000 TRIALS.

Context Retrieval Time Elevation Median RTT

0.468 2.259 8.901

Finally, we did a quick confirmation test with two types of

applications: a daemon that periodically probes the network,

the avahi-daemon which uses Multicast DNS, and that of

a user-initiated web application, wget. The controller could

easily confirm the application responsible for each type of

message based on the context. In the case of wget, the

controller could link the application’s DNS request with its

HTTP interaction with the web server.

C. Understanding the Performance of the DeepContext System

To characterize the performance of the DeepContext com-

ponents, we track the resource usage for the processes that

run on the end-host, such as the modified Open vSwitch

daemon and the context tracking system. Using the same

testing environment described in Section V-A, we use a script

to continuously generate traffic. We monitor the resulting flows

per second and the resources used via the top command.

In Table II, we show the CPU and memory requirements of

the components. We can see that much of the CPU usage is

associated with the Open vSwitch component, as shown with

the unmodified Open vSwitch results. The additional context

processing adds roughly 4.3% CPU usage. The RAM is also

low for both, amounting to less than 1% of the memory of the

system. That memory usage is roughly divided between the

Open vSwitch process and our tracking of context.

Even in this stress test scenario, we use less than half

the CPU at the end-host. We ultimately stored 85,135 flows,

which greatly exceeds the number of flows most end-hosts

simultaneously manage. In that scenario, the memory usage

was still less than 1% of the 1024MB RAM available. In

normal daily usage, we do not expect a noticeable performance

impact in typical client system usage.

D. Impact of Context Processing at the Controller

While OpenFlow controller scalability is its own separate

topic of research, we are primarily concerned with whether

our processing of host context in a controller application

significantly affects the controller’s scalability. To measure this

impact, we use cbench [20] tool to measure the number of re-

sponses per second the controller can handle. In using cbench

on a single client, we vary number of simulated switches

and measure the response time. We compared the Floodlight

controller running our DeepContext module to a Floodlight

controller running the unmodified Forwarding module, which

does not need to consult host context for its decisions.

In Table IV, we show our results. We find that our controller

module generates 5, 455.38 response per second as a maximum

average, which occurs when 50 switches are simulated. In

comparison, the unmodified Forwarding module can handle

6, 692.82 responses per second in the same scenario. In general,

the DeepContext module’s flows per second range from 77%

to 88% of the unmodified Forwarding module’s rate in each

scenario. This may be acceptable in some networks. However,

in busy networks, additional controllers may need to be pro-

visioned to compensate for the additional processing at the

controller.

TABLE IV
FLOW RATE OF THE DEEPCONTEXT SYSTEM COMPARED TO AN

UNMODIFIED FORWARDING CONTROLLER APPLICATION

cbench DeepContext Controller Forwarding Controller

# of Switches Avg. flows/s Std. Dev. Avg. flows/s Std. Dev.

1 1,450.12 429.66 1,728.93 516.57

2 2,189.75 739.56 2,812.86 634.07

4 3,536.06 842.05 4,213.70 942.02

8 4,773.87 1,034.28 5,405.35 1,137.86

16 5,230.06 1,338.50 6,264.34 1,160.08

32 5,213.97 1,699.68 6,352.14 1,886.39

50 5,455.38 1,439.98 6,692.82 1,684.47

E. Completeness Assessment of DeepContext

In this section we evaluate how comprehensive DeepCon-

text’s contextual benefits are. We do so by examine two classes



of attacks that the context may aid in detecting: malicious

software running from the user’s home directory and software

that attempts to inject commands into vulnerable applications.

We begin by focusing on applications running from user

directories. Network oriented code running from user-writeable

directories is often suspicious [26] since most applications

are installed in administrator-controlled directories, such as

/usr/bin or /usr/local/bin. We evaluate our system’s

ability to detect and block such applications by installing a

rule that denies access to any application whose absolute path

begins with /home. We then create a program that issues

a request to an HTTP server. The SDN agent elevates the

request to the controller, the controller application observes

the application’s path and applies the policy to drop all packets

from that application. The controller sends the drop rule and

our program is indeed denied network access.

Our second class of attacks is one in which the attacker

tries to execute an unauthorized command based on how a

vulnerable application works. As an example, the popular

image manipulation library ImageMagick was vulnerable to

a command injection attack [4], [14]. An attacker could create

a special MVG file that would manipulate ImageMagick into

executing arbitrary commands via a system shell. Attackers

could manipulate programs using ImageMagick to download

and execute malware.

In our experiment, we focus on our context tracking sys-

tem’s ability to obtain the parent process associated with any

network-using application. For a GUI-less server, we created

a controller policy that blocked applications unless the parent

process was init (which spawns daemons) or the bash shell,

which is used used by SSH or local console users. Using our

own application that is vulnerable to command injection, we

inject the wget command to get an image file. The SDN

agent again elevated the network request to the controller. The

controller applied its policy about process ancestry and denied

the request. The SDN agent then dropped the traffic, rendering

wget unable to download the image file.

While these two examples are relatively simple policies, they

highlight the power of the system. A broad class of attacks can

be thwarted with simple policies. Unlike with firewall rules

or policies that use ports, organizations can create whitelist

policies for specific legitimate applications in our approach

by specifying paths without being concerned about creating

openings for malicious applications.

VI. DISCUSSION

In this work, we have focused on the contextual benefits,

performance, and data-plane scalability of the SDN agents

associated with an OpenFlow network. We have addressed the

inherent scalability issues of physical OpenFlow switches by

moving the SDN component into the end-host, allowing more

rules per host. In doing so, we have moved from a switch-based

SDN that can only store a few thousand flow rules in its flow

table [18] and can manage roughly 100 new flows/second [1]

overall to a host-based system in which each host can store

roughly 1 million rules in its flow table [18] and can manage

roughly 87 new flows/second on each host.

The contextual benifits and performance of OpenFlow con-

trollers is being actively investigated by other researchers in

the field [10], [24]. Scalable controllers [6] and distributed

controllers [23] are both possible mechanisms to ensure that

network controllers can keep up with the demands of the

devices on the network. This is particularly important for

controller applications that must perform additional processing,

such as examining host context for decision making. While

essential, we consider such work to be orthogonal to our own.

Host-based SDNs have limited influence over physical

switches and the ports they use for forwarding traffic. Enter-

prise networks, unlike data center networks, often have star

topologies with limited forwarding options. Future work may

explore tunneling or encapsulation options, like MPLS, to

enable more powerful traffic engineering.

The use of a host-based SDN necessarily requires changes

at each of the end-hosts. Our paper shows how to do so in

the Linux operating system. Other popular operating systems,

both for traditional operating systems and for mobile OSes,

would additionally require instrumentation to ensure coverage

of all the end-user systems at an organization. In proprietary

operating systems, the kernel-based functionality may need to

be implemented as a kernel driver. Further, for large organi-

zations, automated software distribution tools may help install

the software organization-wide.

A final concern focuses on network policy. While the host-

based SDN approaches can provide detailed context for net-

work operators, these operators would need to specify policy

that leverages these features to make decisions. The approach

for enhancing network policy may be organization-specific.

However, future work may explore the potential for a suite

of template best practice policies for organizations.

VII. CONCLUSION

In this work, we introduced a new host-based SDN ap-

proach, called DeepContext, and compared it with existing

approaches to enhance SDNs with host context. We found that

the DeepContext system offers the best performance of the

host context systems with only modest performance overheads

as compared to the Open vSwitch system. Further, we found

the DeepContext system provides each of the context building

properties we analyzed.

Our work has found that proactively providing context on

flow elevation requests can yield valuable management insights

and performance benefits while providing compatibility with

the existing OpenFlow community and tools.
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